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1 Overview and preliminaries

This lecture is intended to be an introductory overview of exchangeable random partitions, random discrete
probability measures, and the connections between them—namely, that they are two sides of the same coin, and
that in many cases one may move between the two via known characterizations. For the sake of clarity and of
time, I will skip most of the technicalities. Further background and details can be found in the references given
throughout the notes.

I will focus on two concrete examples: the Chinese Restaurant Process (CRP) and the Dirichlet Process (DP).
The CRP is the canonical model for exchangeable random partitions, and the DP is the canonical discrete ran-
dom probability measure, each satisfying basically every nice property one could desire. This is no coincidence:
the DP can be obtained as the limit of the CRP, and the CRP can be obtained as the predictive process of the DP.

Often, a property satisfied by the DP yields a generalization that leads to a larger class of stochastic processes
that satisfy some variation of the original property. The DP is the only process that satisfies each of these
properties, making it something of a unicorn, and a starting point for further reading. (I’ve tried to cite liberally
for this purpose.)

Preliminaries. Throughout, I will assume a common probability space (Ω,A,P). A random measure W on a
measurable space (S,S) is technically defined as a transition kernel from (Ω,A) to (S,S). That is, a mapping
W : Ω × S 7→ R+ is a random measure if ω 7→ W(ω,A) is a random variable for each A ∈ S and if
A 7→ W(ω,A) is a measure on (S,S) for each ω ∈ Ω. If the space (S,S) is “nice” (i.e., standard Borel)—
which in practice it always is—the existence of a unique (up to null sets) W with the properties we want is
guaranteed. If you want to dig into this, any graduate-level textbook on measure theoretic probability will cover
it in detail; I highly recommend [Çin11]. This is the end of measure-theoretic technicalities; for our purposes,
it is enough to think of W as a measure-valued random variable.

A random discrete measure is a random measure that is almost surely discrete, and therefore has the represen-
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tation

W( • ) =

∞∑
j=1

WjδX∗
j
( • ) for X∗j ∈ S . (1)

(Xj) are called the atom locations and (Wj) the atom weights of W. A random measure with i.i.d. (Xj) that
are also independent of the atom weights is called homogeneous. All random measures will be assumed to be
homogeneous in these notes. A random discrete probability measure is a random discrete measure such that∑
jWj = 1, almost surely. To distinguish between the two, Pj is used for the weights of a random discrete

probability measure.

The Dirichlet Process (DP). The DP is a random discrete probability measure first introduced by [Fer73]. It can
be (and is) defined in a number of ways. This in itself hints at how special the DP is; as we will see, a number
of properties are unique to the DP and can be used to define it. The following is perhaps the most uninformative
(though also the most common). A DP on (S,S) is specified by a base probability distribution H on S and a
parameter θ > 0. The DP so defined is stochastic process whose realizations are discrete probability measures
that satisfy the following property almost surely: Given any finite partition {Ai}ki=1 of S, P ∼ DP(θ,H) is
such that

(P (A1), . . . , P (Ak))
d
= (D1, . . . , Dk) where (D1, . . . , Dk) ∼ Dir(θH(A1), . . . , θH(Ak)) .

The finite-dimensional distributions of a DP on S are indexed by all of the finite partitions of S; they are coherent
such that they satisfy the requirements of Kolmogorov’s extension theorem, which guarantees the existence of
the DP. Ferguson showed that the DP is conjugate with itself (a property that makes inference easy for the
Hierarchical DP [Teh+06]) and has a simple predictive distribution. That is, suppose P ∼ DP(θ,H) and n
samples are drawn X1, . . . , Xn ∼ P . Then the posterior of P is

P[P ∈ • |X1, . . . , Xn] = DP
(
θ + n,

θH +
∑n
i=1 δXi

θ + n

)
(2)

and the predictive distribution is

P[Xn+1 ∈ • |X1, . . . , Xn] =
θ

θ + n
H( • ) +

1

θ + n

n∑
i=1

δXi
( • ) . (3)

These basic properties will be used to develop a number of interesting characterizations of the DP, which are
highlighted in blue. *

2 Exchangeable random partitions of N

We begin by constructing random partitions from a sequence. This is more intuitive than working directly with
partitions; properties of partitions can be translated into properties of sequences, and vice versa. Although it is
possible to define distributions directly on random partitions [Pit06], in practice they are most often generated
by a sequence. The exposition here owes much to Sections 3 and 4 of [Pit96b].

Species sampling and clustering. Suppose that a random sample X = X1, X2, . . . is drawn from a continuous
spectrum of colors, or species. Assume that Xi takes values in some measurable space (S,S), and that we keep
track of the unique species X∗j . We may do so by noting the arrival time of the jth new color, for each j,

Tj := inf{n : Xn /∈ {X1, . . . , Xn−1}} , (4)
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and setting X∗j = XTj
. A sequence Xn = X1, . . . , Xn will contain a random number of unique species,

denoted Kn. Let the number of occurrences of the jth species to appear in Xn be denoted by nj,n:

nj,n :=

n∑
i=1

1{Xi = X∗j } . (5)

Xn induces a random partition of [n] := {1, . . . , n} by clustering observations of the same species:

Π(Xn) := Πn = {B1, . . . , BKn
} where i ∈ Bj ⇐⇒ Xi = X∗j . (6)

Note that if the values of Xn are all distinct (i.e., every n is an arrival time), then the partition consists of n
singleton blocks: Π(Xn) = {{1}, . . . , {n}}. We’ll ignore this case as uninteresting, but note that all technical
results must take the pure singletons case (and the single block case) into account.1

A prediction rule tells us how to generate a new sampleXn+1, given Xn. For instance, assume thatX1 ∼ ν( • ),
where ν is a non-atomic distribution on S, and proceed as follows:

Pθ[Xn+1 ∈ • |Xn] =
θ

n+ θ
ν( • ) +

Kn∑
j=1

nj,n
n+ θ

δX∗
j
( • ) with θ > 0 . (7)

This is the prediction rule of the Chinese Restaurant Process (CRP). The scheme and the name are attributed
to Pitman and Dubins [Pit06], who thought of the process as customers arriving at a Chinese restaurant with
a potentially infinite number of tables, and blocks in the partition corresponding to tables at which customers
are sitting. With probability θ

n+θ we sample a new species, otherwise we sample an existing species with
probability proportional to its number of previous occurrences.

The Dirichlet Process. Observe that (7) may be differently obtained as follows. Sample P ∼ DP(θ, ν) *
and X1, . . . , Xn ∼ P . The predictive distribution (3), re-written to account for multiple observations of the
same atom, is precisely (7). Hence, the CRP is the unique predictive (or urn) process associated with the DP.
Properties of the CRP are hence also sampling properties of the DP.

Another property unique to the DP can be described by considering the probability of observing a new species
in an exchangeable species sampling model. The CRP (and thus the DP) is the only exchangeable species
sampling model in which the probability of observing a new species depends only on n (and not Kn or (nj,n))
[De +15].

Exchangeability. It is not hard to show that Xn sampled from (7) is exchangeable for every n; hence, X
is infinitely exchangeable. The distinction may seem unnecessary, but there are plenty of statistical models
that are finitely exchangeable that are not infinitely exchangeable; the difference typically amounts to a lack
of coherence, also known as consistency under marginalization (e.g., [BCL11; Bet+16]), which has implica-
tions for valid inference across datasets of difference sizes. I will assume going forward that all exchangeable
distributions are infinitely exchangeable.

A random partition Πn is said to be exchangeable if its distribution is invariant under permutations of [n]; Π :=
(Πn)n≥1 is an exchangeable partition of N if Πn is exchangeable for every n. Clearly, Π(X) is exchangeable if
X is exchangeable.

EPPFs and Gibbs-type partitions. Consider the distribution of the partition Πn induced by Xn sampled from

1The fact that its probability is so easy to compute can be useful for proving technical results. For example, see [GP06].
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(7):

Pθ[Πn] = Pθ
[
∩Kn
j=1(Xi = X∗j ) ∀i ∈ Bj ,Kn = k

]
=
θk−1

∏k
j=1(nj,n − 1)!∏n−1
i=1 (θ + i)

(8)

= Pθ[nj,1, . . . , nj,k,Kn = k]

:= p(nj,1, . . . , nj,k) .

p is called the exchangeable partition probability function (EPPF) for obvious reasons: It is the probability of
the partition Πn, symmetric in its arguments—the block sizes of Πn—and thus invariant under permutations of
the blocks and of the elements of [n].

Note that the EPPF is defined on partitions and does not require that Πn is induced by a sequence. (In fact, an
EPPF can be used to generate a species sampling sequence X; see Section 3.2 of [Pit96b].)

An EPPF (and the corresponding model of exchangeable partitions) is said to be Gibbs-type if the EPPF has the
form

Pα[Πn = {n1,n, . . . , nKn,n}] = Vn,Kn

Kn∏
j=1

Γ(nj,n − α)

Γ(1− α)
, (9)

for some −∞ ≤ α < 1 and a sequence of coefficients Vn,k, 1 ≤ k ≤ n that control the distribution of the
number of blocks. A bit of algebra shows that (8) is of this form, with α = 0. Gnedin and Pitman [GP06] *
showed that all Gibbs-type partitions with α = 0 are mixtures over θ of the CRP. The α ∈ (0, 1) regime has
fascinating properties, with connections to stable processes [HJL07; HJL18] and to another interesting class of
models, the Poisson–Kingman partitions [Pit03].

Further characterizations of the CRP. The CRP and its two-parameter generalization have a number of
other unique properties described in terms of random deletion and regeneration of partitions and compositions
[GHP09; Gne10].

Kingman’s paintbox. The construction of an exchangeable random partition from an exchangeable sequence
is useful. Can every exchangeable partition be constructed from an exchangeable sequence? Kingman [Kin78a;
Kin78b] showed that the answer is “yes”, via the following paintbox construction of Π (this description closely
follows [GHP09]). Suppose we have a sequence of random variables P↓ = (P ↓1 , P

↓
2 , . . . ), called ranked

frequencies, such that

1 ≥ P ↓1 ≥ P
↓
2 ≥ · · · ≥ 0 and P∗ := 1−

∞∑
j=1

P ↓j ≥ 0 . (10)

Thus, intervals [lk, rk) of length P ↓k , with lk =
∑k−1
j=1 P

↓
j , rk = lk + P ↓k , partition the unit interval [0, 1), with

a final interval [1 − P∗, 1) if P∗ > 0. Consider all points in each interval as having the same unique color,
identified by lk: c(u) = lk for all u ∈ [lk, rk); if P∗ > 0, let c(u) = u for all u ∈ [1 − P∗, 1) (these generate
singleton blocks, also called dust). This coloring of points in the unit interval is called Kingman’s paintbox
representation of P↓. It can be used to generate Π by sampling an infinite sequence of uniform random variables
Ui ∼ Uniform[0, 1], assigning color c(Ui), and generating the partition Πn by

Π(Xn) := Πn = {B1, . . . , BKn
} where i ∈ Bj ⇐⇒ c(Ui) = lj .

It’s clear that this will generate an exchangeable partition of N; it’s less clear that any exchangeable partition
can be generated this way. Kingman showed that this is the case. Intuition via de Finetti?

Theorem 2.1 (Kingman [Kin78a; Kin78b]; restated from [GHP09]). Each exchangeable partition Π of N gen-
erates a sequence of ranked frequencies P↓ such that the conditional distribution of Π given these frequencies
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is that of the color partition of N derived from P↓ by Kingmans paintbox construction. The EPPF associated
with Π determines the distribution of P↓, and vice versa.

Kingman’s representation shows that the study of exchangeable random partitions is equivalent to the study of
random discrete probability measures, which we take up in the next section.

Representations of exchangeable structures. The paintbox representation lets us express all dependence
between elements of Π via P↓; given P↓, the variables c(Ui) are conditionally independent. This type of
construction of an exchangeable structure—in terms of i.i.d. uniform random variables passed through a random
function—is extremely useful for statistical inference and probabilistic analysis, and appears in various forms
for data like arrays and stationary processes. See [Ald09; OR15].

Uses of random partition models and further reading. In practice, models for exchangeable random parti-
tions are most often used as priors for Bayesian nonparametric latent clustering models; Jessie Wu will talk next
week about these applications (and others). Random partition models also have substantial roots in the popula-
tion genetics literature, where Ewens’ sampling formula, equivalent to (8), arises from the study the frequencies
of alleles in a sample from a population. See [Cra16] for a recent review. Prediction rules like (7) have been
used in biological applications to estimate quantities like the expected number of new species in the next m
samples, and related quantities. See, for example, [FNT16]. Generalizations of the CRP prediction rule are its
two-parameter extension [Pit96b] and more complicated constructions [IJ03].

3 Random discrete probability measures

The ranked frequencies P↓ = (P ↓1 , P
↓
2 , . . . ) are typically difficult to work with analytically. Instead, we define

the frequencies as the limiting proportions of blocks in Π labeled in order of appearance, Pj = limn→∞
nj,n

n .
(These limits exist almost surely by Theorem 2.1.) How might we generate P = (P1, P2, . . . )? Consider sam-
pling from Kingman’s paintbox induced by some P↓, and assume for simplicity that P∗ = 0. The probability
that the length of the interval containing U1 is P1 is just the interval’s length, P1. This is known as a size-biased
sample from P↓. P2 is the length of the interval corresponding to the next Ui that is not in the same interval
as U1, which is a size-biased sample of P↓ \ P1. Proceeding in this fashion, it is clear that the probability of a
random size-biased permutation of P↓ is

P[P1, P2, . . . |P↓] = P1
P2

1− P1

P3

1− P2 − P1
· · · Pk

1−
∑k−1
j=1 Pj

· · · . (11)

It is usually more convenient to specify distributions over random discrete probability measures in terms of
their size-biased representations. Size-biasing essentially “smooths” the hard ordering restrictions on the ranked
frequencies: Pj will larger than Pj+1 on average, but it relaxes the strict ordering requirement.

3.1 Stick-breaking constructions

How might we specify a distribution on P and sample from it? Assume for simplicity that P∗ = 0 so that∑
j Pj = 1. To start, we’d like the simplest possible construction: Experience indicates that for the purposes

of analysis and inference, more independence is better. Sampling Pj i.i.d. won’t do the trick; an infinite sum of
i.i.d. positive variables diverges almost surely. We might think instead of composing i.i.d. [0, 1]-valued random
variables in a way that ensures that

∑
j Pj = 1.
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A simple way to do so is as follows. Sample V1, V2, . . . i.i.d. from some distribution F on [0, 1], and set P1 = V1
and

Pk := Vk

k−1∏
j=1

(1− Vj) . (12)

To understand this construction, consider P2 = V2(1− V1). 1− V1 is the size of the portion of the unit interval
that remains after V1 is “broken off”. P2 is just the V2-sized break from that remainder, and so on for k > 2.
Clearly, this will satisfy

∑k
j=1 Pj ≤ 1 for all k, and the sum gets arbitrarily close to 1 as k →∞.

Remarkably, McCloskey [McC65] (see also [Pit96a]) showed that P constructed this way corresponds to the
limiting frequencies of an exchangeable random partition Π in order of appearance if and only if F is the
Beta(1, θ) distribution, in which case the distribution of Π is given by the EPPF of the CRP (8).

Another remarkable result due to Pitman [Pit96a] is that if we relax the requirement that the Vj be i.i.d. to
simply requiring them to be independent, then only Vj ∼ Beta(1 − α, θ + jα), for α ∈ [0, 1), θ > −α will
produce a sequence P corresponding to the limiting frequencies of an exchangeable random partition in order
of appearance. This choice of stick-breaking construction is known in the Bayesian nonparametrics literature
as the Pitman–Yor process [IJ01]. For more on its properties, see [Pit96a; PY97].

Of course, one may define the weights of a random discrete probability measure with any arbitrary sequence
Vj ∼ Fj , and with Vj not necessarily independent, as long as Vj ∈ [0, 1). This will not always correspond to
a size-biased representation of the limiting frequencies of an exchangeable random partition, but it will define
a valid discrete probability measure with which to sample an exchangeable random partition via Kingman’s
paintbox. An example of this type of construction with independent Vj ∼ Beta(aj , bj) is the so-called Beta–
Stacy process [WM97].

The Dirichlet Process. Sethuraman [Set94] constructively defined the DP as precisely the Beta(1, θ) stick- *
breaking process. Its uniqueness as the only i.i.d. stick-breaking construction corresponding to an exchangeable
random partition is a consequence of properties that uniquely characterize the Gamma distribution, which itself
is connected to the property of neutrality (more on this in the next section).

3.2 Normalized completely random measures

A different construction of random discrete probability measures that uses independence is by normalizing a
completely random measure (CRM). I won’t get into the details of CRMs here, but it is enough to say that a
random measure (not necessarily a probability measure) W on (S,S) is completely random if, for any two
disjoint setsA,A′ ⊂ S, W(A) ⊥⊥W(A′). This is equivalent to a Poisson point process on S×R+. Kingman’s
monograph [Kin93] is a beautiful introduction to all things Poisson process, including CRMs. A Poisson process
is typically defined by its mean measure µ (sometimes called the parameter measure, or the Lévy measure):
E[W(A)] = µ(A) for A ⊆ S × R+. Let T :=

∑∞
j=1Wj be the (random) total mass of W. A sufficient

condition for T to be almost surely finite is∫
R+

∫
S

min{1, w}µ(dw, dx) <∞ . (13)

Define Pj = Wj/T . It is clear that the probability weights Pj depend on each other only through the total
mass. Normalized CRMs have been used to great success in a range of applications due to the fact that posterior
sampling often has analytic updates that make use of the fact that the Pj’s are only dependent through T [Jam05;
JLP09; FT13; LFT15].
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The Dirichlet Process. The DP can be constructed by normalizing the Gamma process. Before making this *
precise, consider the finite-dimensional Dirichlet distribution. Let (D1, . . . , Dk) denote a random vector with
distribution Dir(α1, . . . , αk). A Dir(α1, . . . , αk)-distributed random vector can be constructed via the identity

(D1, . . . , Dk)
d
=

(
G1∑k
j=1Gj

, . . . ,
Gk∑k
j=1Gj

)
with Gj ∼ind Γ(αj , 1) .

The Gamma distribution’s unique properties extend to the stochastic process level, and impart the DP with some
fascinating properties.

Denote by Ga a Gamma(a, 1) random variable. Suppose Ga ⊥⊥ Gb. Then

Ga
Ga +Gb

⊥⊥ (Ga +Gb) and Ga +Gb
d
= Ga+b . (14)

Lukacs [Luk55] showed that this property is unique to the Gamma distribution.

This also holds at the stochastic process level, and yields a unique characterization of the DP. In particular, the
DP can be constructed by normalizing the jumps of the Gamma process, whose mean measure µ(dw, ds) =
ρ(dw)ν(ds) has jump component

ρ(dw) = αw−1e−βw .

The Gamma process has the property of infinite activity, meaning that there are an infinite number of jumps on
any bounded set. However, most of the weights are very small (this can be made precise); as a result, T < ∞
almost surely.

The DP is constructed by normalizing the jumps, Pj = Wj/T , which are independent of the total mass due to
(14); the DP is the only normalized CRM with this property.

Neutrality. A random probability vector Pk = (P1, . . . , Pk), with Pj ∈ [0, 1] and
∑k
j=1 Pj ≤ 1, is neutral to

the right (NTR) if the sequence of relative increments

Rr :=

(
P1,

P2

1− P1
, . . . ,

Pk

1−
∑k−1
j=1 Pj

)
(15)

is a vector of independent random variables.

A random probability vector is neutral to the left (NTL) if the sequence of relative increments

R` :=

(
P1,

P2

P1 + P2
, . . . ,

Pk∑k
j=1 Pj

)
(16)

is a vector of independent random variables.

A NTL vector can be obtained from an NTR vector, and vice versa, by reversing the order of the elements
of the vector. It is important to note that neutrality relies on an ordering of the vector. A NTR (NTL) vector
with randomly permuted entries may not be NTR (NTL). Both of these concepts can be extended to stochastic
processes defined on R [Dok74], which imposes a natural ordering on the relative increments. NTR processes
have been used as priors for Bayesian nonparametric survival analysis [Hjo90] and other applications [WM97],
and extended to processes defined on arbitrary spaces R × X [Jam06]. NTL processes are less common, but
have appeared in more recent work related to Gibbs-type partitions [GS07] and preferential attachment graphs
[BO17].
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It is straightforward to show via the Gamma process construction that the DP defined on R is both NTR and
NTL. This property in fact characterizes the DP as the only stochastic process that is both NTR and NTL *
[Dok74]. Because of this, the DP is neutral with respect to any order imposed on the space on which it is
defined.

For example, note that the relative increments correspond to the probabilities involved in generating a random
size-biased permutation (11) of a probability weight sequence. A natural question is whether a random discrete
probability measure is NTR under random size-biased ordering. A bit of algebra also shows that the stick-breaks
in (12) are Vk = Pk

1−
∑k−1

j=1 Pj
, implying that for the DP,

Rr = (V1, . . . , Vk) with Vj ∼ind Beta(1, θ) .

Extending this idea, one can show that a random discrete probability measure is NTR under random size-biased
ordering if and only if it has a stick-breaking construction with independent stick-breaks.
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Flour XXXII. Springer-Verlag Berlin Heidelberg, 2006.

9

0708.0619
https://arxiv.org/abs/0708.0619
1802.05352
https://arxiv.org/abs/1802.05352
http://www.jstor.org/stable/24307169
http://www.jstor.org/stable/24307169


[Pit96a] Jim Pitman. “Random discrete distributions invariant under size-biased permutation”. In: Adv. in
Appl. Probab. 28.2 (1996), pp. 525–539.

[Pit96b] Jim Pitman. “Some developments of the Blackwell-MacQueen urn scheme”. In: Statistics, proba-
bility and game theory. Ed. by T. S. Ferguson, L. S. Shapley, and J. B. MacQueen. Vol. Volume
30. Lecture Notes–Monograph Series. Hayward, CA: Institute of Mathematical Statistics, 1996,
pp. 245–267.

[PY97] Jim Pitman and Marc Yor. “The two-parameter Poisson-Dirichlet distribution derived from a stable
subordinator”. In: Ann. Probab. 25.2 (Apr. 1997), pp. 855–900.

[Set94] J. Sethuraman. “A constructive definition of Dirichlet priors”. In: Statist. Sinica 4 (1994), pp. 639–
650.

[Teh+06] Yee Whye Teh et al. “Hierarchical Dirichlet Processes”. In: Journal of the American Statistical
Association 101.476 (2006), pp. 1566–1581.

[WM97] Stephen G Walker and Pietro Muliere. “Beta-Stacy processes and a generalization of the Pólya-urn
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