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Abstract
Hamiltonian Monte Carlo and slice sampling
are amongst the most widely used and stud-
ied classes of Markov Chain Monte Carlo sam-
plers. We connect these two methods and present
Hamiltonian slice sampling, which allows slice
sampling to be carried out along Hamiltonian
trajectories, or transformations thereof. Hamil-
tonian slice sampling clarifies a class of model
priors that induce closed-form slice samplers.
More pragmatically, inheriting properties of slice
samplers, it offers advantages over Hamiltonian
Monte Carlo, in that it has fewer tunable hyper-
parameters and does not require gradient infor-
mation. We demonstrate the utility of Hamil-
tonian slice sampling out of the box on prob-
lems ranging from Gaussian process regression
to Pitman-Yor based mixture models.

1. Introduction
After decades of work in approximate inference and nu-
merical integration, Markov Chain Monte Carlo (MCMC)
techniques remain the gold standard for working with in-
tractable probabilistic models, throughout statistics and
machine learning. Of course, this gold standard also
comes with sometimes severe computational requirements,
which has spurred many developments for increasing the
efficacy of MCMC. Accordingly, numerous MCMC algo-
rithms have been proposed in different fields and with dif-
ferent motivations, and perhaps as a result the similarities
between some popular methods have not been highlighted
or exploited. Here we consider two important classes of
MCMC methods: Hamiltonian Monte Carlo (HMC) (Neal,
2011) and slice sampling (Neal, 2003).

HMC considers the (negative log) probability of the in-
tractable distribution as the potential energy of a Hamil-
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tonian system, and samples a new point from the distribu-
tion by simulating a dynamical trajectory from the current
sample point. With careful tuning, HMC exhibits favorable
mixing properties in many situations, particularly in high
dimensions, due to its ability to take large steps in sam-
ple space if the dynamics are simulated for long enough.
Proper tuning of HMC parameters can be difficult, and
there has been much interest in automating it; examples in-
clude Wang et al. (2013); Hoffman & Gelman (2014). Fur-
thermore, better mixing rates associated with longer trajec-
tories can be computationally expensive because each sim-
ulation step requires an evaluation or numerical approxi-
mation of the gradient of the distribution.

Similar in objective but different in approach is slice sam-
pling, which attempts to sample uniformly from the volume
under the target density. Slice sampling has been employed
successfully in a wide range of inference problems, in large
part because of its flexibility and relative ease of tuning
(very few if any tunable parameters). Although efficiently
slice sampling from univariate distributions is straightfor-
ward, in higher dimensions it is more difficult. Previous ap-
proaches include slice sampling each dimension individu-
ally, amongst others. One particularly successful approach
is to generate a curve, parameterized by a single scalar
value, through the high-dimensional sample space. Ellip-
tical slice sampling (ESS) (Murray et al., 2010) is one such
approach, generating ellipses parameterized by θ ∈ [0, 2π].
As we show in section 2.2, ESS is a special case of our
proposed sampling algorithm.

In this paper, we explore the connections between HMC
and slice sampling by observing that the elliptical trajectory
used in ESS is the Hamiltonian flow of a Gaussian poten-
tial. This observation is perhaps not surprising – indeed it
appears at least implicitly in Neal (2011); Pakman & Panin-
ski (2013); Strathmann et al. (2015) – but here we leverage
that observation in a way not previously considered. To wit,
this connection between HMC and ESS suggests that we
might perform slice sampling along more general Hamil-
tonian trajectories, a method we introduce under the name
Hamiltonian slice sampling (HSS). HSS is of theoretical in-
terest, allowing us to consider model priors that will induce
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simple closed form slice samplers. Perhaps more impor-
tantly, HSS is of practical utility. As the conceptual off-
spring of HMC and slice sampling, it inherits the relatively
small amount of required tuning from ESS and the ability
to take large steps in sample space from HMC techniques.

In particular, we offer the following contributions:

• We clarify the link between two popular classes of
MCMC techniques.

• We introduce Hamiltonian slice sampling, a general
sampler for target distributions that factor into two
components (e.g., a prior and likelihood), where the
prior factorizes or can be transformed so as to factor-
ize, and all dependence structure in the target distri-
bution is induced by the likelihood or the intermediate
transformation.

• We show that the prior can be either of a form which
induces analytical Hamiltonian trajectories, or more
generally, of a form such that we can derive such a tra-
jectory via a measure preserving transformation. No-
table members of this class include Gaussian process
and stick-breaking priors.

• We demonstrate the usefulness of HSS on a range of
models, both parametric and nonparametric.

We first review HMC and ESS to establish notation and a
conceptual framework. We then introduce HSS generally,
followed by a specific version based on a transformation to
the unit interval. Finally, we demonstrate the effectiveness
and flexibility of HSS on two different popular probabilistic
models.

2. Sampling via Hamiltonian dynamics
We are interested in the problem of generating samples of
a random variable f from an intractable distribution π∗(f),
either directly or via a measure preserving transformation
r−1(q) = f . For clarity, we use f to denote the quantity
of interest in its natural space as defined by the distribution
π∗, and q denotes the transformed quantity of interest in
Hamiltonian phase space, as described in detail below. We
defer further discussion of the map r(·) until section 2.4,
but note that in typical implementations of HMC and ESS,
r(·) is the indentity map, i.e. f = q.

2.1. Hamiltonian Monte Carlo

HMC generates MCMC samples from a target dis-
tribution, often an intractable posterior distribution,
π∗(q) := 1

Z π̃(q), with normalizing constant Z, by simu-
lating the Hamiltonian dynamics of a particle in the poten-
tial U(q) = − log π̃(q). We are free to specify a distribu-
tion for the particle’s starting momentum p, given which

the system evolves deterministically in an augmented state
space (q,p) according to Hamilton’s equations. In par-
ticular, at the i-th sampling iteration of HMC, the initial
conditions of the system are q0 = q(i−1), the previous
sample, and p0, which in most implementations is sam-
pled from N (0,M). M is a “mass” matrix that may be
used to express a priori beliefs about the scaling and depen-
dence of the different dimensions, and for models with high
dependence between sampling dimensions, M can greatly
affect sampling efficiency. An active area of research is
investigating how to adapt M for increased sampling effi-
ciency; for example Girolami & Calderhead (2011); Betan-
court et al. (2016). For simplicity, in this work we assume
throughout that M is set ahead of time and remains fixed.
The resulting Hamiltonian is

H(q,p) = − log π̃(q) +
1

2
pTM−1p. (1)

When solved exactly, Hamilton’s equations generate
Metropolis-Hastings (MH) proposals that are accepted with
probability 1. In most situations of interest, Hamilton’s
equations do not have an analytic solution, so HMC is of-
ten performed using a numerical integrator, e.g. Störmer-
Verlet, which is sensitive to tuning and can be computation-
ally expensive due to evaluation or numerical approxima-
tion of the gradient at each step. See Neal (2011) for more
details.

2.2. Univariate and Elliptical Slice Sampling

Univariate slice sampling (Neal, 2003) generates samples
uniformly from the area beneath a density p(x), such that
the resulting samples are distributed according to p(x).
It proceeds as follows: given a sample x0, a threshold
h ∼ U(0, p(x0)) is sampled; the next sample x1 is then
sampled uniformly from the slice S := {x : p(x) > h}.
When S is not known in closed form, a proxy slice S′ can
be randomly constructed from operations that leave the uni-
form distribution on S invariant. In this paper, we use the
stepping out and shrinkage procedure, with parameters w,
the width, and m, the step out limit, from Neal (2003).

ESS (Murray et al., 2010) is a popular sampling algorithm
for latent Gaussian models, e.g., Markov random field or
Gaussian process (GP) models. For a latent multivariate
Gaussian f ∈ Rd with prior π(f) = N (f |0,Σ), ESS gen-
erates MCMC transitions f → f ′ by sampling an auxiliary
variable ν ∼ N (0,Σ) and slice sampling the likelihood
supported on the ellipse defined by

f ′ = f cos θ + ν sin θ, θ ∈ [0, 2π]. (2)

Noting the fact that the solutions to Hamilton’s equations in
an elliptical potential are ellipses, we may reinterpret ESS.
The Hamiltonian induced by π̃(q) ∝ N (q|0,Σ) and mo-
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mentum distribution p ∼ N (0,M) is

H(q,p) =
1

2
qTΣ−1q +

1

2
pTM−1p. (3)

WhenM = Σ−1, Hamilton’s equations yield the trajectory

q(t) = q(0) cos t+ Σp(0) sin t, t ∈ (−∞,∞), (4)

which is an ellipse. Letting r(·) be the identity map, and
q(0) be the value of f from the previous iteration of an
MCMC sampler, the trajectories of possible sample values
given by (2) and (4) are distributionally equivalent with
θ = t mod 2π because ν

d
= Σp(0) = M−1p(0). The

ESS variable ν thus takes on the interpretation of the ini-
tial velocity of the particle. Accordingly, we have clarified
the link between HMC and ESS. The natural next question
is what this observation offers in terms of a more general
sampling strategy.

2.3. Hamiltonian Slice Sampling

Using the connection between HMC and ESS, we pro-
pose the sampling algorithm given in Algorithm 1, called
Hamiltonian slice sampling (HSS). The idea of HSS is
the same as ESS: use the prior distribution to generate an
analytic curve through sample space, then slice sample on
the curve according to the likelihood in order to generate a
sample from the posterior distribution. In the special distri-
butions for which Hamilton’s equations have analytic solu-
tions and the resulting trajectories can be computed exactly,
e.g. the multivariate Gaussian distribution, the trajectories
have a single parameter, t ∈ (−∞,∞). This simple param-
eterization is crucial: it enables us to use univariate slice
sampling methods (Neal, 2003) in higher dimensions. The
advantage of univariate slice sampling techniques is that
they require little tuning; the slice width adapts to the dis-
tribution and sampler performance does not depend greatly
on the sampler parameters.

We include in the Supplementary Materials some examples
of distributions for which Hamilton’s equations have ana-
lytical solutions. However, these special cases are in the
minority, and most distributions do not admit analytic solu-
tions. In such a case, a measure preserving transformation
to a distribution that does have analytic solutions is nec-
essary. Let r(·) denote such a transformation. We defer
elaboration on specific transformations until the following
section, but it is sufficient for r(·) to be differentiable and
one-to-one. In particular, we will make extensive use of the
inverse function r−1(·).

We next show that Algorithm 1 is a valid MCMC sampler
for a target distribution π∗(f |D) = 1

ZL(D|f) π(f). The
proof of validity is conceptually so similar to ESS that the
proof in Murray et al. (2010) nearly suffices. For complete-
ness, we here show that the dynamics used to generate new

Algorithm 1 Hamiltonian slice sampling

Input: Current state f ; differentiable, one-to-one trans-
formation q := r(f) with Jacobian J(r−1(q))
Output: A new state f ′. If f is drawn from π∗, the
marginal distribution of f ′ is also π∗.

1: Sample momentum for each component of q:

p ∼ N (0,M)

2: Obtain analytic solution q′(t) to Hamilton’s equations,
where p0 = p and q′0 = q

3: Set slice sampling threshold:

u ∼U[0, 1]

log h← logL(D|f)− log |J(r−1(q))|+ log u

4: Slice sample along r−1(q′(t)) for t∗ ∈ (−∞,∞), us-
ing the methods of (Neal, 2003) and threshold h on:

log π∗(f ′|f ,p,D, u, t) ∝
logL(D|f ′(t))− log |J(r−1(q(t)))| (5)

5: return f ′(t∗) = r−1(q′(t∗))

states are reversible, and as such, π∗ is a stationary distribu-
tion of the Markov chain defined by Algorithm 1. Further-
more, the sampler has non-zero probability of transitioning
to any region that has non-zero probability under π∗. Taken
together, these facts clarify that the sampler will converge
to a unique stationary distribution that yields samples of f
that are marginally distributed according to the target π∗.

Consider the joint distribution of the random variables
in Algorithm 1 (suppressing hyperparameters for simplicity
and denoting by {tk} the sequence of variables produced
by the univariate slice sampling algorithm):

p(f ,p,h, {tk}) = π∗(f |D) p(p) p(h|f ,D) p({tk}|f ,p, h)

(6)

=
1

Z
L(D|f) π(f) p(p) p(h|f ,D) p({tk}|f ,p, h)

(7)

Now, remembering that for a differentiable, one-
to-one transformation r(·), such that f = r−1(q),
with Jacobian J(·), the density of q is given by
π̃(q) = π(r−1(q))|J(r−1(q))|. Combining this with
the density of the slice sampling threshold variable implied
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by step 3 of Algorithm 1, p(h|f ,D) = |J(r−1(q))|
L(D|f) , we have

p(f ,p,h, {tk})

=
1

Z
L(D|f) π(r−1(q)) · |J(r−1(q))|

|J(r−1(q))|
. . .

× p(p) p(h|f ,D) p({tk}|f ,p, h) (8)
∝ π̃(q) p(p) p({tk}|q,p, h) (9)

Exact Hamiltonian dynamics for (q,p) are reversible,
keeping constant the factor π̃(q) p(p), and they yield a
trajectory in q-space parameterized by t that can be trans-
formed into f -space as f(t) = r−1(q(t)). Given the Hamil-
tonian trajectory, the univariate slice sampling methods,
e.g. the step-out and shrinkage procedures from Neal
(2003) can be applied to f(t); these, too, are reversible. We
therefore have p(f ,p, h, {tk}) = p(f ′,p′, h, {t′k}) for any
f ′ generated by starting at f , which concludes the proof of
validity for HSS.

2.4. HSS via the Probability Integral Transformation

The multivariate Gaussian distribution is a special case for
which Hamilton’s equations can be solved analytically, as
demonstrated by ESS. This fact forms the basis for Pak-
man & Paninski (2013; 2014). The univariate uniform and
exponential distributions also have analytic solutions. In
the remainder of the paper, we focus on transformations
of uniform random variables; see the Supplementary Ma-
terials for details on the exponential distribution and a few
related transformations.

Hamiltonian dynamics under the uniform distribution
q ∼ U[0, 1] are the extremely simple billiard ball dynamics:
the particle moves back and forth across the unit interval at
constant speed q̇0 = p0/m, reflecting off the boundaries of
the interval. The relevant quantities are the initial reflection
time,

R0 =
|1{q̇0 > 0} − q0|

q̇0
, (10)

where q̇0 is the initial velocity, and the period of a full
traversal of the unit interval,

T =
1

q̇0
=
m

p0
. (11)

These simple dynamics can be used to construct analytic
curves on which to slice sample for any continuous prior
with computable inverse cumulative distribution function
(CDF). In particular, for a random variable f with CDF
G(f) and density g(f), the distribution of q := G(f) is
U[0, 1]. The dynamics on the unit interval yield the trajec-
tory q(t); the resulting curve is f(t) = G−1(q(t)). In this
case the Jacobian is 1/g(f), so the slice sampling target
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Figure 1. Example trajectories from HSS (top) and ESS (bottom).
Yellow dots are starting points, blue dots are end points of Hamil-
tonian trajectories. Top left: Uniform trajectory in two indepen-
dent dimensions. Top right: The resulting bivariate normal HSS
trajectory via the probability integral transformation. Bottom left:
Elliptical trajectory in two dimensions. The green dot in is ν from
ESS. Bottom right: Transformation of the elliptical trajectory to
the unit square.

in Equation 5 of Algorithm 1 is exactly proportional to the
posterior.

Although f(t) is not a Hamiltonian flow in sample space,
it is a measure preserving transformation of a Hamiltonian
flow in the unit hypercube, and so preserves sampling va-
lidity. For the remainder of the paper, we use transforma-
tions to uniform random variables, and we refer to the re-
sulting sampler as HSS. We note, however that it is only
one instantiation of the general class of Hamiltonian slice
sampling methods: any suitable transformation would pro-
duce different resulting dynamics in sample space.

Using this or any other transformation in Algorithm 1 gen-
erates curves through sample space only using information
from the prior and the transformation. A useful line of in-
quiry is whether we can adapt the transformation or the
prior to sample more efficiently. The problem of choos-
ing or adapting to a prior that better captures the poste-
rior geometry of the sample space is shared by all sam-
plers based on Hamiltonian dynamics, including ESS and
HMC. The issue is explored in depth in Girolami & Calder-
head (2011); Betancourt et al. (2016). A possible approach
to making the prior more flexible is via a pseudo-prior, as
in Nishihara et al. (2014); Fagan et al. (2016). We do not
explore such an approach here, but note that a pseudo-prior
could be incorporated easily in Algorithm 1.

The basic requirement that must be satisfied in order to
make our method applicable is that some component of the
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target distribution can be expressed as a collection of con-
ditionally independent variables. This is often the case in
hierarchical Baysian models, as in section 3.2. As a sim-
ple example, whitening a collection of multivariate Gaus-
sian random variables induces independence, enabling the
simulation of independent uniform dynamics. An example
of such dynamics on the unit square, along with the result-
ing trajectory in two-dimensional Gaussian space, is shown
in Figure 1. For comparison, Figure 1 also shows an exam-
ple ESS trajectory from the same distribution, along with
its transformation to the unit square.

In principle, the HSS trajectory has access to different, pos-
sibly larger, regions of the sample space, as it is not con-
strained to a closed elliptical curve. It also spends rela-
tively more time in regions of higher prior probability, as
the particle’s velocity in the original space is inversely pro-
portional to the the prior density, i.e. ḟ(t) = q̇0/g(f), as
will be illustrated in section 3.2. This behavior also sug-
gests that if the prior is sharply concentrated on some re-
gion, the sampler may get stuck. In order to avoid patholo-
gies, relatively flat priors should be used. If the prior hyper-
parameters are also to be sampled, it should be done such
that they make small moves relative to the parameters sam-
pled by HSS. See Neal (2011, section 5.4.5) for discussion
on this point in the context of HMC.

2.5. Related Work

HSS slice samples on a trajectory calculated using Hamil-
tonian dynamics. A similar idea underlies the No U-Turn
Sampler (NUTS) (Hoffman & Gelman, 2014), which slice
samples from the discrete set of states generated by the nu-
merical simulation of Hamiltonian dynamics induced by
the posterior distribution of interest. Other methods of mul-
tivariate slice sampling include those given in Neal (2003).
Most often, each variable is slice sampled separately, which
can lead to the same convergence problems as Gibbs sam-
pling when the variables are highly dependent. Murray
et al. (2010) review other sampling methods for latent GP
models, of which HSS is another example. In so much as
we derived HSS by noticing connections between existing
methods, other commonalities may indeed exist.

ESS also fits into the framework of the preconditioned
Crank-Nicholson (pCN) proposals studied in, e.g., Cotter
et al. (2013). As those authors point out, the pCN pro-
posal is a generalization of a random walk in the sample
space, where “the target measure is defined with respect to
a Gaussian.” HSS also fits in this framework, with the tar-
get measure π∗ defined with respect to non-Gaussian den-
sities. ESS and HSS, like pCN, are dimension-free meth-
ods; their statistical efficiency is independent of the dimen-
sion of the sample space (Hairer et al., 2014). However,
as more data is observed, and the posterior moves further
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Figure 2. Effective number of samples for ESS and HSS from 105

iterations after 104 burn in on GP regression, averaged across
50 experiments. σp denotes the standard deviation of the normal
distribution from which the Hamiltonian momentum variable p
is sampled. Top: Effective samples. Middle: Evaluation time.
Bottom: Number of likelihood evaluations.

from the prior, sampler performance may degrade – hence
the motivation for adaptive techniques such as Nishihara
et al. (2014); Fagan et al. (2016). Extending HSS to in-
clude pseudo-priors or Metropolis-adjusted Langevin-type
variations, as in Cotter et al. (2013), is an interesting direc-
tion for future work.

3. Experiments
In order to test the effectiveness and flexibility of HSS,
we performed experiments on two very different models.
The first is latent GP regression on synthetic data, which
allows us to make a direct comparison between HSS and
ESS. The second is a non-parametric mixture of Gaussians
with a stick-breaking prior, which demonstrates the flexi-
bility of HSS. In both, we use the step-out and shrinkage
slice sampling methods. See Neal (2003) for details.

3.1. GP Regression

We consider the standard GP regression model. We as-
sume a latent GP f over an input space X . Noisy Gaussian
observations y = {y1, ..., yn} are observed at locations
{x1, ...,xn}, and observations are conditionally indepen-
dent with likelihood L(D|f) :=

∏n
i=1N (yi|f(xi), σ

2
y),

where σ2
y is the variance of the observation noise. Al-

though the posterior is conjugate and can be sampled in
closed form, the simplicity of the model allows us to test
the performance of HSS against that of ESS on a model for
which ESS is ideally suited, forming a highly conservative
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baseline. Furthermore, we perform experiments in an in-
creasing number of input dimensions, which lends insight
to the scaling behavior of HSS.

Following Murray et al. (2010), we generated synthetic
datasets with input dimensionD from one to ten, each with
n = 200 observations and inputs xi drawn uniformly from
the D-dimensional unit hypercube. Using the covariance
function

Σij = σ2
f exp

(
− 1

2`2
||xi − xj ||22

)
,

the latent GP was drawn f ∼ N (0,Σ), with ` = 1 and
σ2
f = 1. Finally, observations yi were drawn with noise

variance σ2
y = 0.32.

Slice sampling parameters for HSS were set at w = 0.5
and m = 8. Momentum variables were sampled i.i.d.
pi ∼ N (0, σ2

p), with σp ∈ {0.1, 0.25}. We note that exper-
iments were also performed with larger values of σp, but
results are qualitatively similar. The HSS generated good
posterior samples without any tuning of the parameters and
it required very little tuning to achieve better efficiency.

Results for D ∈ {1, 5, 10} are shown in Figure 2 (other
dimensions are not shown for compactness). A commonly
used measure of sample quality is the effective number of
samples estimated from the log-likelihood, shown in the
top panel using the R-CODA package (Plummer et al.,
2006). In low dimensions, ESS is clearly more efficient
than HSS. As the dimension increases, however, the perfor-
mance gap closes; for D = 10, HSS samples nearly as ef-
ficiently as ESS. Again, this model is such that ESS should
work well, and the fact that HSS quickly approaches its per-
formance is encouraging. The computational time, shown
in the second panel, is longer for HSS primarily due to the
evaluation of the normal inverse CDF required to evalu-
ate the likelihood. The number of likelihood evaluations is
shown in the third panel. As it demonstrates, HSS requires
relatively fewer slice sampling steps in higher dimensions,
leading to fewer likelihood evaluations.

HSS is also easily applied to other latent GP models such
as the log-Gaussian Cox process model or GP classifica-
tion. In simple experiments (not shown), we have found
implementation and tuning to be straightforward. Accord-
ingly, even in situations where we anticipate good perfor-
mance from ESS, HSS is a competitive alternative.

3.2. Mixture Models with Stick-breaking Priors

To demonstrate the flexibility of HSS, we investigate its
performance on a markedly different type of model from
GP regression. In particular, we test HSS on a widely used
class of Bayesian nonparametric mixture models based on
the Pitman-Yor (PY) process, which may be formulated in

terms of a stick-breaking prior (Ishwaran & James, 2001).
The collection of independent stick breaks is amenable to
sampling with HSS, which we embed in a Gibbs sampler
for the overall model.

For observations Yi and parameters 0 ≤ α < 1 and
θ > −α, the model can be written as follows:

Vk|α, θ
ind∼ Beta(1− α, θ + kα), k = 1, 2, . . .

P̃k = Vk

k−1∏
j=1

(1− Vj),

φk
iid∼ ν(·),

Zi|{Vk}
iid∼
∞∑
k=1

P̃kδk(·)

Yi|Zi, {φk}
ind∼ F (·|φZi). (12)

When α = 0, this is the ubiquitous Dirichlet Process (DP)
mixture model. PY models have been used in a variety of
applications, but in many cases sampling remains difficult,
particularly when the posterior distribution of the random
measure µ∗(·) :=

∑∞
k=1 P̃kδk(·) is of interest.

Two classes of samplers currently exist for sampling from
PY mixture models. The so-called marginal class for DPs
and certain other random measures (Favaro & Teh, 2013),
marginalizes out the random measure µ∗. Marginal sam-
plers are attractively simple and are widely used, but they
do not allow direct inference of the random measure. A
second class of samplers, the so-called conditional sam-
plers, relies on a deterministic or probabilistic truncation
of the random measure. Examples are Ishwaran & James
(2001) and Kalli et al. (2011). Conditional samplers are
often computationally inefficient, especially when the dis-
tribution of random weights {P̃k)} has heavy tails, as is the
case when α > 0. Their inefficiency stems from having to
represent an infinite object in a finite amount of time and
memory; either the truncation is a poor approximation, or
the truncation has to occur at a very large k, which is com-
putationally expensive.

In order to sample from the posterior efficiently, we em-
bed HSS in a hybrid conditional-marginal blocked Gibbs
sampler that alternates between sampling the individual
cluster assignments Zi|Yi, Z−i, {Vk}, {φk} and sampling
all of the random measure parameters {Vk}, {φk}|{Zi} si-
multaneously with HSS. In order to overcome the issues
of the conditional sampler while still representing the en-
tire random measure, we use a hybrid approach similar to
that of Lomeli et al. (2015); only the weights of the “oc-
cupied” clusters are stored in memory; the weight of the
unoccupied clusters is accumulated and used in the updates
Zi|Yi, Z−i, {Vk}, {φk}, via a modification of the ReUse al-
gorithm of Favaro & Teh (2013).



Slice Sampling on Hamiltonian Trajectories

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

P̃1

P̃
2P̃

3

0

1

2

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

P̃1

P̃
2P̃

3

0

1

2

t

-4 -2 0 2 4 6 8

V1

0

1

t

0 0.05 0.1 0.15 0.2 0.25

V1

0

1

t

-4 -2 0 2 4 6 8

V2

0

1

t

0 0.05 0.1 0.15 0.2 0.25

V2

0

1

Figure 3. Top: Trajectories on the simplex used by HSS (left) and HMC (right) to generate two samples of stick weights Vk from a toy
version of the model described in section 3.2, withK = 3. The contours of the posterior are shown, and order of the samples is indicated
by the number on the sample point. Bottom: The trajectories for V1 and V2 corresponding to the first sample. (V3 is fixed at 1.) The
width of the trajectory (top) and shading (bottom) in the HSS plots is proportional to the inverse of the particle’s velocity, and represents
the probability mass placed by the slice sampler, which samples uniformly on the slice in t, on the corresponding part of sample space.

For comparison, we also used HMC to update the cluster
parameters. HMC uses the gradient of the posterior and
so should be expected to generate good posterior samples,
if properly tuned. Figure 3 compares the behavior of HSS
and HMC trajectories on the simplex in a toy example. To
quatitatively compare HSS with HMC in a real data setting,
we fit a simple one-dimensional Gaussian mixture model
with a Gaussian prior on the cluster means, and a Gamma
prior on the cluster precisions using the galaxy dataset, with
n = 82 observations, that was also used in Favaro & Teh
(2013); Lomeli et al. (2015).

In order to sample from the posterior distribution, we ran
experiments with HSS or HMC embedded in the hybrid
Gibbs sampler, fixing the hyperparameters at α = 0.3 and
θ = 1. HSS was relatively easy to tune to achieve good
convergence and mixing, with slice sampling parameters
w = 1, and m = ∞. The different groups of latent vari-
ables in the model had very different scaling, and we found
that σp = 0.1 and setting the mass equal to mv = 1 for
the {Vk}, and mn = mγ = 10 for the cluster means and
precisions worked well. So as to compare the computa-
tion time between similar effective sample sizes (see sec-
tion 3.3 below), we set the HMC parameters to achieve an
acceptance ratio near 1, which required simulation steps of

size ε ∈ [5× 10−5, 15× 10−5], sampled uniformly from
that range for each sampling iteration. We ran HMC with
L ∈ {60, 150} steps for comparison. The results, displayed
in Figure 4, show the relative efficiency of HSS; it achieves
more effective samples per unit of computation time.

We note that HMC’s performance improves, as measured
by effective sample size, with larger simulation step sizes.
However, larger simulation steps result in a non-trivial pro-
portion of rejected HMC proposals, making impossible di-
rect comparison with HSS due to the issue discussed in the
following section. We also observed that the performance
of HSS degraded with increasing sample size, because the
posterior looks less like the prior, and the discussion in sec-
tion 2.5 suggests. This behavior indicates that the use of a
pseudo-prior would be beneficial in many situations.

3.3. Effective Sample Size in BNP Mixture Models

It is worth noting that the effective sample size (in log-joint
probability) achieved by HSS in our experiments for the
PY model are an order of magnitude lower than those re-
ported by Favaro & Teh (2013); Lomeli et al. (2015), who
calculated effective samples ofK∗, the number of occupied
clusters. While conducting preliminary tuning runs of the
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Figure 4. Effective number of samples per minute of run time for
HSS and HMC from 105 samples taken at intervals of 20 inter-
ations, after 104 burn in iterations on the PY model, averaged
across 10 experiments. L is the number of simulation steps used
by HMC at each sampling iteration.

HMC sampler, we observed something odd: if the HMC
simulations were not properly tuned, and thus almost every
proposed HMC move was rejected, the resulting effective
sample size in K∗ was of the order of those previously re-
ported. Further experiments in which we artificially limited
HMC and HSS to take small steps produced the same ef-
fect: samplng efficiency, as measured either by K∗ or log-
joint probability, benefits from small (or no) changes in the
cluster parameters. It seems that when the parameter clus-
ters do a suboptimal job of explaining the data, the cluster
assignment step destroys many of the clusters and creates
new ones, sampling new parameters for each. This often
happens when the parameter update step produces small or
no changes to the cluster parameters. The result is steps
in sample space that appear nearly independent, and corre-
spondingly a large effective sample size, despite the unde-
sireably small moves of the parameter updates. This under-
scores the importance of better measures of sample quality,
especially for complicated latent variable models.

4. Discussion
Recognizing a link between two popular sampling meth-
ods, HMC and slice sampling, we have proposed Hamil-
tonian slice sampling, a general slice sampling algorithm
based on analytic Hamiltonian trajectories. We described
conditions under which analytic (possibly transformed)
Hamiltonian trajectories can be guaranteed, and we demon-
strated the simplicity and usefulness of HSS on two very
different models: Gaussian process regression and mix-
ture modeling with a stick-breaking prior. The former GP
case is where ESS is particularly expected to perform, and

in reasonable dimensionality we showed HSS performed
competitively. The latterPY case is where we expect HMC
to be more competitive (and where ESS does not apply).
Here we found that HSS had a similar effective sample size
but outperformed even carefully tuned HMC in terms of
computational burden. As speed, scaling, and generality
are always critical with MCMC methods, these results sug-
gest HSS is a viable method for future study and applica-
tion.
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