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DEEP LEARNING AND STATISTICS

Deep neural networks have been applied successfully in a range of
settings.

Effort under way to improve performance in data poor and
semi-/unsupervised domains.

« Focus on symmetry.
The study of symmetry in probability and statistics has a long history.
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SYMMETRIC NEURAL NETWORKS

For input X and output Y, model Y = h(X), where h € H is a neural
network.

If X and Y are assumed to satisfy a symmetry property,
how is H restricted?
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SYMMETRIC NEURAL NETWORKS

Convolutional neural networks encode translation invariance:

- O
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Illustration from medium.freecodecamp.org
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https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050

WHY SYMMETRY?

Encoding symmetry in network architecture is a Good Thing*, i.e,, it results
in stabler training and better generalization through

- reduction in dimension of parameter space through weight-tying; and

- capturing structure at multiple scales via pooling.

* Oft-stated “fact”. Mostly supported by heuristics and intuition, some
empirical evidence, loose connections to learning theory and what we
“know” about high-dimensional data analysis. Some PAC theory to this end
[Sha91; Shaos]; | haven't found anything else.

B. Bloem-Reddy



NEURAL NETWORKS FOR PERMUTATION-INVARIANT DATA [ZAH+17]

Consider a sequence X, := (Xi,..., Xy), X; € &,

Invariance: Y = h(Xj,) = h(r - X)) forall 7 € S,..
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NEURAL NETWORKS FOR PERMUTATION-INVARIANT DATA [ZAH+17]

Consider a sequence X, := (Xi,..., Xy), X; € &,

Equivariance: Y}, = h(X[;) such that A(r - X[;;)) = 7 - h(X[,)) forall = € S,..
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NEURAL NETWORKS FOR PERMUTATION-INVARIANT DATA [ZAH+17]

Consider a sequence X, := (Xi,..., Xy), Xs € &

Equivariance: Y,) = h(X[,) such that A(r - X)) = 7 - I(X],)) forall = € S,..

X; X5 X3 Xy X Xy X3 X4

[A(Xp))i = & ( ; wi,jxj) = (X =o (oni + wy Z Xj>

Jj=1
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NEURAL NETWORKS FOR PERMUTATION-INVARIANT DATA
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({Deep learning hat, off; statistics hat, on))

STATISTICS

)

Note to students: These were the first Google Image results for "deep learning hat” and "statistics hat”".

You could probably make some money making decent hats.
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STATISTICAL MODELS AND SYMMETRY

Consider a sequence X, := (X1,...,X,), X; € X.
A statistical model of X[, is a family of probability distributions on A™:

P={Py:0€cQ}.

If X is assumed to satisfy a symmetry property,
how is P restricted?
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EXCHANGEABLE SEQUENCES

A distribution P on X" is exchangeable if

P(Xl,. . .,Xn) = P(Xﬂ(l),. . .,Xﬂ.(n)) forallwmes, .

Xy is infinitely exchangeable if this is true for all prefixes X,) C Xy, n € N,

de Finetti’s theorem: Xy <= X;| Q ~ Q for some random Q

Our models for Xy need only consist of i.i.d. distributions on X.

Analogous theorems for other symmetries. The book by Kallenberg [Kal05]
collects many of them. Some other accessible references: [Dia88; OR15].
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FINITE EXCHANGEABLE SEQUENCES

de Finetti’s theorem may fail for finite exchangeable sequences.

What else can we say?

The empirical measure of X, is

B. Bloem-Reddy



FINITE EXCHANGEABLE SEQUENCES

The empirical measure is sufficient:
P(X[n] g ¢ | MX[W,] = m) = Um(') ’

where U,, is the uniform distribution on all sequences (z, ..., z,)
with empirical measure m.
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FINITE EXCHANGEABLE SEQUENCES

The empirical measure is sufficient:

P(X[n] € - |MX[ = m) :Um(°),

n]

where U,, is the uniform distribution on all sequences (z,. .., z,)
with empirical measure m.

d

The empirical measure is adequate forany Y'suchthat (- X}, Y) = (X, Y):
P(YE < | X[n] = :L‘[n]) = P(YG o ‘ MX[??] = MI[n])'

Mx,, contains all information in X, that is relevant for predicting Y.

B. Bloem-Reddy 3/20



A USEFUL THEOREM

Suppose X, is an exchangeable sequence.
Invariance theorem:

(- Xp), ¥) = (X, Y) for all = € S,, if and only if

(X ¥) = (Xpu, (0, M) S,
with 7 a measurable function and 5 ~ Unif[0, 1], 1L Xp.
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A USEFUL THEOREM

Suppose X, is an exchangeable sequence.

Invariance theorem:

(7 Xp), Y) = (X[, Y) for all = € S,, if and only if

(X[”]7 Y) = (X[n] h(n;MX[n])) CloSy;
with h a measurable function and 5 ~ Unif[0, 1], 7L X|,.

Deterministic invariance [Zah+17] — stochastic invariance [this work]

Y Y

=1
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ANOTHER USEFUL THEOREM

Equivariance theorem:
(7T c X[n],ﬂ'- Y[n]) < (X[n]7 Y[n]) forall = € S, if and Oﬂly if

(X[n]a Yv[n]) = (X[n]7 (B<ni7Xi7MX[n]))i€[n]) as.,
with 7 a measurable function and i.i.d. n; ~ Unif[0, 1], 0L Xppy).
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ANOTHER USEFUL THEOREM

Equivariance theorem:
(7T c X[n],ﬂ'- Y[n]) < (X[n]7 Y[n]) forall = € S, if and Oﬂly if

(Xpg» Yig) = (Xpmgs (s, X5, Mix,,)))ieprg) @S-
with 7 a measurable function and i.i.d. n; ~ Unif[0, 1], 93 1L X

Deterministic equivariance [Zah+17] — stochastic equivariance [this work]

Y Y, Yy Yy

% % % 7%

n

Y= U(oni + wy Z Xj) = Y= 71(771'7 Xi, Z5Xj)
j=1

=0 (oni + wy Z 5X].(dx)>
x =
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SOME ANSWERS

. Sufficiency/adequacy provides the magic.

« Similar results for exchangeable graphs/arrays/tensors and some
other related structures.

» Framework is general enough that it catches a lot of existing work as
special cases.

. Suggests some new (stochastic) network architectures.
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MANY QUESTIONS

« For group symmetries that don't involve permutations—what are the
analogous results? Equivariance is especially difficult.

» There are models with sufficient statistics that don’t have group
symmetry (though they typically have a set of symmetry
transformations)—what are the analogous results? Are they useful?

« Evidence that adding noise during training has beneficial effects; in
this context it amounts to the difference between deterministic
invariance and distributional invariance—can we prove anything
rigorous in these settings?

« Relatedly, can we put the “fact” (encoding symmetry in neural
networks is a Good Thing) on rigorous footing?
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THANK YOU.
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SYMMETRIC NEURAL NETWORKS

Recent work generalizes the idea to other symmetries and data:

. Affine transformations (translation, rotation, scaling, shear) [GD14]
« Discrete translations, reflections, rotations [CW16]

« Continuous rotations in three dimensions [Coh+18]

« Permutations of sequences [Zah+17] and arrays [Har+18; Her+18]

« Fairly general permutation group symmetries [RSP17]

- Compact groups [KT18]

« Discrete groups, finite linear groups [Sha89; WS96]
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A USEFUL TOOL: NOISE OUTSOURCING (E.G., [Aus13])

If X and Y are random variables in “nice” (e.g, Borel) spaces X and Y, then
there are a random variable  ~ Unif[0, 1] and a measurable function
h:[0,1] x X — Y such that nlL X and

(X, Y) = (X,h(n, X)) as.
Can show that if S(X) is adequate for Y, then

(X,Y) = (X,h(n,S(X))) as.
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