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Deep learning and statistics

• Deep neural networks have been applied successfully in a range of
settings.

• Effort under way to improve performance in data poor and
semi-/unsupervised domains.

• Focus on symmetry.
• The study of symmetry in probability and statistics has a long history.
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Symmetric neural networks

fℓ,i = σ

( n∑
j=1

w(ℓ)
i,j fℓ−1,j

)

For input X and output Y, model Y = h(X), where h ∈ H is a neural
network.

If X and Y are assumed to satisfy a symmetry property,
how is H restricted?
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Symmetric neural networks

Convolutional neural networks encode translation invariance:

Illustration from medium.freecodecamp.org
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https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050


Why symmetry?

Encoding symmetry in network architecture is a Good Thing∗, i.e., it results
in stabler training and better generalization through

• reduction in dimension of parameter space through weight-tying; and
• capturing structure at multiple scales via pooling.

∗ Oft-stated “fact”. Mostly supported by heuristics and intuition, some
empirical evidence, loose connections to learning theory and what we
“know” about high-dimensional data analysis. Some PAC theory to this end
[Sha91; Sha95]; I haven’t found anything else.
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Neural networks for permutation-invariant data [Zah+17]

Consider a sequence X[n] := (X1, . . . ,Xn), Xi ∈ X .

Invariance: Y = h(X[n]) = h(π · X[n]) for all π ∈ Sn.

X1 X2 X3 X4

Y
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Neural networks for permutation-invariant data [Zah+17]

Consider a sequence X[n] := (X1, . . . ,Xn), Xi ∈ X .

Invariance: Y = h(X[n]) = h(π · X[n]) for all π ∈ Sn.

X1 X2 X3 X4

Y

⇒ X1 X2 X3 X4

Y

Y = h(X[n]) 7→ Y = h̃
( n∑

i=1
ϕ(Xi)

)
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Neural networks for permutation-invariant data [Zah+17]

Consider a sequence X[n] := (X1, . . . ,Xn), Xi ∈ X .

Equivariance: Y[n] = h(X[n]) such that h(π · X[n]) = π · h(X[n]) for all π ∈ Sn.

X1 X2 X3 X4

Y1 Y2 Y3 Y4
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Neural networks for permutation-invariant data [Zah+17]

Consider a sequence X[n] := (X1, . . . ,Xn), Xi ∈ X .

Equivariance: Y[n] = h(X[n]) such that h(π · X[n]) = π · h(X[n]) for all π ∈ Sn.

X1 X2 X3 X4

Y1 Y2 Y3 Y4

X1 X2 X3 X4

Y1 Y2 Y3 Y4

[h(X[n])]i = σ

( n∑
j=1

wi,jXj

)
7→ [h(X[n])]i = σ

(
w0Xi + w1

n∑
j=1

Xj

)
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Neural networks for permutation-invariant data

...

B. Bloem-Reddy 8 / 20



⟨⟨Deep learning hat, off; statistics hat, on⟩⟩

Note to students: These were the first Google Image results for ”deep learning hat” and ”statistics hat”.

You could probably make some money making decent hats.
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Statistical models and symmetry

Consider a sequence X[n] := (X1, . . . ,Xn), Xi ∈ X .
A statistical model of X[n] is a family of probability distributions on X n:

P = {Pθ : θ ∈ Ω} .

If X is assumed to satisfy a symmetry property,
how is P restricted?
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Exchangeable sequences

A distribution P on X n is exchangeable if

P(X1, . . . ,Xn) = P(Xπ(1), . . . ,Xπ(n)) for all π ∈ Sn .

XN is infinitely exchangeable if this is true for all prefixes X[n] ⊂ XN, n ∈ N.

de Finetti’s theorem: XN ⇐⇒ Xi | Q iid∼ Q for some random Q

Our models for XN need only consist of i.i.d. distributions on X .

Analogous theorems for other symmetries. The book by Kallenberg [Kal05]
collects many of them. Some other accessible references: [Dia88; OR15].
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Finite exchangeable sequences

de Finetti’s theorem may fail for finite exchangeable sequences.

What else can we say?

The empirical measure of X[n] is

MX[n]( • ) :=
n∑

i=1
δXi( • ) .
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Finite exchangeable sequences

The empirical measure is sufficient:
P(X[n] ∈ • | MX[n] = m) = Um( • ) ,

where Um is the uniform distribution on all sequences (x1, . . . , xn)

with empirical measure m.
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Finite exchangeable sequences

The empirical measure is sufficient:
P(X[n] ∈ • | MX[n] = m) = Um( • ) ,

where Um is the uniform distribution on all sequences (x1, . . . , xn)

with empirical measure m.

The empiricalmeasure is adequate for anyY such that (π·X[n],Y)
d
= (X[n],Y):

P(Y ∈ • | X[n] = x[n]) = P(Y ∈ • | MX[n] = Mx[n]).

MX[n] contains all information in X[n] that is relevant for predicting Y.
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A useful theorem

Suppose X[n] is an exchangeable sequence.

Invariance theorem:

(π · X[n],Y)
d
= (X[n],Y) for all π ∈ Sn if and only if

(X[n],Y) = (X[n], h̃(η,MX[n])) a.s.,

with h̃ a measurable function and η ∼ Unif[0, 1], η⊥⊥X[n].
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= (X[n],Y) for all π ∈ Sn if and only if

(X[n],Y) = (X[n], h̃(η,MX[n])) a.s.,

with h̃ a measurable function and η ∼ Unif[0, 1], η⊥⊥X[n].

Deterministic invariance [Zah+17] 7→ stochastic invariance [this work]

X1 X2 X3 X4

Y

X1 X2 X3 X4

Y
η

Y = h̃
( n∑

i=1
ϕ(Xi)

)
7→ Y = h̃

(
η,

n∑
i=1

δXi

)
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Another useful theorem

Equivariance theorem:

(π · X[n], π · Y[n])
d
= (X[n],Y[n]) for all π ∈ Sn if and only if

(X[n],Y[n]) =
(
X[n], (h̃(ηi,Xi,MX[n]))i∈[n]

)
a.s.,

with h̃ a measurable function and i.i.d. ηi ∼ Unif[0, 1], ηi⊥⊥X[n].
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(π · X[n], π · Y[n])
d
= (X[n],Y[n]) for all π ∈ Sn if and only if

(X[n],Y[n]) =
(
X[n], (h̃(ηi,Xi,MX[n]))i∈[n]

)
a.s.,

with h̃ a measurable function and i.i.d. ηi ∼ Unif[0, 1], ηi⊥⊥X[n].

Deterministic equivariance [Zah+17] 7→ stochastic equivariance [this work]

X1 X2 X3 X4

Y1 Y2 Y3 Y4

X1 X2 X3 X4

Y1 Y2 Y3 Y4

η1 η2 η3 η4

Yi = σ

(
w0Xi + w1

n∑
j=1

Xj

)
7→ Yi = h̃

(
ηi,Xi,

n∑
j=1

δXj

)

= σ

(
w0Xi + w1

∫
X

n∑
j=1

δXj(dx)
)
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Some answers

• Sufficiency/adequacy provides the magic.
• Similar results for exchangeable graphs/arrays/tensors and some
other related structures.

• Framework is general enough that it catches a lot of existing work as
special cases.

• Suggests some new (stochastic) network architectures.
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Many questions

• For group symmetries that don’t involve permutations—what are the
analogous results? Equivariance is especially difficult.

• There are models with sufficient statistics that don’t have group
symmetry (though they typically have a set of symmetry
transformations)—what are the analogous results? Are they useful?

• Evidence that adding noise during training has beneficial effects; in
this context it amounts to the difference between deterministic
invariance and distributional invariance—can we prove anything
rigorous in these settings?

• Relatedly, can we put the “fact” (encoding symmetry in neural
networks is a Good Thing) on rigorous footing?
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Thank you.
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Symmetric neural networks

Recent work generalizes the idea to other symmetries and data:

• Affine transformations (translation, rotation, scaling, shear) [GD14]
• Discrete translations, reflections, rotations [CW16]
• Continuous rotations in three dimensions [Coh+18]
• Permutations of sequences [Zah+17] and arrays [Har+18; Her+18]
• Fairly general permutation group symmetries [RSP17]
• Compact groups [KT18]
• Discrete groups, finite linear groups [Sha89; WS96]
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A useful tool: noise outsourcing (e.g., [Aus13])

If X and Y are random variables in “nice” (e.g., Borel) spaces X and Y , then
there are a random variable η ∼ Unif[0, 1] and a measurable function
h : [0, 1]×X → Y such that η⊥⊥X and

(X,Y) = (X, h(η,X)) a.s.

Can show that if S(X) is adequate for Y, then

(X,Y) = (X, h̃(η,S(X))) a.s.
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