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« Permutation-invariant neural networks

Symmetry in probability and statistics
« Exchangeable sequences

Permutation-invariant neural networks as exchangeable probability
models
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DEEP LEARNING AND STATISTICS

Deep neural networks have been applied successfully in a range of
settings.

Effort under way to improve performance in data poor and
semi-/unsupervised domains.

« Focus on symmetry.
The study of symmetry in probability and statistics has a long history.
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SYMMETRIC NEURAL NETWORKS

For input X and output Y, model Y = h(X), where h € H is a neural
network.

If X and Y are assumed to satisfy a symmetry property,
how is H restricted?
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SYMMETRIC NEURAL NETWORKS

Convolutional neural networks encode translation invariance:
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Illustration from medium.freecodecamp.org
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https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050

WHY SYMMETRY?

Encoding symmetry in network architecture is a Good Thing*.

Stabler training and better generalization through

- reduction in dimension of parameter space through weight-tying; and

- capturing structure at multiple scales via pooling.

Historical note:

Interestin invariant neural networks goes back at least to Minsky and Papert
[MP88]; extended by Shawe-Taylor and Wood [Sha89; WS96]. More recent
work by a host of others.
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NEURAL NETWORKS FOR PERMUTATION-INVARIANT DATA [ZAH+17]

Consider a sequence X,, := (Xy,..., X,), X; € X.

Permutation invariance:

Y=nX,)=nr-X,) forallmeS,.

Y
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NEURAL NETWORKS FOR PERMUTATION-INVARIANT DATA [ZAH+17]

Consider a sequence X, := (X3,...,X,), X; € X.

Permutation invariance:
Y=nX,)=nr-X,) forallT eSs,.

Y Y

Xi Xs X3 Xy — Xi Xo X3 Xy
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NEURAL NETWORKS FOR PERMUTATION-INVARIANT DATA [ZAH+17]

Equivariance:

Y, = iX,) such that i(w - X,) =7 - (X, forall = € S,,.
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NEURAL NETWORKS FOR PERMUTATION-INVARIANT DATA [ZAH+17]

Equivariance:

Y, = MX,) such that h(r - X,,)) = 7 - K(X,,) for all 7 € S,..

Y Yy Y3 Yy

X] Xg X3 X4 X] X2 X3 X4

n

WXn))i= o ( > wi,jxj) = [MX)i=o (oni + w Xn: Xj)

j=1 j=1
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NEURAL NETWORKS FOR PERMUTATION-INVARIANT DATA
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((Deep learning hat, off; statistics hat, on))

STATISTICS
s eve have 1

say yourecetain

Note to students: These were the first Google Image results for "deep learning hat” and "statistics hat”.

You could probably make some money making decent hats.
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STATISTICAL MODELS AND SYMMETRY

Consider a sequence X,, := (Xy,..., X,), X; € X.
A statistical model of X,, is a family of probability distributions on X™

P={Py:0€cQ}.

If X is assumed to satisfy a symmetry property,
how is P restricted?
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EXCHANGEABLE SEQUENCES

A distribution P on X" is exchangeable if

P(Xl,. . .,Xn) = P(Xﬂ(l),. . .,Xﬂ.(n>) forallwm e, .

Xy is infinitely exchangeable if this is true for all prefixes X,, ¢ Xy, n € N.

de Finetti’s theorem:
Xy exchangeable <— X; | Q ~ Q for some random Q.

Implication for Bayesian inference:

Our models for Xy need only consist of i.i.d. distributions on X.

Analogous theorems for other symmetries. The book by Kallenberg [Kal05]
collects many of them. Some other accessible references: [Dia88; OR15].
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FINITE EXCHANGEABLE SEQUENCES

de Finetti’s theorem may fail for finite exchangeable sequences.

What else can we say?

The empirical measure of X, is
n

Mx,(+) ==Y 6x,(+) .

i=1
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FINITE EXCHANGEABLE SEQUENCES

The empirical measure is a sufficient statistic: P is exchangeable iff
P(X, €« |Mx, =m)=U,(+),

where U,, is the uniform distribution on all sequences (z,. .., z,)
with empirical measure m.
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FINITE EXCHANGEABLE SEQUENCES

The empirical measure is a sufficient statistic: P is exchangeable iff
P(X, €+ |Mx,=m)=U,(+),

where U,, is the uniform distribution on all sequences (z,. .., z,)
with empirical measure m.

Consider Ysuch that (- X,,, ¥) = (X,,, Y).

The empirical measure is an adequate statistic for any such Y:
P(Ye . |X,=x,)=P(Ye . |Mx, =M,,).

Mx, contains all information in X,, that is relevant for predicting Y.
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A USEFUL THEOREM

Theorem (Invariant representation; B-R, Teh)

Suppose X, is an exchangeable sequence.

Then (- X,,, Y) = (X, V) for all = € S, if and only if there is a mea-
surable function h: [0,1] x M(X) — Y such that

(X, ¥) 2= (X, i(n,Mx)) and 5 ~ Unif[0, 1], n1LX,, .
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A USEFUL THEOREM

Theorem (Invariant representation; B-R, Teh)

Suppose X, is an exchangeable sequence.

Then (- X,,, Y) = (X, V) forall = € S, if and only if there is a mea-
surable function h: [0,1] x M(X) — Y such that

(X, V) 2 (X, i(n,Mx, ) and n ~ Unif[0, 1], nLX,, .

Deterministic invariance [Zah+17] — stochastic invariance [B-R, Teh]

Y Y

Xi Xo X3 Xy Xi Xo X3 Xy

Y= iz< Zj; qS(Xi)) - Y= E(n, i 5X7:>

i=1
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ANOTHER USEFUL THEOREM

Theorem (Equivariant representation; B-R, Teh)
Suppose X,, is an exchangeable sequence and Yl x, (Y, \ Y;).

Then (7 - X, 7-Y,) < (X,,Y,) forall = € S, if and only if there is a
measurable function & : [0,1] x X x M(X) — Y such that

(Xna Yn) = (XTH (il(nu Xia Mxn))ie[n]) and T '”E’ UDIf[O, 1]1
(ni)ie[n]l-l—xw
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ANOTHER USEFUL THEOREM

Theorem (Equivariant representation; B-R, Teh)

Suppose X, is an exchangeable sequence and Y; 1l x (Y, )\ Y3).

Then (7 - X, 7 Y,) < (X,,Y,) forall = € S, if and only if there is a
measurable function & : [0,1] x X x M(X) — Y such that

(Xm Y'n) E (Xn7 (il(m, Xia MXu))iE[ﬂ]) and U ’”5 UHIf[O, 1]1

Deterministic equivariance [Zah+17] + stochastic equivariance [B-R, Teh]

Y[ Y2 Y‘; Y4 Yl

Y, Y% Yl
O
\.\ -
l;;
X X X; X, X X, Xs Xy

n

Yi=o (U)()Xi + wy Z XJ) — Y, = ;1(77” Xi, Z (le)
j=1

=1
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A BIT OF GROUP THEORY

For a group G acting on a set X:

« The orbit of any z € X is the subset of X generated by applying G to
G-r={g 59€0}.
« A maximal invariant statistic M: X — S

(i) is constant on an orbit, i.e., M(g-z) = M(x) forallge G and z € &;
and

(i) takes a different value on each orbit, i.e., M(x;) = M(z2) implies
71 = g- 1 fOorsome ge G.

« A maximal equivariant T : X — G satisfies

7(g-X)=g-7(x), g€G,z€X.
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A GENERAL INVARIANCE THEOREM

Theorem (B-R, Teh)
Let G be a compact group and assume that g- X = X forall g € G.
Let M: X — S be a maximal invariant.

Then (g- X, Y) = (X, Y) for all g € G if and only if there exists a mea-
surable function h: [0,1] x S — Y such that

(X, Y) = (X, h(n, M(X))) with  ~ Unif[0,1] and nl.X .
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PROOF BY PICTURE

Plg-X,Y)=P(X,Y)forallge g

X y
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PROOF BY PICTURE

Plg- X, M(g-X),Y)=P(X,M(X),Y)forallge G

X IM<X) N
.
¢ y
o
-
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A GENERAL EQUIVARIANCE THEOREM

Theorem (Kallenberg; B-R, Teh)

Let G be a compact group and assume that g- X = X forall g€ G.

Assume that a maximal equivariant 7 : X — G exists.

Then (g- X,g- Y) = (X, Y) for all g € G if and only if there exists a
measurable function & : [0,1] x X — Y such that

(X, Y) = (X, h(n, X)) with 5~ Unif[0,1] and n L X,

where h is equivariant:
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PROOF BY PICTURE

Plg-X,g-Y)=P(X,Y)forallge g

Cles
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PROOF BY PICTURE

Plg-X,7(9- X)) -g9-X,9- V)= P(X,7(X)""- X, V)
forallge g
— T(X)_l . YJ_LT(X)—LXX

X y\

)

®
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SOME ANSWERS

. Sufficiency/adequacy provides the magic.

« Similar results for exchangeable graphs/arrays/tensors and some
other related structures.

« Framework is general enough that it catches a lot of existing work as
special cases.

. Suggests some new (stochastic) network architectures.
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MANY QUESTIONS

» There are models with sufficient statistics that don’t have group
symmetry (though they typically have a set of symmetry
transformations)—what are the analogous results? Are they useful?

 Evidence that adding noise during training has beneficial effects; in
this context it amounts to the difference between deterministic
invariance and distributional invariance—can we prove anything
rigorous in these settings?

« Relatedly, can we put the “fact” (encoding symmetry in neural
networks is a Good Thing) on rigorous footing?
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SYMMETRIC NEURAL NETWORKS

Recent work generalizes the idea to other symmetries and data:

. Affine transformations (translation, rotation, scaling, shear) [GD14]
« Discrete translations, reflections, rotations [CW16]

« Continuous rotations in three dimensions [Coh+18]

« Permutations of sequences [Zah+17] and arrays [Har+18; Her+18]

« Fairly general permutation group symmetries [RSP17]

- Compact groups [KT18]

« Discrete groups, finite linear groups [Sha89; WS96]
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A USEFUL TOOL: NOISE OUTSOURCING (E.G., [Aus13])

If X and Y are random variables in “nice” (e.g, Borel) spaces X and Y, then
there are a random variable  ~ Unif[0, 1] and a measurable function
h:[0,1] x X — Y such that nlL X and

(X, Y) = (X,h(n, X)) as.
Can show that if S(X) is adequate for Y, then

(X,Y) = (X,h(n,S(X))) as.
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