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Deep learning and statistics

• Deep neural networks have been applied successfully in a range of
settings.

• Effort under way to improve performance in data poor and
semi-/unsupervised domains.

• Focus on symmetry.
• The study of symmetry in probability and statistics has a long history.
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Symmetric neural networks

fℓ,i = σ

( n∑
j=1

w(ℓ)
i,j fℓ−1,j

)

For input X and output Y, model Y = h(X), where h ∈ H is a neural
network.

If X and Y are assumed to satisfy a symmetry property,
how is H restricted?
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Symmetric neural networks

Convolutional neural networks encode translation invariance:

Illustration from medium.freecodecamp.org
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https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050


Why symmetry?

Encoding symmetry in network architecture is a Good Thing∗.
Stabler training and better generalization through

• reduction in dimension of parameter space through weight-tying; and
• capturing structure at multiple scales via pooling.

Historical note:
Interest in invariant neural networks goes back at least to Minsky and Papert
[MP88]; extended by Shawe-Taylor and Wood [Sha89; WS96]. More recent
work by a host of others.
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Neural networks for permutation-invariant data [Zah+17]

Consider a sequence Xn := (X1, . . . ,Xn), Xi ∈ X .

Permutation invariance:

Y = h(Xn) = h(π · Xn) for all π ∈ Sn.

X1 X2 X3 X4

Y
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Neural networks for permutation-invariant data [Zah+17]

Consider a sequence Xn := (X1, . . . ,Xn), Xi ∈ X .

Permutation invariance:

Y = h(Xn) = h(π · Xn) for all π ∈ Sn.

X1 X2 X3 X4

Y

7→ X1 X2 X3 X4

Y

Y = h(Xn) 7→ Y = h̃
( n∑

i=1
ϕ(Xi)

)
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Neural networks for permutation-invariant data [Zah+17]

Equivariance:

Yn = h(Xn) such that h(π · Xn) = π · h(Xn) for all π ∈ Sn.

X1 X2 X3 X4

Y1 Y2 Y3 Y4
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Neural networks for permutation-invariant data [Zah+17]

Equivariance:

Yn = h(Xn) such that h(π · Xn) = π · h(Xn) for all π ∈ Sn.

X1 X2 X3 X4

Y1 Y2 Y3 Y4

X1 X2 X3 X4

Y1 Y2 Y3 Y4

[h(Xn)]i = σ

( n∑
j=1

wi,jXj

)
7→ [h(Xn)]i = σ

(
w0Xi + w1

n∑
j=1

Xj

)
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Neural networks for permutation-invariant data

...
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⟨⟨Deep learning hat, off; statistics hat, on⟩⟩

Note to students: These were the first Google Image results for ”deep learning hat” and ”statistics hat”.

You could probably make some money making decent hats.
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Statistical models and symmetry

Consider a sequence Xn := (X1, . . . ,Xn), Xi ∈ X .
A statistical model of Xn is a family of probability distributions on X n:

P = {Pθ : θ ∈ Ω} .

If X is assumed to satisfy a symmetry property,
how is P restricted?
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Exchangeable sequences

A distribution P on X n is exchangeable if

P(X1, . . . ,Xn) = P(Xπ(1), . . . ,Xπ(n)) for all π ∈ Sn .

XN is infinitely exchangeable if this is true for all prefixes Xn ⊂ XN, n ∈ N.

de Finetti’s theorem:

XN exchangeable ⇐⇒ Xi | Q iid∼ Q for some random Q.

Implication for Bayesian inference:
Our models for XN need only consist of i.i.d. distributions on X .

Analogous theorems for other symmetries. The book by Kallenberg [Kal05]
collects many of them. Some other accessible references: [Dia88; OR15].
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Finite exchangeable sequences

de Finetti’s theorem may fail for finite exchangeable sequences.

What else can we say?

The empirical measure of Xn is

MXn( • ) :=
n∑

i=1
δXi( • ) .
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Finite exchangeable sequences

The empirical measure is a sufficient statistic: P is exchangeable iff
P(Xn ∈ • | MXn = m) = Um( • ) ,

where Um is the uniform distribution on all sequences (x1, . . . , xn)

with empirical measure m.
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Finite exchangeable sequences

The empirical measure is a sufficient statistic: P is exchangeable iff
P(Xn ∈ • | MXn = m) = Um( • ) ,

where Um is the uniform distribution on all sequences (x1, . . . , xn)

with empirical measure m.

Consider Y such that (π · Xn,Y)
d
= (Xn,Y).

The empirical measure is an adequate statistic for any such Y:
P(Y ∈ • | Xn = xn) = P(Y ∈ • | MXn = Mxn).

MXn contains all information in Xn that is relevant for predicting Y.
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A useful theorem

Theorem (Invariant representation; B-R, Teh)
Suppose Xn is an exchangeable sequence.

Then (π · Xn,Y)
d
= (Xn,Y) for all π ∈ Sn if and only if there is a mea-

surable function h̃ : [0, 1]×M(X ) → Y such that

(Xn,Y)
a.s.
= (Xn, h̃(η,MXn)) and η ∼ Unif[0, 1], η⊥⊥Xn .
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= (Xn,Y) for all π ∈ Sn if and only if there is a mea-

surable function h̃ : [0, 1]×M(X ) → Y such that

(Xn,Y)
a.s.
= (Xn, h̃(η,MXn)) and η ∼ Unif[0, 1], η⊥⊥Xn .

Deterministic invariance [Zah+17] 7→ stochastic invariance [B-R, Teh]

X1 X2 X3 X4

Y

X1 X2 X3 X4

Y
η

Y = h̃
( n∑

i=1
ϕ(Xi)

)
7→ Y = h̃

(
η,

n∑
i=1

δXi

)
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Another useful theorem

Theorem (Equivariant representation; B-R, Teh)
Suppose Xn is an exchangeable sequence and Yi⊥⊥Xn(Yn \ Yi).

Then (π · Xn, π · Yn)
d
= (Xn,Yn) for all π ∈ Sn if and only if there is a

measurable function h̃ : [0, 1]×X ×M(X ) → Y such that

(Xn,Yn)
a.s.
=

(
Xn, (h̃(ηi,Xi,MXn))i∈[n]

)
and ηi

iid∼ Unif[0, 1],
(ηi)i∈[n]⊥⊥Xn.
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(Xn,Yn)
a.s.
=

(
Xn, (h̃(ηi,Xi,MXn))i∈[n]

)
and ηi

iid∼ Unif[0, 1],
(ηi)i∈[n]⊥⊥Xn.

Deterministic equivariance [Zah+17] 7→ stochastic equivariance [B-R, Teh]

X1 X2 X3 X4

Y1 Y2 Y3 Y4

X1 X2 X3 X4

Y1 Y2 Y3 Y4

η1 η2 η3 η4

Yi = σ

(
w0Xi + w1

n∑
j=1

Xj

)
7→ Yi = h̃

(
ηi,Xi,

n∑
j=1

δXj

)

= σ

(
w0Xi + w1

∫
X

n∑
j=1

δXj(dx)
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• Exchangeable sequences

• Permutation-invariant neural networks as exchangeable probability
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A bit of group theory

For a group G acting on a set X :

• The orbit of any x ∈ X is the subset of X generated by applying G to x:
G · x = {g · x; g ∈ G}.

• A maximal invariant statistic M : X → S
(i) is constant on an orbit, i.e., M(g · x) = M(x) for all g ∈ G and x ∈ X ;

and
(ii) takes a different value on each orbit, i.e., M(x1) = M(x2) implies

x1 = g · x2 for some g ∈ G.
• A maximal equivariant τ : X → G satisfies

τ(g · X) = g · τ(x) , g ∈ G , x ∈ X .
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A general invariance theorem

Theorem (B-R, Teh)

Let G be a compact group and assume that g · X d
= X for all g ∈ G.

Let M : X → S be a maximal invariant.

Then (g · X,Y)
d
= (X,Y) for all g ∈ G if and only if there exists a mea-

surable function h̃ : [0, 1]× S → Y such that

(X,Y)
a.s.
=

(
X, h̃(η,M(X))

)
with η ∼ Unif[0, 1] and η⊥⊥X .
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Proof by picture

P(g · X,Y) = P(X,Y) for all g ∈ G

X Y
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Proof by picture

P(g · X,M(g · X),Y) = P(X,M(X),Y) for all g ∈ G
⇒ Y⊥⊥M(X)X

X M(X) Y
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A general equivariance theorem

Theorem (Kallenberg; B-R, Teh)

Let G be a compact group and assume that g · X d
= X for all g ∈ G.

Assume that a maximal equivariant τ : X → G exists.

Then (g · X, g · Y)
d
= (X,Y) for all g ∈ G if and only if there exists a

measurable function h̃ : [0, 1]×X → Y such that

(X,Y)
a.s.
=

(
X, h̃(η,X)

)
with η ∼ Unif[0, 1] and η⊥⊥X ,

where h̃ is equivariant:

h̃(η, g · X)
a.s.
= g · h̃(η,X) , g ∈ G .
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Proof by picture

P(g · X, g · Y) = P(X,Y) for all g ∈ G

X Y
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Proof by picture

P(g · X, τ(g · X)−1 · g · X, g · Y) = P(X, τ(X)−1 · X,Y)

for all g ∈ G
⇒ τ(X)−1 · Y⊥⊥τ(X)−1·XX

∗
∗∗

X
∗∗

∗

Y

B. Bloem-Reddy 22 / 27



Some answers

• Sufficiency/adequacy provides the magic.
• Similar results for exchangeable graphs/arrays/tensors and some
other related structures.

• Framework is general enough that it catches a lot of existing work as
special cases.

• Suggests some new (stochastic) network architectures.
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Many questions

• There are models with sufficient statistics that don’t have group
symmetry (though they typically have a set of symmetry
transformations)—what are the analogous results? Are they useful?

• Evidence that adding noise during training has beneficial effects; in
this context it amounts to the difference between deterministic
invariance and distributional invariance—can we prove anything
rigorous in these settings?

• Relatedly, can we put the “fact” (encoding symmetry in neural
networks is a Good Thing) on rigorous footing?
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Thank you.
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Symmetric neural networks

Recent work generalizes the idea to other symmetries and data:

• Affine transformations (translation, rotation, scaling, shear) [GD14]
• Discrete translations, reflections, rotations [CW16]
• Continuous rotations in three dimensions [Coh+18]
• Permutations of sequences [Zah+17] and arrays [Har+18; Her+18]
• Fairly general permutation group symmetries [RSP17]
• Compact groups [KT18]
• Discrete groups, finite linear groups [Sha89; WS96]
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A useful tool: noise outsourcing (e.g., [Aus13])

If X and Y are random variables in “nice” (e.g., Borel) spaces X and Y , then
there are a random variable η ∼ Unif[0, 1] and a measurable function
h : [0, 1]×X → Y such that η⊥⊥X and

(X,Y) = (X, h(η,X)) a.s.

Can show that if S(X) is adequate for Y, then

(X,Y) = (X, h̃(η,S(X))) a.s.
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