Additional Advanced
Monte Carlo slides



Stopping criteria _ﬁ
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® Many diagnostic exist

® All have limitations

- -

® Some are dubious o S P
ERROR BARS ON ALL MY ERROR BARS.
® Best approach is CLT (with same caveats as |S):

for a 95% confidence interval, use

In T 1°96\/O§sympt/n

® T[he asymptotic variance is:

0 () = Vi [0 (X1)]+2> Couvr [p(X1), 0 (Xy)].

k=2



Estimation of the
asymptotic variance

® Direct method: estimate the auto-correlations
(ACF)
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® Can be done quickly with FFT

® But estimator has infinite variance! Need to
truncate. Still unstable in many practical
scenarios.



ESS for MC e

® |dea is similar as for IS, but still tied to a test function:
ESS(N) O'izid

\
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asymptotic

® Can estimate using ACF as in last slide

® Better method: batch estimators.

® Segment the MCMC trace into chunks of length v/n

® Assume sampler is good enough so that behaviour
across blocks is nearly iid

® Standard metric in MCMC literature to compare
samplers: ESS per second or ESS per operation
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Asymptotic variance
and ESS for MC

® References:

® Honest exploration of intractable probability
distributions (2001). Jones and Hobert.

® Monte Carlo standard errors for MCMC (2008).
Flegal.

® Multivariate confidence version:

® Multivariate output analysis for Markov chain Monte
Carlo (2015).Vats et al.



Hamiltonian Monte
Carlo: intuition

® Physical ball rolling on
the energy

® U(x) = -log(p(x))

® Motion described by
the Hamiltonian flow

® Phase space ona momentum

Gaussian target:
| .
\/ position




HMC: auxiliary variables

® Physics’ notation:z = (q, p)
® position g

® Augment the state with a momentum random
variable p

® Put an auxiliary distribution on p, with

f(p) = exp(-K(p)) and s.t.
K(p) = K(-p), e.g. normal.

H(q,p) = U(q) + K(p), Ulq) =4¢*/2, K(p)=p/2

® Can think of p as a velocity (when the mass matrix,
i.e. covariance of f(x) is identity).

® Statistical notation would be then z = (x, v)



Exact HMC

MCMC kernel is a non-reversible
Given by a Dirac delta: k(z, dz’) = 0¢()(dz’)

d is the Hamiltonian flow, i.e. solutions of the
differential equations

b !
dt B 8qz- dt an

Exact HMC: Analytic solution only in special
cases, e.g. for (truncated) normal target we get:

q(t) = rcos(a+1t), p(t)= —rsin(a+t)



Application: truncated
normal distributions

® See Pakman and Paninski (2014) :
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® Truncated normal arise in many
practical contexts:

® Probit and tobit models

® Bayesian splines for positive
functions

® Bayesian lasso

yi = sign(w;)
w; = —Z; - B+ &
g ~N(QO,1)




Exact HMC: invariance

¢ MCMC kernel is a non-reversible
® Given by a Dirac delta: k(z, dz’) = 0o()(dz’)
® |nvariance equivalent to:

® given Z ~ extended target TU
TT(X, v) = TT(X) X normal(v)

® DefineY = O(2)

® Do we haveY ~ 117 ?



Exact HMC: invariance

® By change of variable formula, break into two
factors:

fy(y) = f2(® ' (y)) | det Jp-1(y)|

hence ingredient to show Y ~ 1T’ are:

e O invertible (yes, set v «— -v)

® (Conservation of Hamiltonian: first factor is
constant

® Volume preservation: second factor is constant



Conservation of Hamiltonian
® Want f(z) = f(®(z))

® Enough: no infinitesimal Hamiltonian changes,
H =0

® Use total derivative identity
d

atr | dpzé?H_
dt

dt dq;  dt Op;

1=1

® [hen substitute our choice of the differential

equation:
dt— Op " [dg; 0H  dp; OH “\[0HOH OHOH
) ) _ ool odoid -
dp; OH ; [dt og; " di 5’19@] ; [@pz- dqi  Oq; Op;




Volume preservation

The preservation of volume by Hamiltonian dynamics can be proved in several ways. One
is to note that the divergence of the vector field defined by equations (2.1) and (2.2) is zero,
which can be seen as follows:

d d J
S 0 dg; 0 dp 0 OH 0 OH RH  92H
B - = - =0 (2.1
[aq’i @ opi dt] 2 [3% Opi Op; 5’%] 2 laqz@pi 01?7;0%] 0 213

A vector field with zero divergence can be shown to preserve volume (Arnold, 1989).
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® See Neal (2012). MCMC using Hamiltonian
dynamics for another, more direct argument



Exact HMC: irreducibility

® FEasy to see non irreducible in phase space

momentum

position

® Solution: refresh momentum



Symplectic HMC

® \We can’t simulate the exact Hamiltonian flow for
most targets of interest.

® |dea:

® solve the differential equation using numerical
methods and initial condition given by current
point

® can be done so that volume still preserved
(e.g. with leap-frog integrator)

® Hamiltonian no longer exactly preserved, so use
MH to accept-reject



Symplectic HMC

® Numerical solution example:

® Algorithm: numerically follow the
evolution of diff. equation

momentum (p)

® Simplest version: Euler method T T
i _ _8U d oU
it g pltre) = pilt) + e 0 = pl) = e ()
C;qtz — [M_lp]i G(t+e) = q(t) + 8%(15) = q(t) + 52%?

® Need something better: leap-frog

integrator (will see why soon when
going over invariance)



Rough idea

Use accept-reject

Proposal: deterministic, given by numerical
solution of DE followed for a fixed number

of steps

Accept-reject to take into account
numerical error

Why is this not quite correct!?
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Important, overlooked
condition on proposal g

® Mutual absolute continuity condition:
/ m(dx)q(x, B) >0 @/ m(dx)q(x, A) > 0
A B

® For example, in a discrete state space where
the target has full support, this means:

q(z,y) >0 q(y,z) >0

® This can be tricky in combinatorial spaces
(more on that soon)



Symplectic HMC

® 3 moves, which have to be deterministically
cycled in the following order

® ®:an MH move with proposal given by:
® follow the exaet discretized trajectory
® flip the momentum, R(q,p) = R(q, -p)

® Flip again!

® Momentum refreshment

® VWhat properties do we need for
invariance?



Symplectic HMC

® Numerical solution example:

® Algorithm: numerically follow the
evolution of diff. equation

momentum (p)

® Replace Euler by leaf-frog T
dp; _ U plt+=2) = plt) — (/2 5 a(0)
y - [;qu]. e a0+ HEE
dt Z ou

pit+e) = pi(t+¢/2) — (¢/2)

® Properties:let R(q,p) = (q,-p) (flip)
® involution: R(®P(R(P(2)))) = z

® hence, volume preservation



Practical considerations

® [wo critical parameters to tune:
® |:number of leap-frog steps
® epsilon: step size
® For L: Hoffman 201 I, Sohl-Dickstein 2016

® For epsilon: mostly heuristics/adaptation

(c) Leapfrog Method, stepsize 0.3 (d) Leapfrog Method, stepsize 1.2




Special case: Metropolis-
Adjusted Langevin (MALA)

® Use one leap frog step, and use the following
order for the kernels

® Refresh velocity first

® Then do one leap frog, which simplifies into:

. 528U() -
) e oU e U , |
p; = pi — 58%((1) — 58%(61)



Dimensionality scaling

running time =

HMC

MALA

Random walk
MH

number of samples
needed to get a
tolerance (with
orobability 95%)

compute cost per
sample

/4

/3

ol

Local BPS/Gibbs in
weakly dep. sparse field

d

ol

ol

ol

constant




