
SMC

Organization

• SMC on product spaces

• Transforming other problems into product
spaces (sequential change of measure)

Motivations for SMC on
product spaces

• Sequential predictions / streaming data / HMM / state space
models

• latent state from noisy observation

• change point

• Time series where ‘time’ is not time

• genomics: ‘time’ = position on genome

• observations: SNP

• latent: haploblock (chunk shared by several individuals)

4/4/2018 Lecture 7: Sequential Monte Carlo

https://www.stat.ubc.ca/~bouchard/courses/stat520-sp2014-15/lecture/2015/03/15/notes-lecture7.html 1/2

Lecture 7: Sequential Monte Carlo
15 Mar 2015

Instructor: Alexandre Bouchard-Côté
Editor: TBA

Review of importance sampling (IS)
IS with known normalization constants.
IS without the normalization constants (self-normalizing IS).

Sequential Monte Carlo (SMC) on product spaces
Examples
Let us start with some examples where SMC is useful in Bayesian statistics:

State space models from assignment 1:
: time index (day)

Observed number of text messages: ,
Latent category , (note: was denoted earlier on)

Genomics:
: positions on a chromosome.

Observed single nucleotide polymorphisms (SNP): ,
Latent haploblock. An haploblock is a chunk of the genome with SNP states shared by several
individuals. Since there are not too many recombinations, there are well documented haploblocks
available for each position , , where is some discrete set.

Ultrametric (clock) phylogenetic trees.
Species: .

 contains a partition of into blocks (to encode the topology of the tree after the -th
speciation event), and a real number (the speciation time).

Common feature: the latent space is a product space indexed by the integers
.

Notes:

We may only care about the probability defined on , called the target; the other ones (
) are called intermediate.

This setup was historically the motivation for SMC methods.
However, it was discovered in the 2000's that SMC also applies to situations where this is not the case. But
let us start by assuming is a product space, we will get to the general construction later on.

Notation and goal

Sequence of targets
• As in PT we now have a sequence of targets

• but: with different dimensionality now vs. fixed
dimensionality for PT

• In the product space context, sometimes we care
about all targets (real time predictions), sometimes,
we care only about the last one

• Typical problems:

• integrating test functions

• + computing normalization Z (e.g. for model
selection, where Z = P(data)

Building block: sequential
importance sampling

• Rewrite self-normalized importance sampling so
that it can be done with a sequence of targets

• Use the following identities:  
 

• Yields the recursions 
 

• Does not work! (Why?) But forms basis of SMC

4/4/2018 Lecture 7: Sequential Monte Carlo

https://www.stat.ubc.ca/~bouchard/courses/stat520-sp2014-15/lecture/2015/03/15/notes-lecture7.html 2/2

Target distribution, with density (note: was denoted last time; was)

Goals:

Computing (e.g. to perform model selection)
Computing , where is a test function.

For example, in the context of Bayesian inference, , the marginal likelihood studied last week, and if
, then is the posterior mean .

Sequential Importance Sampling (SIS)
Based on two simple identities:

and

we can write an iterative version of importance sampling, where at each iteration , we carry a
population of particles with corresponding unnormalized weights (see slides).

In SIS, we propose incrementally:

and update the weights using:

Exercise: compute the weights at the last iteration, . What is the implication?

The sequential nature of the particle recursions makes it tempting to use SIS in an online setting. This is a bad idea!
As we will see, the approximation fails exponentially fast in the number of time steps . Symptom: all the
normalized weights converge to 0 except for 1 particle which takes all the normalized weight.

Examples of weight updates:

HMM. (exercise)
A coalescent model.

4/4/2018 Lecture 7: Sequential Monte Carlo

https://www.stat.ubc.ca/~bouchard/courses/stat520-sp2014-15/lecture/2015/03/15/notes-lecture7.html 2/2

Target distribution, with density (note: was denoted last time; was)

Goals:

Computing (e.g. to perform model selection)
Computing , where is a test function.

For example, in the context of Bayesian inference, , the marginal likelihood studied last week, and if
, then is the posterior mean .

Sequential Importance Sampling (SIS)
Based on two simple identities:

and

we can write an iterative version of importance sampling, where at each iteration , we carry a
population of particles with corresponding unnormalized weights (see slides).

In SIS, we propose incrementally:

and update the weights using:

Exercise: compute the weights at the last iteration, . What is the implication?

The sequential nature of the particle recursions makes it tempting to use SIS in an online setting. This is a bad idea!
As we will see, the approximation fails exponentially fast in the number of time steps . Symptom: all the
normalized weights converge to 0 except for 1 particle which takes all the normalized weight.

Examples of weight updates:

HMM. (exercise)
A coalescent model.

4/4/2018 Lecture 7: Sequential Monte Carlo

https://www.stat.ubc.ca/~bouchard/courses/stat520-sp2014-15/lecture/2015/03/15/notes-lecture7.html 2/2

Target distribution, with density (note: was denoted last time; was)

Goals:

Computing (e.g. to perform model selection)
Computing , where is a test function.

For example, in the context of Bayesian inference, , the marginal likelihood studied last week, and if
, then is the posterior mean .

Sequential Importance Sampling (SIS)
Based on two simple identities:

and

we can write an iterative version of importance sampling, where at each iteration , we carry a
population of particles with corresponding unnormalized weights (see slides).

In SIS, we propose incrementally:

and update the weights using:

Exercise: compute the weights at the last iteration, . What is the implication?

The sequential nature of the particle recursions makes it tempting to use SIS in an online setting. This is a bad idea!
As we will see, the approximation fails exponentially fast in the number of time steps . Symptom: all the
normalized weights converge to 0 except for 1 particle which takes all the normalized weight.

Examples of weight updates:

HMM. (exercise)
A coalescent model.

4/4/2018 Lecture 7: Sequential Monte Carlo

https://www.stat.ubc.ca/~bouchard/courses/stat520-sp2014-15/lecture/2015/03/15/notes-lecture7.html 2/2

Target distribution, with density (note: was denoted last time; was)

Goals:

Computing (e.g. to perform model selection)
Computing , where is a test function.

For example, in the context of Bayesian inference, , the marginal likelihood studied last week, and if
, then is the posterior mean .

Sequential Importance Sampling (SIS)
Based on two simple identities:

and

we can write an iterative version of importance sampling, where at each iteration , we carry a
population of particles with corresponding unnormalized weights (see slides).

In SIS, we propose incrementally:

and update the weights using:

Exercise: compute the weights at the last iteration, . What is the implication?

The sequential nature of the particle recursions makes it tempting to use SIS in an online setting. This is a bad idea!
As we will see, the approximation fails exponentially fast in the number of time steps . Symptom: all the
normalized weights converge to 0 except for 1 particle which takes all the normalized weight.

Examples of weight updates:

HMM. (exercise)
A coalescent model.

Fix: resampling

• Intuition: prune particles with low
normalized weights

• Constraints: we still want consistency

• Idea: resample N times according to the
normalized weights

• multinomial resampling

Notation for our goals

⇡t(xt) =
�t(xt)

Zt

⇡t(xt) = p(xt|yt)

�t(xt) = p(xt,yt)

Z = p(yt)

Sample from a target distribution:

Given a model (joint)...:

.. and/or evaluate the normalization:

X State space

xt 2 X Point in that space

Subscript: process index

xt Many points in the state space
yt Many observations

R

xt 2 X

X

t

y1 = xt1 y3 = xt3y2 = xt2
y2 y3

N
ot

at
io

n

A
C
G
T

Standard SMC
x

i
tOutput: competing ‘hypotheses’

Hypothesis
i = 1

Hypothesis
i = 5

t = last time observed

...

x

i
tOutput: competing ‘hypotheses’

weight for each of these wi
t

weight of
particle i = 1

weight of
particle i = 5

...

Standard SMC

x

i
tOutput: competing ‘hypotheses’

weight for each of these wi
t

Can view these as a (random) distribution

w̃i
t =

wi
tP

j w
j
t

⇡̃t(·) =
X

i

w̃i
t�xi

t
(·)

Standard SMC

Standard SMC inner
working:

⇡̃t⇡̃t�1

1. Assume inductively that we have
computed approximation for:

⇡t�1(xt�1) = p(xt�1|yt�1)

⇡̃t⇡̃t�1

2. Sample from

1. Assume inductively...

⇡̃t�1

x̃

i
t�1 ⇠ ⇡̃t�1

Standard SMC inner
working:

2. Sample from

1. Assume inductively...

⇡̃t�1

3. Propose (extend):

x̃

i
t�1

xt|x̃t�1 ⇠ qt(·|x̃t�1)

x

i
t =
(�x̃

i
t�1�, x

i
t)

Concatenate:

Standard SMC inner
working:

2. Sample from

1. Assume inductively...

⇡̃t�1

3. Propose (extend)

4. Reweigh:

w

i
t =

⇡t(xi
t)

⇡t�1(x̃i
t�1)

1

qt(xi
t|x̃i

t�1)

x̃

i
t�1

x

i
t

Standard SMC inner
working:

2. Sample from

1. Assume inductively...

⇡̃t�1

3. Propose (extend)

4. Reweigh

Repeat for
each particle

(5 times)

Standard SMC inner
working:

Normalization constant
estimate

• Unbiased estimate provided by the product
of the unnormalized weight averages:

Ĉ =
Y

t

1

5

5X

i=1

wi
t

Some pointers

• Theory: see Del Moral, 2013 for LLN, CLT

• How to build MC intervals: see J. Olsson, R.
Douc (2018)

• Proposals:

• sometimes, forced to pick dynamics

• else, various options, e.g.  
lookahead proposal

Resampling
• Efficient implementation: can be done in linear time in

the number of particles (via spacings of a Poisson
process, see Devroye’s book on random generation)

• Often important not perform resampling at every step

• Monitor relative ESS after each proposal round 
 

• Resample when it drops under a threshold (0.5)
typically

• Finally, alternatives to multinomial resampling exist, see
Mathieu Gerber, Nicolas Chopin, Nick Whiteley, 2017
for recent analysis of those

(Eq[W̃])2

Eq[W̃ 2]
⇡

(1n
P

W̃ (i))2

1
n

P
(W̃ (i))2

Organization

• SMC on product spaces

• Transforming other problems into
product spaces (sequential change of
measure)

AIS / Jarzynski’s trick

• Target spaces Ft, not product spaces,

• important e.g. Ft = S (change of measure)

• Auxiliary spaces:  

• Distribution on those? Use a backward
kernel B 

• Get weight update:

Sequential change of measure methods
state space is arbitrary
sequence of targets, , , for

, -invariant kernels
Ability to sample exactly from
Goal: for some arbitrary test function

Pre-requisites:

Importance sampling
Annealed importance sampling (SIS)

Key idea 1: even if we only care about one prior likelihood, we can build a useful sequence ,
e.g. by exponentiating the likelihood

Why not exponentiating everything?
Alternate compute-aware choices of annealing distribution (e.g. for big data)
Terminology: annealing step. Difficulty: sensitivity to annealing step choice.

Key idea 2: build a product space via conditional distributions (called a backward kernel) and chain
rule:

This means we can now apply standard SIS and get weight updates (check!)

Key idea 3: the above weight update is generally not computable (why?).

But we are free to pick !
Pick:

Weight update simplifies to

S
(x) ∝ (x)γn πn x ∈ S n = 1, 2, …

(|x)Kn x′ πn
π0

∫ F(x)π(x) F

Jarzynski's method / AIS

π ∝ × πn

Bn

= S × S × … SS1:n
() = () (|)π1:n x1:n πn xn ∏m<n Bm xm xm+1

(,) =w̃ x1:n−1 x1:n
()γn xn
()γn−1 xn−1

(|)Bn−1 xn−1 xn
(|)Kn xn xn−1

B

(|) =Bn−1 xn−1 xn
() (|)πn xn−1 Kn xn xn−1

()πn xn

=w̃ ()γn xn−1
()γn−1 xn−1

Sequential change of measure methods
state space is arbitrary
sequence of targets, , , for

, -invariant kernels
Ability to sample exactly from
Goal: for some arbitrary test function

Pre-requisites:

Importance sampling
Annealed importance sampling (SIS)

Key idea 1: even if we only care about one prior likelihood, we can build a useful sequence ,
e.g. by exponentiating the likelihood

Why not exponentiating everything?
Alternate compute-aware choices of annealing distribution (e.g. for big data)
Terminology: annealing step. Difficulty: sensitivity to annealing step choice.

Key idea 2: build a product space via conditional distributions (called a backward kernel) and chain
rule:

This means we can now apply standard SIS and get weight updates (check!)

Key idea 3: the above weight update is generally not computable (why?).

But we are free to pick !
Pick:

Weight update simplifies to

S
(x) ∝ (x)γn πn x ∈ S n = 1, 2, …

(|x)Kn x′ πn
π0

∫ F(x)π(x) F

Jarzynski's method / AIS

π ∝ × πn

Bn

= S × S × … SS1:n
() = () (|)π1:n x1:n πn xn ∏m<n Bm xm xm+1

(,) =w̃ x1:n−1 x1:n
()γn xn
()γn−1 xn−1

(|)Bn−1 xn−1 xn
(|)Kn xn xn−1

B

(|) =Bn−1 xn−1 xn
() (|)πn xn−1 Kn xn xn−1

()πn xn

=w̃ ()γn xn−1
()γn−1 xn−1

Sequential change of measure methods
state space is arbitrary
sequence of targets, , , for

, -invariant kernels
Ability to sample exactly from
Goal: for some arbitrary test function

Pre-requisites:

Importance sampling
Annealed importance sampling (SIS)

Key idea 1: even if we only care about one prior likelihood, we can build a useful sequence ,
e.g. by exponentiating the likelihood

Why not exponentiating everything?
Alternate compute-aware choices of annealing distribution (e.g. for big data)
Terminology: annealing step. Difficulty: sensitivity to annealing step choice.

Key idea 2: build a product space via conditional distributions (called a backward kernel) and chain
rule:

This means we can now apply standard SIS and get weight updates (check!)

Key idea 3: the above weight update is generally not computable (why?).

But we are free to pick !
Pick:

Weight update simplifies to

S
(x) ∝ (x)γn πn x ∈ S n = 1, 2, …

(|x)Kn x′ πn
π0

∫ F(x)π(x) F

Jarzynski's method / AIS

π ∝ × πn

Bn

= S × S × … SS1:n
() = () (|)π1:n x1:n πn xn ∏m<n Bm xm xm+1

(,) =w̃ x1:n−1 x1:n
()γn xn
()γn−1 xn−1

(|)Bn−1 xn−1 xn
(|)Kn xn xn−1

B

(|) =Bn−1 xn−1 xn
() (|)πn xn−1 Kn xn xn−1

()πn xn

=w̃ ()γn xn−1
()γn−1 xn−1

Example
• Setup: change of measure on annealed distributions

• Kn: πn invariant kernel (from MH)

• Problem: cannot compute weight in general  
 

• Idea: use fact we are free to pick B as we wish; use  
 

• Weight update simplifies (check)

Sequential change of measure methods
state space is arbitrary
sequence of targets, , , for

, -invariant kernels
Ability to sample exactly from
Goal: for some arbitrary test function

Pre-requisites:

Importance sampling
Annealed importance sampling (SIS)

Key idea 1: even if we only care about one prior likelihood, we can build a useful sequence ,
e.g. by exponentiating the likelihood

Why not exponentiating everything?
Alternate compute-aware choices of annealing distribution (e.g. for big data)
Terminology: annealing step. Difficulty: sensitivity to annealing step choice.

Key idea 2: build a product space via conditional distributions (called a backward kernel) and chain
rule:

This means we can now apply standard SIS and get weight updates (check!)

Key idea 3: the above weight update is generally not computable (why?).

But we are free to pick !
Pick:

Weight update simplifies to

S
(x) ∝ (x)γn πn x ∈ S n = 1, 2, …

(|x)Kn x′ πn
π0

∫ F(x)π(x) F

Jarzynski's method / AIS

π ∝ × πn

Bn

= S × S × … SS1:n
() = () (|)π1:n x1:n πn xn ∏m<n Bm xm xm+1

(,) =w̃ x1:n−1 x1:n
()γn xn
()γn−1 xn−1

(|)Bn−1 xn−1 xn
(|)Kn xn xn−1

B

(|) =Bn−1 xn−1 xn
() (|)πn xn−1 Kn xn xn−1

()πn xn

=w̃ ()γn xn−1
()γn−1 xn−1

Sequential change of measure methods
state space is arbitrary
sequence of targets, , , for

, -invariant kernels
Ability to sample exactly from
Goal: for some arbitrary test function

Pre-requisites:

Importance sampling
Annealed importance sampling (SIS)

Key idea 1: even if we only care about one prior likelihood, we can build a useful sequence ,
e.g. by exponentiating the likelihood

Why not exponentiating everything?
Alternate compute-aware choices of annealing distribution (e.g. for big data)
Terminology: annealing step. Difficulty: sensitivity to annealing step choice.

Key idea 2: build a product space via conditional distributions (called a backward kernel) and chain
rule:

This means we can now apply standard SIS and get weight updates (check!)

Key idea 3: the above weight update is generally not computable (why?).

But we are free to pick !
Pick:

Weight update simplifies to

S
(x) ∝ (x)γn πn x ∈ S n = 1, 2, …

(|x)Kn x′ πn
π0

∫ F(x)π(x) F

Jarzynski's method / AIS

π ∝ × πn

Bn

= S × S × … SS1:n
() = () (|)π1:n x1:n πn xn ∏m<n Bm xm xm+1

(,) =w̃ x1:n−1 x1:n
()γn xn
()γn−1 xn−1

(|)Bn−1 xn−1 xn
(|)Kn xn xn−1

B

(|) =Bn−1 xn−1 xn
() (|)πn xn−1 Kn xn xn−1

()πn xn

=w̃ ()γn xn−1
()γn−1 xn−1

Sequential change of measure methods
state space is arbitrary
sequence of targets, , , for

, -invariant kernels
Ability to sample exactly from
Goal: for some arbitrary test function

Pre-requisites:

Importance sampling
Annealed importance sampling (SIS)

Key idea 1: even if we only care about one prior likelihood, we can build a useful sequence ,
e.g. by exponentiating the likelihood

Why not exponentiating everything?
Alternate compute-aware choices of annealing distribution (e.g. for big data)
Terminology: annealing step. Difficulty: sensitivity to annealing step choice.

Key idea 2: build a product space via conditional distributions (called a backward kernel) and chain
rule:

This means we can now apply standard SIS and get weight updates (check!)

Key idea 3: the above weight update is generally not computable (why?).

But we are free to pick !
Pick:

Weight update simplifies to

S
(x) ∝ (x)γn πn x ∈ S n = 1, 2, …

(|x)Kn x′ πn
π0

∫ F(x)π(x) F

Jarzynski's method / AIS

π ∝ × πn

Bn

= S × S × … SS1:n
() = () (|)π1:n x1:n πn xn ∏m<n Bm xm xm+1

(,) =w̃ x1:n−1 x1:n
()γn xn
()γn−1 xn−1

(|)Bn−1 xn−1 xn
(|)Kn xn xn−1

B

(|) =Bn−1 xn−1 xn
() (|)πn xn−1 Kn xn xn−1

()πn xn

=w̃ ()γn xn−1
()γn−1 xn−1

