SMC

Organization

- SMC on product spaces
- Transforming other problems into product spaces (sequential change of measure)

Motivations for SMC on product spaces

- Sequential predictions / streaming data / HMM / state space models
- latent state from noisy observation
- change point
- Time series where 'time' is not time
- genomics: 'time’ = position on genome
- observations: SNP
- latent: haploblock (chunk shared by several individuals)

Common feature: the latent space is a product space $F_{t}=E_{1} \times E_{2} \times \cdots \times E_{t}$ indexed by the integers $t \in\{1, \ldots, n\}$.

Sequence of targets

- As in PT we now have a sequence of targets
- but: with different dimensionality now vs. fixed dimensionality for PT
- In the product space context, sometimes we care about all targets (real time predictions), sometimes, we care only about the last one
- Typical problems:
- integrating test functions
- + computing normalization Z (e.g. for model selection, where $Z=P($ data $)$

Building block: sequential importance sampling

- Rewrite self-normalized importance sampling so that it can be done with a sequence of targets
- Use the following identities:

$$
\gamma\left(x_{1: n}\right)=\frac{\gamma\left(x_{1: n}\right)}{\gamma\left(x_{1: n-1}\right)} \frac{\gamma\left(x_{1: n-1}\right)}{\gamma\left(x_{1: n-2}\right)} \ldots \frac{\gamma\left(x_{1: 1}\right)}{\gamma\left(x_{\emptyset}\right)}, \quad q\left(x_{1: n}\right)=q\left(x_{1} \mid x_{\emptyset}\right) q\left(x_{2} \mid x_{1: 1}\right) q\left(x_{3} \mid x_{1: 2}\right) \ldots q\left(x_{n} \mid x_{1: n-1}\right)
$$

- Yields the recursions

$$
\begin{gathered}
x_{t}^{i} \sim q\left(\cdot \mid x_{1: t-1}^{i}\right) \\
x_{1: t}=\left(x_{1: t-1}^{i}, x_{t}^{i}\right),
\end{gathered}
$$

$$
w_{t}^{i}=w_{t-1}^{i} \frac{\gamma\left(x_{1: t}\right)}{\gamma\left(x_{1: t-1}\right)} \frac{1}{q\left(x_{t} \mid x_{1: t-1}\right)} .
$$

- Does not work! (Why?) But forms basis of SMC

Fix: resampling

- Intuition: prune particles with low normalized weights
- Constraints: we still want consistency
- Idea: resample N times according to the normalized weights
- multinomial resampling

Notation for our goals

Given a model (joint)...: $\gamma_{t}\left(\mathbf{x}_{t}\right)=p\left(\mathbf{x}_{t}, \mathbf{y}_{t}\right)$
Sample from a target distribution: $\pi_{t}\left(\mathbf{x}_{t}\right)=p\left(\mathbf{x}_{t} \mid \mathbf{y}_{t}\right)$

$$
\pi_{t}\left(\mathbf{x}_{t}\right)=\frac{\gamma_{t}\left(\mathbf{x}_{t}\right)}{Z_{t}}
$$

.. and/or evaluate the normalization: $Z=p\left(\mathbf{y}_{t}\right)$

Standard SMC

Output: competing 'hypotheses' \mathbf{x}_{t}^{i}

$t=$ last time observed

Hypothesis

$$
i=1
$$

$$
\bullet
$$

Hypothesis

$$
i=5
$$

Standard SMC

Output: competing 'hypotheses' \mathbf{x}_{t}^{i}

weight for each of these w_{t}^{i}

$\downarrow \begin{aligned} & \text { weight of } \\ & \text { particle } i=1\end{aligned}$
\uparrow weight of particle $i=5$

Standard SMC

Output: competing 'hypotheses' \mathbf{x}_{t}^{i}
weight for each of these w_{t}^{i}

tandard SMC inner
working: I.Assume inductively that we have computed approximation for:

$$
\pi_{t-1}\left(\mathbf{x}_{t-1}\right)=p\left(\mathbf{x}_{t-1} \mid \mathbf{y}_{t-1}\right)
$$

$\tilde{\pi}_{t-1}$
$\tilde{\pi}_{t}$

tandard SMC inner
working: I.Assume inductively...
2. Sample from $\tilde{\pi}_{t-1}$

tandard SMC inner
working: I.Assume inductively...
2. Sample from $\tilde{\pi}_{t-1}$
3. Propose (extend):

tandard SMC inner
working: I.Assume inductively...
2. Sample from $\tilde{\pi}_{t-1}$
3. Propose (extend)
4. Reweigh:

$$
w_{t}^{i}=\frac{\pi_{t}\left(\mathbf{x}_{t}^{i}\right)}{\pi_{t-1}\left(\tilde{\mathbf{x}}_{t-1}^{i}\right)} \frac{1}{q_{t}\left(x_{t}^{i} \mid \tilde{\mathbf{x}}_{t-1}^{i}\right)}
$$

tandard SMC inner working: I.Assume inductively...

Repeat for each particle (5 times)
(2. Sample from $\tilde{\pi}_{t-1}$

Normalization constant estimate

- Unbiased estimate provided by the product of the unnormalized weight averages:

$$
\hat{C}=\prod_{t} \frac{1}{5} \sum_{i=1}^{5} w_{t}^{i}
$$

Some pointers

- Theory: see Del Moral, 2013 for LLN, CLT
- How to build MC intervals: see J. Olsson, R. Douc (2018)
- Proposals:
- sometimes, forced to pick dynamics
- else, various options, e.g. lookahead proposal

Resampling

- Efficient implementation: can be done in linear time in the number of particles (via spacings of a Poisson process, see Devroye's book on random generation)
- Often important not perform resampling at every step
- Monitor relative ESS after each proposal round

$$
\frac{\left(E_{q}[\tilde{W}]\right)^{2}}{E_{q}\left[\tilde{W}^{2}\right]} \approx \frac{\left(\frac{1}{n} \sum \tilde{W}^{(i)}\right)^{2}}{\frac{1}{n} \sum\left(\tilde{W}^{(i)}\right)^{2}}
$$

- Resample when it drops under a threshold (0.5) typically
- Finally, alternatives to multinomial resampling exist, see Mathieu Gerber, Nicolas Chopin, Nick Whiteley, 2017 for recent analysis of those

Organization

- SMC on product spaces
- Transforming other problems into product spaces (sequential change of measure)

AIS / Jarzynski’s trick

- Target spaces F_{t}, not product spaces,
- important e.g. $F_{t}=S$ (change of measure)
- Auxiliary spaces:

$$
S_{1: n}=S \times S \times \ldots S
$$

- Distribution on those? Use a backward kernel B

$$
\pi_{1: n}\left(x_{1: n}\right)=\pi_{n}\left(x_{n}\right) \prod_{m<n} B_{m}\left(x_{m} \mid x_{m+1}\right)
$$

- Get weight update:

$$
\tilde{w}\left(x_{1: n-1}, x_{1: n}\right)=\frac{\gamma_{n}\left(x_{n}\right)}{\gamma_{n-1}\left(x_{n-1}\right)} \frac{B_{n-1}\left(x_{n-1} \mid x_{n}\right)}{K_{n}\left(x_{n} \mid x_{n-1}\right)}
$$

Example

- Setup: change of measure on annealed distributions
- $K_{n}: \Pi_{n}$ invariant kernel (from MH)
- Problem: cannot compute weight in general

$$
\tilde{w}\left(x_{1: n-1}, x_{1: n}\right)=\frac{\gamma_{n}\left(x_{n}\right)}{\gamma_{n-1}\left(x_{n-1}\right)} \frac{B_{n-1}\left(x_{n-1} \mid x_{n}\right)}{K_{n}\left(x_{n} \mid x_{n-1}\right)}
$$

- Idea: use fact we are free to pick B as we wish; use

$$
B_{n-1}\left(x_{n-1} \mid x_{n}\right)=\frac{\pi_{n}\left(x_{n-1}\right) K_{n}\left(x_{n} \mid x_{n-1}\right)}{\pi_{n}\left(x_{n}\right)}
$$

- Weight update simplifies (check)

$$
\tilde{w}=\frac{\gamma_{n}\left(x_{n-1}\right)}{\gamma_{n-1}\left(x_{n-1}\right)}
$$

