Reversible vs. non-reversible
parallel tempering

® |n a given communication round,
attempt to swap as many
consecutive disjoint pairs of
chains as possible, in parallel

® Denote swap indices by
(i, i+ 1)

< 1.I



Reversible vs. non-reversible
parallel tempering

EEEEEOOOEEOEEOEE @ Denote swap indices by

N XX XXX XX XX XX (i i+1)
{ ¥ Y% W’w ‘ ® Even swaps (E)
"""""""" ’ ® pick swap pairs such that i is
3000C VANAN even
..... ® Odd swaps (O)
.......... ‘ - ® pick swap pairs such that i is

odd




Reversible vs. non-reversible
parallel tempering (PT)
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® At each communication
iteration, with:

Reversible
(SEO)

® .. reversible PT:

® Stochastically pick E or O
using coin flip

® ... non-reversible PT

® Deterministically alternates
between E and O

Non-reversible
(DEO)

DEQO: Okabe et al. 2001



Reversible
(SEO)

Non-reversible

(DEO)

Reversible vs. non-reversible
parallel tempering (PT)
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Surprise: this seemingly
minor detail has a
profound impact on the
behaviour of the PT
algorithm



Notion of performance
for Parallel tempering

® Setup we are interested in:

® |magine the prior sample a new

® Random restart: an iteration

First random restart
® Distributed computing: we can

summon as many machines as -
we want . ' m "
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osterior

colour at each iteration

where the posterior chain sees a :““
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Restart rate

® Random restart: an iteration

where the posterior chain sees
a new colour

® Restart rate T:fraction of

MCMC iterations that are
random restarts
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Non-asymptotic result

® Non-reversible PT’s restart rate dominates reversible PT’s

TN,non-reversible > TN ,reversible; for all vV >1

® For a number of chains N large enough...
® TN non-reversible in an increasing function of N

® TN reversible —7 0



Asymptotic results

® T[ypical asymptotic regimes:
® |et the number of data points go to infinity (n), or.
® the number of parameters (d)
® the running time (e.g. # Monte Carlo iterations)
® A road less travelled (in MCMC at least):
® |et the number of cores available go to infinity!

® Arguably more relevant nowadays than letting
time go to infinity...



Asymptotics: setup

® VWhen a swap is accepted, the 2 machines swap
annealing parameter, not states

® Focus on marginal behaviour of the sequence of
annealing parameters assigned to one machine (bold
green line on the left)




As the number of parallel chains
go to infinity...

Reversible PT Non-reversible PT
ST
T T . T . T : : : dl ”. i ; ; ;
Weak limit: diffusion Weak limit: Piecewise
Deterministic Markov
Process (PDMP)

Time rescaled as O( N2) Time rescaled as O( N )



Non-reversible PT

Piecewise o
Deterministic Markov !l
Processes (PDMPs)  zemncia

® Deterministic flow ®y(z)

® Random jumps: / T
® rate A(z) &

® transition Q(dz’|z)



Non-reversible PT
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Weak limit: Piecewise
Deterministic Markov
Process (PDMP)

® From the deterministic alternation v —
emerges a persistence of motion h"‘z

or inertia

"‘& 9
0.\ et

DO
&

® this is true as long as a
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proposed swap is hot rejected h‘
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® rejection probability for one
swap goes to | as the number
of chains goes to infinity




Non-reversible PT
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Intuition: limiting PDMPs

® State space: / &

* z=(B.g)

® [:annealing parameter
(in [0, 1]) |
® ¢:velocity (in {-1,+1}) M ﬂ | ‘l




Intuition: limiting PDMPs

® Deterministic flow ®(z) /A
® Random jumps: &

® rate A(z)

® transition Q(dz’|z)

® inour PT context,Q . M‘H I ‘l |

is a |-dimensional ol "
0.4 - | | I

“bounce”

(B’ E) — (B’ -E) ”:U'a md oo 15;1 ;u'!ﬂ = Mm




PDMPs

® Deterministic flow ®y(z)

® Random jumps:

® rate A(z)

=

® what is the bounce

rate \!

® transition Q(dz’|z)




Bounce rate:

Interpretation -
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Example: in an Ising
model, A has a peak at
the critical temperature

1 .
® |f we normalize A by A = / \(B)dg
0

® we obtain a distribution over the annealing
parameters where swaps are rejected



Bounce rate:
Interpretation

® |nterpretation of the

normalization:
1

2+ 2A

TN .non-reversible — T =




Bounce rate: practical use

® The rate A can be estimated from samples and used
to adaptively select the annealing schedule

0<Bi=<Pr..<Pn=1I

® Without such adaptation parallel tempering is not
practical

® previous adaptation scheme are based on stochastic
optimization and empirically slower to converge
and less robust
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Bounce rate: practical use
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Blue dots: optimal
schedule

Green: area under the
curve A

® New proof of classical result: it is
optimal to use a schedule
0<Bi=<Pr..<Pn=1
such that the acceptance rate is the
same for all chains

® New method to achieve this:

Loop:
|. run PT and estimate A

2. pick schedule so that area under

the curve A between chains is
constant



Bounce rate: estimation

® How to estimate bounce rate A ?

® Typically, quantities used in the study

of MCMC are difficult to estimate

from MCMC output (e.g., ESS,
spectral gaps, mixing time, etc)

® |n contrast, A admits several nice
estimators:

® Method I:

A(B) = E[f(Xp) — £(Yp)|

X35,Ys~mg  (x) = log(likelihood(x))




Bounce rate: estimation

® Estimating A, method 2:

® use equivalent cumulative barrier
/ /
= Jo AMB)dp

° WhICh admit a simple estimator
from empirical rejection rates

0.50 0.75 1.00
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A(Bi) =D 707,

j=1



Some examples of local
barriers in various models
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Outline of schedule optimization
algorithm derived from method 2

1: Start with an initial schedule and run PT for n iteration
2. compute the following cumulative swap rejection statistics:

Each y-axis step
IS a rejection
4 probability
ﬁ — estimated from
the n iterations

) K Each x-axis step Is a

Lambda

parameter spacing
between 2 chains in
o current schedule




1: Start with an initial schedule and run PT for n iteration
2. compute the following cumulative swap rejection statisti

3: Fit a monotonic increasing smooth function

cumulativeLambda
N

0.00 0.25 0.50 0.75 1.00



4: Project the uniform grid through the inverse
of the smooth function - this yields an updated
schedule

T /

cumulativeLambda
N




Outline of schedule optimization
algorithm derived from method 2

1: Start with an initial schedule and run PT for n iteration
2. compute the following cumulative swap rejection statistics:

3: Fit a monotonic increasing smooth function

4: Project the uniform grid through the inverse of
the smooth function - this yields an updated
schedule

5: go to 1 using the new updated schedule and n :=2n




Example: Bayesian mixture model




Example: Bayesian mixture model




Example: Bayesian mixture model
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Example: Bayesian mixture model




Example: Bayesian mixture model
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Example: Bayesian mixture model

/




Example: Bayesian mixture model




Example: Bayesian mixture model




Example: Bayesian mixture model
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Example: Bayesian mixture model




Example: Bayesian mixture model




The adaptive scheme performs well
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