
Reversible vs. non-reversible 
parallel tempering

• In a given communication round, 
attempt to swap as many 
consecutive disjoint pairs of 
chains as possible, in parallel

• Denote swap indices by  
(i, i+1)



Reversible vs. non-reversible 
parallel tempering

• Denote swap indices by  
(i, i+1)

• Even swaps (E) 

• pick swap pairs such that i is 
even

• Odd swaps (O)

• pick swap pairs such that i is 
odd
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Fig. 1: Reversible (top) and non-reversible (bottom) PT for N = 8 (left) and N = 30 auxiliary
chains (right) using equally spaced annealing parameters on a Bayesian change-point detection
model (Davidson-Pilon, 2015) where ⇡

0

is the prior, ⇡ the posterior. The sequence of moves
forms N + 1 index trajectories (paths formed by the red and green edges). We show one such
paths in bold. The annealing schedule is clearly suboptimal as most swaps between the � = 0
and � = 1/N chains are rejected. This is corrected by adaptive tuning (Section 5.4).

1.1. Parallel Tempering
One popular approach for multi-core and distributed exploration of complex distributions
is Parallel Tempering (PT) which was introduced independently in statistics (Geyer,
1991) and physics (Hukushima and Nemoto, 1996); see also Swendsen and Wang (1986)
for an earlier related proposal. Since its inception, PT remains to this day the go-to
“workhorse” MCMC method to sample from complex multi-modal target distributions
arising in physics, chemistry, biology, statistics, and machine learning; see, e.g., Des-
jardins et al. (2014); Cho et al. (2010); Earl and Deem (2005); Andrec et al. (2005);
Pitera and Swope (2003); Cheon and Liang (2008). A recent empirical benchmark shows
PT methods consistently outperform other state-of-the-art sampling methods (Ballnus
et al., 2017).

To sample from the target distribution ⇡, PT introduces a sequence of auxiliary
tempered or annealed probability distributions with densities ⇡(�i)(x) / L(x)�i⇡0(x) for
i = 0, 1, ..., N , where ⇡0 is an easy-to-sample reference distribution, L(x) = ⇡(x)/⇡0(x)
and the sequence 0 = �0 < �1 < · · · < �N = 1 defines the annealing schedule. This bridge
of auxiliary distributions is used to progressively transform samples from the reference
distribution (� = 0) into samples from the target distribution (� = 1), for which only
poorly mixing MCMC kernels may be available. For example, in the Bayesian setting
where the target distribution is the posterior, we can choose the reference distribution
as the prior, which we can often directly sample.

More precisely PT algorithms are based on Markov chains in which the states are
(N + 1)-tuples, x = (x0, x1, x2, . . . , xN ) 2 XN+1, and whose stationary distribution is
given by ⇡(x) =

QN
i=0 ⇡

(�i)(xi). At each iteration, PT proceeds by applying in parallel
N+1 MCMC kernels targeting ⇡(�i) for i = 0, ..., N . We call these model-specific kernels
the exploration kernels. The chains closer to the reference chain (i.e. those with annealing



Reversible vs. non-reversible 
parallel tempering (PT)

• At each communication 
iteration, with:

• ... reversible PT:

• Stochastically pick E or O 
using coin flip

• ... non-reversible PT

• Deterministically alternates 
between E and O
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Fig. 1: Reversible (top) and non-reversible (bottom) PT for N = 8 (left) and N = 30 auxiliary
chains (right) using equally spaced annealing parameters on a Bayesian change-point detection
model (Davidson-Pilon, 2015) where ⇡

0

is the prior, ⇡ the posterior. The sequence of moves
forms N + 1 index trajectories (paths formed by the red and green edges). We show one such
paths in bold. The annealing schedule is clearly suboptimal as most swaps between the � = 0
and � = 1/N chains are rejected. This is corrected by adaptive tuning (Section 5.4).

1.1. Parallel Tempering
One popular approach for multi-core and distributed exploration of complex distributions
is Parallel Tempering (PT) which was introduced independently in statistics (Geyer,
1991) and physics (Hukushima and Nemoto, 1996); see also Swendsen and Wang (1986)
for an earlier related proposal. Since its inception, PT remains to this day the go-to
“workhorse” MCMC method to sample from complex multi-modal target distributions
arising in physics, chemistry, biology, statistics, and machine learning; see, e.g., Des-
jardins et al. (2014); Cho et al. (2010); Earl and Deem (2005); Andrec et al. (2005);
Pitera and Swope (2003); Cheon and Liang (2008). A recent empirical benchmark shows
PT methods consistently outperform other state-of-the-art sampling methods (Ballnus
et al., 2017).

To sample from the target distribution ⇡, PT introduces a sequence of auxiliary
tempered or annealed probability distributions with densities ⇡(�i)(x) / L(x)�i⇡0(x) for
i = 0, 1, ..., N , where ⇡0 is an easy-to-sample reference distribution, L(x) = ⇡(x)/⇡0(x)
and the sequence 0 = �0 < �1 < · · · < �N = 1 defines the annealing schedule. This bridge
of auxiliary distributions is used to progressively transform samples from the reference
distribution (� = 0) into samples from the target distribution (� = 1), for which only
poorly mixing MCMC kernels may be available. For example, in the Bayesian setting
where the target distribution is the posterior, we can choose the reference distribution
as the prior, which we can often directly sample.

More precisely PT algorithms are based on Markov chains in which the states are
(N + 1)-tuples, x = (x0, x1, x2, . . . , xN ) 2 XN+1, and whose stationary distribution is
given by ⇡(x) =

QN
i=0 ⇡

(�i)(xi). At each iteration, PT proceeds by applying in parallel
N+1 MCMC kernels targeting ⇡(�i) for i = 0, ..., N . We call these model-specific kernels
the exploration kernels. The chains closer to the reference chain (i.e. those with annealing

DEO: Okabe et al. 2001



Reversible vs. non-reversible 
parallel tempering (PT)

Surprise: this seemingly 
minor detail has a 
profound impact on the 
behaviour of the PT 
algorithm
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Fig. 1: Reversible (top) and non-reversible (bottom) PT for N = 8 (left) and N = 30 auxiliary
chains (right) using equally spaced annealing parameters on a Bayesian change-point detection
model (Davidson-Pilon, 2015) where ⇡

0

is the prior, ⇡ the posterior. The sequence of moves
forms N + 1 index trajectories (paths formed by the red and green edges). We show one such
paths in bold. The annealing schedule is clearly suboptimal as most swaps between the � = 0
and � = 1/N chains are rejected. This is corrected by adaptive tuning (Section 5.4).

1.1. Parallel Tempering
One popular approach for multi-core and distributed exploration of complex distributions
is Parallel Tempering (PT) which was introduced independently in statistics (Geyer,
1991) and physics (Hukushima and Nemoto, 1996); see also Swendsen and Wang (1986)
for an earlier related proposal. Since its inception, PT remains to this day the go-to
“workhorse” MCMC method to sample from complex multi-modal target distributions
arising in physics, chemistry, biology, statistics, and machine learning; see, e.g., Des-
jardins et al. (2014); Cho et al. (2010); Earl and Deem (2005); Andrec et al. (2005);
Pitera and Swope (2003); Cheon and Liang (2008). A recent empirical benchmark shows
PT methods consistently outperform other state-of-the-art sampling methods (Ballnus
et al., 2017).

To sample from the target distribution ⇡, PT introduces a sequence of auxiliary
tempered or annealed probability distributions with densities ⇡(�i)(x) / L(x)�i⇡0(x) for
i = 0, 1, ..., N , where ⇡0 is an easy-to-sample reference distribution, L(x) = ⇡(x)/⇡0(x)
and the sequence 0 = �0 < �1 < · · · < �N = 1 defines the annealing schedule. This bridge
of auxiliary distributions is used to progressively transform samples from the reference
distribution (� = 0) into samples from the target distribution (� = 1), for which only
poorly mixing MCMC kernels may be available. For example, in the Bayesian setting
where the target distribution is the posterior, we can choose the reference distribution
as the prior, which we can often directly sample.

More precisely PT algorithms are based on Markov chains in which the states are
(N + 1)-tuples, x = (x0, x1, x2, . . . , xN ) 2 XN+1, and whose stationary distribution is
given by ⇡(x) =

QN
i=0 ⇡

(�i)(xi). At each iteration, PT proceeds by applying in parallel
N+1 MCMC kernels targeting ⇡(�i) for i = 0, ..., N . We call these model-specific kernels
the exploration kernels. The chains closer to the reference chain (i.e. those with annealing



• Setup we are interested in:

• Distributed computing: we can 
summon as many machines as 
we want

• Prior (β = 0) is special in that it 
gives us iid samples

• Imagine the prior sample a new 
colour at each iteration

• Random restart: an iteration 
where the posterior chain sees a 
new colour

Notion of performance 
for Parallel tempering

First random restart
Posterior

Prior



• Random restart: an iteration 
where the posterior chain sees 
a new colour

• Restart rate τ: fraction of 
MCMC iterations that are 
random restarts 

Restart rate

First random restart



• Non-reversible PT’s restart rate dominates reversible PT’s 
 

• For a number of chains N large enough...

•                             in an increasing function of N

•  

Non-asymptotic result

⌧N,non-reversible > ⌧N,reversible, for all N > 1

⌧N,non-reversible

⌧N,reversible ! 0



Asymptotic results

• Typical asymptotic regimes:

• let the number of data points go to infinity (n), or..

• the number of parameters (d)

• the running time (e.g. # Monte Carlo iterations)

• A road less travelled (in MCMC at least):

• let the number of cores available go to infinity!

• Arguably more relevant nowadays than letting 
time go to infinity...
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Fig. 1: Reversible (top) and non-reversible (bottom) PT for N = 8 (left) and N = 30 auxiliary
chains (right) using equally spaced annealing parameters on a Bayesian change-point detection
model (Davidson-Pilon, 2015) where ⇡

0

is the prior, ⇡ the posterior. The sequence of moves
forms N + 1 index trajectories (paths formed by the red and green edges). We show one such
paths in bold. The annealing schedule is clearly suboptimal as most swaps between the � = 0
and � = 1/N chains are rejected. This is corrected by adaptive tuning (Section 5.4).

1.1. Parallel Tempering
One popular approach for multi-core and distributed exploration of complex distributions
is Parallel Tempering (PT) which was introduced independently in statistics (Geyer,
1991) and physics (Hukushima and Nemoto, 1996); see also Swendsen and Wang (1986)
for an earlier related proposal. Since its inception, PT remains to this day the go-to
“workhorse” MCMC method to sample from complex multi-modal target distributions
arising in physics, chemistry, biology, statistics, and machine learning; see, e.g., Des-
jardins et al. (2014); Cho et al. (2010); Earl and Deem (2005); Andrec et al. (2005);
Pitera and Swope (2003); Cheon and Liang (2008). A recent empirical benchmark shows
PT methods consistently outperform other state-of-the-art sampling methods (Ballnus
et al., 2017).

To sample from the target distribution ⇡, PT introduces a sequence of auxiliary
tempered or annealed probability distributions with densities ⇡(�i)(x) / L(x)�i⇡0(x) for
i = 0, 1, ..., N , where ⇡0 is an easy-to-sample reference distribution, L(x) = ⇡(x)/⇡0(x)
and the sequence 0 = �0 < �1 < · · · < �N = 1 defines the annealing schedule. This bridge
of auxiliary distributions is used to progressively transform samples from the reference
distribution (� = 0) into samples from the target distribution (� = 1), for which only
poorly mixing MCMC kernels may be available. For example, in the Bayesian setting
where the target distribution is the posterior, we can choose the reference distribution
as the prior, which we can often directly sample.

More precisely PT algorithms are based on Markov chains in which the states are
(N + 1)-tuples, x = (x0, x1, x2, . . . , xN ) 2 XN+1, and whose stationary distribution is
given by ⇡(x) =

QN
i=0 ⇡

(�i)(xi). At each iteration, PT proceeds by applying in parallel
N+1 MCMC kernels targeting ⇡(�i) for i = 0, ..., N . We call these model-specific kernels
the exploration kernels. The chains closer to the reference chain (i.e. those with annealing

Figure 4: The trajectory in B of a reversible (top) and lifted (bottom) replica over 3000
swap proposals. (4) [[Details of the model missing.]]
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• When a swap is accepted, the 2 machines swap 
annealing parameter, not states

• Focus on marginal behaviour of the sequence of 
annealing parameters assigned to one machine (bold 
green line on the left)



As the number of parallel chains 
go to infinity...

Figure 4: The trajectory in B of a reversible (top) and lifted (bottom) replica over 3000
swap proposals. (4) [[Details of the model missing.]]
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Figure 4: The trajectory in B of a reversible (top) and lifted (bottom) replica over 3000
swap proposals. (4) [[Details of the model missing.]]
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Reversible PT Non-reversible PT

Weak limit: diffusion Weak limit: Piecewise 
Deterministic Markov 

Process (PDMP)

Time rescaled as O( N2 ) Time rescaled as O( N )



Piecewise 
Deterministic Markov 
Processes (PDMPs) 

• Deterministic flow Φt(z)

• Random jumps:

• rate λ(z)

• transition Q(dz’|z)



Intuition

• From the deterministic alternation 
emerges a persistence of motion 
or inertia

• this is true as long as a 
proposed swap is not rejected

• rejection probability for one 
swap goes to 1 as the number 
of chains goes to infinity



Intuition

• But as soon as there is a 
rejected swap, direction 
changes

• 1-dimensional “bounce”



Intuition: limiting PDMPs

• State space:

• z = (β,ε)

• β: annealing parameter 
(in [0, 1])

• ε: velocity (in {-1,+1})

Figure 4: The trajectory in B of a reversible (top) and lifted (bottom) replica over 3000
swap proposals. (4) [[Details of the model missing.]]

21



Intuition: limiting PDMPs

• Deterministic flow Φt(z)

• Random jumps:

• rate λ(z)

• transition Q(dz’|z)

• in our PT context, Q 
is a 1-dimensional 
“bounce” 
(β, ε) → (β, -ε)

Figure 4: The trajectory in B of a reversible (top) and lifted (bottom) replica over 3000
swap proposals. (4) [[Details of the model missing.]]

21



PDMPs

• Deterministic flow Φt(z)

• Random jumps:

• rate λ(z)

• what is the bounce 
rate λ?

• transition Q(dz’|z)

Figure 4: The trajectory in B of a reversible (top) and lifted (bottom) replica over 3000
swap proposals. (4) [[Details of the model missing.]]

21



• If we normalize λ by 

• we obtain a distribution over the annealing 
parameters where swaps are rejected
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Bounce rate: 
interpretation

⇤ =

Z 1

0
�(�)d�

Example: in an Ising 
model, λ has a peak at 
the critical temperature



• Interpretation of the 
normalization:

Non-Reversible Parallel Tempering 21

reversible PT decays to 0 and non-reversible PT increase towards ⌧̄ as seen in Figure 8.
This is consistent with Theorem 3.

Fig. 7: Estimate of the local communication barrier (left) and global communication barrier
(right) for the Ising model with µ = 0 and M = 5, 10, 20, 30. The vertical line is at the phase
transition.

Fig. 8: (Left) Optimal annealing schedule for the Ising model with M = 20, ⇤ = 13.33 with
N = 30. The vertical line is at the phase transition. (Right) The round trip rates when M = 20
with a uniform schedule (dashed) to the optimal schedule (solid) for both non-reversible (blue)
and reversible (red) PT. The dotted horizontal line represents the approximation of the optimal
round trip rate ⌧̂ .

7.3. Effects of ELE violation
As discussed in Section 3.3, we do not expect (A2) to hold. Increasing the number nexpl

of MCMC exploration steps taken between two communication steps (see Algorithm 1)
can be used to approach ELE. However a priori one may be concerned that nexpl would
have to be very large to do so.

Bounce rate: 
interpretation

⇤ =

Z 1

0
�(�)d�

⌧N,non-reversible ! ⌧̄ =
1

2 + 2⇤



Bounce rate: practical use

• The rate λ can be estimated from samples and used 
to adaptively select the annealing schedule  
0 ≤ β1 ≤ β2 ... ≤ βN = 1

• Without such adaptation parallel tempering is not 
practical

• previous adaptation scheme are based on stochastic 
optimization and empirically slower to converge 
and less robust



• New proof of classical result: it is 
optimal to use a schedule  
0 ≤ β1 ≤ β2 ... ≤ βN = 1  
such that the acceptance rate is the 
same for all chains

• New method to achieve this:  
 
Loop:

1. run PT and estimate λ

2. pick schedule so that area under 
the curve λ between chains is 
constant

Non-Reversible Parallel Tempering 21

reversible PT decays to 0 and non-reversible PT increase towards ⌧̄ as seen in Figure 8.
This is consistent with Theorem 3.

Fig. 7: Estimate of the local communication barrier (left) and global communication barrier
(right) for the Ising model with µ = 0 and M = 5, 10, 20, 30. The vertical line is at the phase
transition.

Fig. 8: (Left) Optimal annealing schedule for the Ising model with M = 20, ⇤ = 13.33 with
N = 30. The vertical line is at the phase transition. (Right) The round trip rates when M = 20
with a uniform schedule (dashed) to the optimal schedule (solid) for both non-reversible (blue)
and reversible (red) PT. The dotted horizontal line represents the approximation of the optimal
round trip rate ⌧̂ .

7.3. Effects of ELE violation
As discussed in Section 3.3, we do not expect (A2) to hold. Increasing the number nexpl

of MCMC exploration steps taken between two communication steps (see Algorithm 1)
can be used to approach ELE. However a priori one may be concerned that nexpl would
have to be very large to do so.

Bounce rate: practical use

Blue dots: optimal 
schedule 

 
Green: area under the 

curve λ



• How to estimate bounce rate λ ?

• Typically, quantities used in the study 
of MCMC are difficult to estimate 
from MCMC output (e.g., ESS, 
spectral gaps, mixing time, etc)

• In contrast, λ admits several nice 
estimators:

• Method 1:

Non-Reversible Parallel Tempering 21

reversible PT decays to 0 and non-reversible PT increase towards ⌧̄ as seen in Figure 8.
This is consistent with Theorem 3.

Fig. 7: Estimate of the local communication barrier (left) and global communication barrier
(right) for the Ising model with µ = 0 and M = 5, 10, 20, 30. The vertical line is at the phase
transition.

Fig. 8: (Left) Optimal annealing schedule for the Ising model with M = 20, ⇤ = 13.33 with
N = 30. The vertical line is at the phase transition. (Right) The round trip rates when M = 20
with a uniform schedule (dashed) to the optimal schedule (solid) for both non-reversible (blue)
and reversible (red) PT. The dotted horizontal line represents the approximation of the optimal
round trip rate ⌧̂ .

7.3. Effects of ELE violation
As discussed in Section 3.3, we do not expect (A2) to hold. Increasing the number nexpl

of MCMC exploration steps taken between two communication steps (see Algorithm 1)
can be used to approach ELE. However a priori one may be concerned that nexpl would
have to be very large to do so.

Bounce rate: estimation

�(�) = E|`(X�)� `(Y�)|

X� , Y�
iid⇠ ⇡� `(x) = log(likelihood(x))



• Estimating λ, method 2:

• use equivalent cumulative barrier  

• which admit a simple estimator 
from empirical rejection rates

Non-Reversible Parallel Tempering 21

reversible PT decays to 0 and non-reversible PT increase towards ⌧̄ as seen in Figure 8.
This is consistent with Theorem 3.

Fig. 7: Estimate of the local communication barrier (left) and global communication barrier
(right) for the Ising model with µ = 0 and M = 5, 10, 20, 30. The vertical line is at the phase
transition.

Fig. 8: (Left) Optimal annealing schedule for the Ising model with M = 20, ⇤ = 13.33 with
N = 30. The vertical line is at the phase transition. (Right) The round trip rates when M = 20
with a uniform schedule (dashed) to the optimal schedule (solid) for both non-reversible (blue)
and reversible (red) PT. The dotted horizontal line represents the approximation of the optimal
round trip rate ⌧̂ .

7.3. Effects of ELE violation
As discussed in Section 3.3, we do not expect (A2) to hold. Increasing the number nexpl

of MCMC exploration steps taken between two communication steps (see Algorithm 1)
can be used to approach ELE. However a priori one may be concerned that nexpl would
have to be very large to do so.

Bounce rate: estimation

0 to N and back. Therefore, the first term in (18) and (19) represents the expected time for a

round trip to occur in this idealized, rejection-free setting. The second term of (18) and (19) are

identical and represent the additional time required to account for rejected swaps under schedule

P. Motivated by Theorem 1, we will refer to E(P) as the schedule ine�ciency.

By applying Theorem 1 to Equation (17), we get a non-asymptotic formula for the round trip

rate in terms of E(P).

Corollary 1. For any annealing schedule P we have

⌧SEO(P) =
N + 1

ESEO[T ]
=

1

2N + 2E(P)
, (20)

⌧DEO(P) =
N + 1

EDEO[T ]
=

1

2 + 2E(P)
. (21)

Consequently, ⌧SEO(P) < ⌧DEO(P) for N > 1.

4 Asymptotic analysis of PT

4.1 The communication barrier

We begin by analyzing the behaviour of the PT swaps as kPk goes to zero. In order to do so, we

define the swap and rejection functions s, r : [0, 1]2 ! [0, 1] respectively as,

s(�,�0) = E
h

exp
⇣

min{0, (�0 � �)(V (�0) � V (�))}
⌘i

, (22)

r(�,�0) = 1� s(�,�0), (23)

where V (�) d
= V (X(�)) for X(�) ⇠ ⇡(�) and V (�), V (�0) are independent. The quantities s(�,�0)

and r(�,�0) are symmetric in their arguments and represent the probability of swap and rejection

occurring between � and �0 respectively under the ELE assumption (A2). Note that s(i�1,i) =

s(�i�1,�i).

To take the limit as kPk ! 0, it will be useful to understand the behaviour of r(�,�0) when

� ⇡ �0. The key quantity that drives this asymptotic regime is given by a function � : [0, 1] ! [0,1)

defined as the instantaneous rate of rejection of a proposed swap at annealing parameter �,

�(�) = lim
�!0

r(�,� + �)� r(�,�)

|�| . (24)

We define its integral by ⇤(�) =
R �
0 �(�0)d�0 and denote ⇤ = ⇤(1). Extending Proposition 1

in [Predescu et al., 2004] provides the following result.

Theorem 2. � is twice continuously di↵erentiable and is equal to

�(�) =
1

2
E
h

|V (�)
1 � V (�)

2 |
i

, (25)
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Next, using Theorem 2 we obtain
Pi

j=1 r
(j�1,j) = ⇤(�i)+O(NkPk3). This motivates the following

approximation for ⇤(�i),

⇤̂(�i) =
i

X

j=1

r̂(j�1,j), (34)

which has an error of Op(
p

N/n+NkPk3).
We also obtain a consistent estimator ⌧̂ = (2 + 2⇤̂)�1 for the optimal round trip rate ⌧̄ , where

⇤̂ = ⇤̂(1). In particular ⌧̂ allows us to diagnose if a low round trip is due to design choices for PT,

or due to ⇡,⇡0. We can compare the empirically observed round trip rate against ⌧̂ to determine

how far our implementation deviates from optimal performance.

Given the estimates for ⇤(�0), . . . ,⇤(�N ) obtained above, we estimate the function ⇤(�) via

interpolation, with the constraint that the interpolated function should be monotone increasing

since �(�) � 0. Specifically, we use the Fritsch-Carlson monotone cubic spline method [Fritsch and

Carlson, 1980] and denote the monotone interpolation by ⇤̂(�).

While we only use ⇤(�) in our adaptation procedure, it is still useful to estimate �(�) for

visualization purpose. We do this by taking the derivative of our interpolation, �̂(�) = ⇤̂0(�),

which is a piecewise quadratic function.

5.4 Adaptive algorithm

The ideas described in this section so far are summarized in Algorithm 2, which given rejection

statistics collected for a fixed annealing schedule provides an updated schedule.

Algorithm 2 UpdateSchedule(swap rejection estimates {r̂(i�1,i)}, previous schedule P)

1: N  |P|� 1
2: For each �i 2 P, compute ⇤̂(�i) . Equation (34)
3: S  {(�0, ⇤̂(�0)), (�1, ⇤̂(�1)), . . . , (�N , ⇤̂(�N ))}
4: Compute a monotone increasing interpolation ⇤̂(·) of the points S . e.g. using [Fritsch and

Carlson, 1980]
5: ⇤̂ ⇤̂(1)
6: for k in 1, 2, ..., N � 1 do

7: Find �⇤
k such that ⇤̂(�⇤

k) = ⇤̂ k
N using e.g. bisection.

8: return P⇤ = (0,�⇤
1 ,�

⇤
2 , . . . ,�

⇤
N�1, 1)

As shown in Algorithm 3, we can also further exploit this idea to iteratively refine the annealing

schedule. Algorithm 3 is based on a tuning parameter b 2 {2, 3, . . . } with the interpretation that the

fraction of samples used for adaptation is approximately b�1 (we use b = 2 in all our experiments).

The adaptive procedure is designed so that it is an anytime inference algorithm with respect to the

number of rounds performed [Zilberstein, 1996], meaning that ⇢+ 1 rounds of Algorithm 3 can be

performed by running one additional round started from the output of the execution for ⇢ rounds.

Algorithm 3 is qualitatively di↵erent from existing adaptive PT algorithms [Atchadé et al.,

2011,Miasojedow et al., 2013, Lacki and Miasojedow, 2016] which rely on continuous adaptation.
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Some examples of local 
barriers in various models

4 Syed et al.

phylo−species product rotor spike−slab
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glm hierarchical Ising magnetic

change−point copy−number discrete elliptic
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Fig. 3: Estimates of the local communication barrier � for 16 models. Each facet corresponds to
a model from Section 0.1.
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Outline of schedule optimization 
algorithm derived from method 2

1: Start with an initial schedule and run PT for n iteration  
2: compute the following cumulative swap rejection statistics:

Each x-axis step is a 
parameter spacing 
between 2 chains in 

current schedule

Each y-axis step 
is a rejection 
probability 

estimated from 
the n iterations



3: Fit a monotonic increasing smooth function
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1: Start with an initial schedule and run PT for n iteration  
2: compute the following cumulative swap rejection statistics:



4: Project the uniform grid through the inverse 
of the smooth function - this yields an updated 
schedule
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4: Project the uniform grid through the inverse of 
the smooth function - this yields an updated 
schedule 

1: Start with an initial schedule and run PT for n iteration  
2: compute the following cumulative swap rejection statistics:
3: Fit a monotonic increasing smooth function

5: go to 1 using the new updated schedule and n := 2n

Outline of schedule optimization 
algorithm derived from method 2



Example: Bayesian mixture model
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The adaptive scheme performs well 
in a wide range of models

Non-Reversible Parallel Tempering 3

phylo−species product rotor spike−slab

mixture normal ode phylo−cancer

glm hierarchical Ising magnetic

change−point copy−number discrete elliptic
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Fig. 2: Empirical behaviour of the adaptive scheme on 16 models. Each facet corresponds to a
model from Section 0.1.


