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Fig.1:Reversible(top)andnon-reversible(bottom)PTforN=8(left)andN=30auxiliary
chains(right)usingequallyspacedannealingparametersonaBayesianchange-pointdetection
model(Davidson-Pilon,2015)where⇡0istheprior,⇡theposterior.Thesequenceofmoves
formsN+1indextrajectories(pathsformedbytheredandgreenedges).Weshowonesuch
pathsinbold.Theannealingscheduleisclearlysuboptimalasmostswapsbetweenthe�=0
and�=1/Nchainsarerejected.Thisiscorrectedbyadaptivetuning(Section5.4).

1.1.ParallelTempering
Onepopularapproachformulti-coreanddistributedexplorationofcomplexdistributions
isParallelTempering(PT)whichwasintroducedindependentlyinstatistics(Geyer,
1991)andphysics(HukushimaandNemoto,1996);seealsoSwendsenandWang(1986)
foranearlierrelatedproposal.Sinceitsinception,PTremainstothisdaythego-to
“workhorse”MCMCmethodtosamplefromcomplexmulti-modaltargetdistributions
arisinginphysics,chemistry,biology,statistics,andmachinelearning;see,e.g.,Des-
jardinsetal.(2014);Choetal.(2010);EarlandDeem(2005);Andrecetal.(2005);
PiteraandSwope(2003);CheonandLiang(2008).Arecentempiricalbenchmarkshows
PTmethodsconsistentlyoutperformotherstate-of-the-artsamplingmethods(Ballnus
etal.,2017).

Tosamplefromthetargetdistribution⇡,PTintroducesasequenceofauxiliary
temperedorannealedprobabilitydistributionswithdensities⇡(�i)(x)/L(x)�i

⇡0(x)for
i=0,1,...,N,where⇡0isaneasy-to-samplereferencedistribution,L(x)=⇡(x)/⇡0(x)
andthesequence0=�0<�1<···<�N=1definestheannealingschedule.Thisbridge
ofauxiliarydistributionsisusedtoprogressivelytransformsamplesfromthereference
distribution(�=0)intosamplesfromthetargetdistribution(�=1),forwhichonly
poorlymixingMCMCkernelsmaybeavailable.Forexample,intheBayesiansetting
wherethetargetdistributionistheposterior,wecanchoosethereferencedistribution
astheprior,whichwecanoftendirectlysample.

MorepreciselyPTalgorithmsarebasedonMarkovchainsinwhichthestatesare
(N+1)-tuples,x=(x0,x1,x2,...,xN)2XN+1,andwhosestationarydistributionis
givenby⇡(x)=

Q
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Fig. 1: Reversible (top) and non-reversible (bottom) PT for N = 8 (left) and N = 30 auxiliary
chains (right) using equally spaced annealing parameters on a Bayesian change-point detection
model (Davidson-Pilon, 2015) where ⇡

0

is the prior, ⇡ the posterior. The sequence of moves
forms N + 1 index trajectories (paths formed by the red and green edges). We show one such
paths in bold. The annealing schedule is clearly suboptimal as most swaps between the � = 0
and � = 1/N chains are rejected. This is corrected by adaptive tuning (Section 5.4).

1.1. Parallel Tempering
One popular approach for multi-core and distributed exploration of complex distributions
is Parallel Tempering (PT) which was introduced independently in statistics (Geyer,
1991) and physics (Hukushima and Nemoto, 1996); see also Swendsen and Wang (1986)
for an earlier related proposal. Since its inception, PT remains to this day the go-to
“workhorse” MCMC method to sample from complex multi-modal target distributions
arising in physics, chemistry, biology, statistics, and machine learning; see, e.g., Des-
jardins et al. (2014); Cho et al. (2010); Earl and Deem (2005); Andrec et al. (2005);
Pitera and Swope (2003); Cheon and Liang (2008). A recent empirical benchmark shows
PT methods consistently outperform other state-of-the-art sampling methods (Ballnus
et al., 2017).

To sample from the target distribution ⇡, PT introduces a sequence of auxiliary
tempered or annealed probability distributions with densities ⇡(�i)(x) / L(x)�i⇡0(x) for
i = 0, 1, ..., N , where ⇡0 is an easy-to-sample reference distribution, L(x) = ⇡(x)/⇡0(x)
and the sequence 0 = �0 < �1 < · · · < �N = 1 defines the annealing schedule. This bridge
of auxiliary distributions is used to progressively transform samples from the reference
distribution (� = 0) into samples from the target distribution (� = 1), for which only
poorly mixing MCMC kernels may be available. For example, in the Bayesian setting
where the target distribution is the posterior, we can choose the reference distribution
as the prior, which we can often directly sample.

More precisely PT algorithms are based on Markov chains in which the states are
(N + 1)-tuples, x = (x0, x1, x2, . . . , xN ) 2 XN+1, and whose stationary distribution is
given by ⇡(x) =
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(�i)(xi). At each iteration, PT proceeds by applying in parallel
N+1 MCMC kernels targeting ⇡(�i) for i = 0, ..., N . We call these model-specific kernels
the exploration kernels. The chains closer to the reference chain (i.e. those with annealing
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Fig. 1: Reversible (top) and non-reversible (bottom) PT for N = 8 (left) and N = 30 auxiliary
chains (right) using equally spaced annealing parameters on a Bayesian change-point detection
model (Davidson-Pilon, 2015) where ⇡
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is the prior, ⇡ the posterior. The sequence of moves
forms N + 1 index trajectories (paths formed by the red and green edges). We show one such
paths in bold. The annealing schedule is clearly suboptimal as most swaps between the � = 0
and � = 1/N chains are rejected. This is corrected by adaptive tuning (Section 5.4).
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where the target distribution is the posterior, we can choose the reference distribution
as the prior, which we can often directly sample.
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Fig. 1: Reversible (top) and non-reversible (bottom) PT for N = 8 (left) and N = 30 auxiliary
chains (right) using equally spaced annealing parameters on a Bayesian change-point detection
model (Davidson-Pilon, 2015) where ⇡
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is the prior, ⇡ the posterior. The sequence of moves
forms N + 1 index trajectories (paths formed by the red and green edges). We show one such
paths in bold. The annealing schedule is clearly suboptimal as most swaps between the � = 0
and � = 1/N chains are rejected. This is corrected by adaptive tuning (Section 5.4).
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where the target distribution is the posterior, we can choose the reference distribution
as the prior, which we can often directly sample.
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Fig. 1: Reversible (top) and non-reversible (bottom) PT for N = 8 (left) and N = 30 auxiliary
chains (right) using equally spaced annealing parameters on a Bayesian change-point detection
model (Davidson-Pilon, 2015) where ⇡
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is the prior, ⇡ the posterior. The sequence of moves
forms N + 1 index trajectories (paths formed by the red and green edges). We show one such
paths in bold. The annealing schedule is clearly suboptimal as most swaps between the � = 0
and � = 1/N chains are rejected. This is corrected by adaptive tuning (Section 5.4).
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i = 0, 1, ..., N , where ⇡0 is an easy-to-sample reference distribution, L(x) = ⇡(x)/⇡0(x)
and the sequence 0 = �0 < �1 < · · · < �N = 1 defines the annealing schedule. This bridge
of auxiliary distributions is used to progressively transform samples from the reference
distribution (� = 0) into samples from the target distribution (� = 1), for which only
poorly mixing MCMC kernels may be available. For example, in the Bayesian setting
where the target distribution is the posterior, we can choose the reference distribution
as the prior, which we can often directly sample.

More precisely PT algorithms are based on Markov chains in which the states are
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chains (right) using equally spaced annealing parameters on a Bayesian change-point detection
model (Davidson-Pilon, 2015) where ⇡

0

is the prior, ⇡ the posterior. The sequence of moves
forms N + 1 index trajectories (paths formed by the red and green edges). We show one such
paths in bold. The annealing schedule is clearly suboptimal as most swaps between the � = 0
and � = 1/N chains are rejected. This is corrected by adaptive tuning (Section 5.4).

1.1. Parallel Tempering
One popular approach for multi-core and distributed exploration of complex distributions
is Parallel Tempering (PT) which was introduced independently in statistics (Geyer,
1991) and physics (Hukushima and Nemoto, 1996); see also Swendsen and Wang (1986)
for an earlier related proposal. Since its inception, PT remains to this day the go-to
“workhorse” MCMC method to sample from complex multi-modal target distributions
arising in physics, chemistry, biology, statistics, and machine learning; see, e.g., Des-
jardins et al. (2014); Cho et al. (2010); Earl and Deem (2005); Andrec et al. (2005);
Pitera and Swope (2003); Cheon and Liang (2008). A recent empirical benchmark shows
PT methods consistently outperform other state-of-the-art sampling methods (Ballnus
et al., 2017).

To sample from the target distribution ⇡, PT introduces a sequence of auxiliary
tempered or annealed probability distributions with densities ⇡(�i)(x) / L(x)�i⇡0(x) for
i = 0, 1, ..., N , where ⇡0 is an easy-to-sample reference distribution, L(x) = ⇡(x)/⇡0(x)
and the sequence 0 = �0 < �1 < · · · < �N = 1 defines the annealing schedule. This bridge
of auxiliary distributions is used to progressively transform samples from the reference
distribution (� = 0) into samples from the target distribution (� = 1), for which only
poorly mixing MCMC kernels may be available. For example, in the Bayesian setting
where the target distribution is the posterior, we can choose the reference distribution
as the prior, which we can often directly sample.

More precisely PT algorithms are based on Markov chains in which the states are
(N + 1)-tuples, x = (x0, x1, x2, . . . , xN ) 2 XN+1, and whose stationary distribution is
given by ⇡(x) =

QN
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