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Announcements

® Assignment due tomorrow morning
® Project
® Due:April 26 (send code + pdf by email)

® Send informal plan for project by email by
tomorrow morning

® One final lab next Wednesday (participation points)
during office hours

® Extra optional lecture Friday DMP | 10, 4:00-4:45



Gradient-based
methods



Hamiltonian Monte
Carlo: intuition

® Physical ball rolling on
the energy

® U(x) = -log(p(x))

® Motion described by
the Hamiltonian flow

® Phase space ona momentum

Gaussian target:
| .
\/ position




HMC: auxiliary variables

® Physics’ notation:z = (q, p)
® position g

® Augment the state with a momentum random
variable p

® Put an auxiliary distribution on p, with

f(p) = exp(-K(p)) and s.t.
K(p) = K(-p), e.g. normal.

H(q,p) = U(q) + K(p), Ulq) =4¢*/2, K(p)=p/2

® Can think of p as a velocity (when the mass matrix,
i.e. covariance of f(x) is identity).

® Statistical notation would be then z = (x, v)



Exact HMC

MCMC kernel is a non-reversible
Given by a Dirac delta: k(z, dz’) = 0¢()(dz’)

d is the Hamiltonian flow, i.e. solutions of the
differential equations

b !
dt B 8qz- dt an

Exact HMC: Analytic solution only in special
cases, e.g. for (truncated) normal target we get:

q(t) = rcos(a+1t), p(t)= —rsin(a+t)



Application: truncated
normal distributions

® See Pakman and Paninski (2014) :
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® Truncated normal arise in many
practical contexts:

® Probit and tobit models

® Bayesian splines for positive
functions

® Bayesian lasso

yi = sign(w;)
w; = —Z; - B+ &
g ~N(QO,1)




Exact HMC: invariance

® MCMC kernel is non-reversible
® Given by a Dirac delta: k(z, dz’) = 0o()(dz’)
® |nvariance equivalent to:

® given Z ~ extended target TU
TT(X, v) = TT(X) X normal(v)

® DefineY = O(2)

® Do we haveY ~ 117 ?



Exact HMC: invariance

® By change of variable formula, break into two
factors:

fy(y) = f2(® ' (y)) | det Jp-1(y)|

hence ingredient to show Y ~ 1T’ are:

e O invertible (yes, for inverse set v «— -v)

® (Conservation of Hamiltonian: first factor is
constant

® Volume preservation: second factor is constant



Conservation of Hamiltonian
® Want f(z) = f(®(z))

® Enough: no infinitesimal Hamiltonian changes,
H’ = 0 [prime notation: derivative w.r.t t]

® Use total derivative identity
d

dt N _dt (?q@ | dt (9pz_

1=1

® [hen substitute our choice of the differential

equation:
dt— Op " [dg; 0H  dp; OH “\[0HOH OHOH
) ) _ ool odoid -
dp; OH ; [dt og; " di 5’19@] ; [@pz- dqi  Oq; Op;




Volume preservation

The preservation of volume by Hamiltonian dynamics can be proved in several ways. One
is to note that the divergence of the vector field defined by equations (2.1) and (2.2) is zero,
which can be seen as follows:

d d J
S 0 dg; 0 dp 0 OH 0 OH RH  92H
B - = - =0 (2.1
[aq’i @ opi dt] 2 [3% Opi Op; 5’%] 2 laqz@pi 01?7;0%] 0 213

A vector field with zero divergence can be shown to preserve volume (Arnold, 1989).

........
........

........

........

..........

........
........

........
........

........

.......

® See Neal (2012). MCMC using Hamiltonian
dynamics for another, more direct argument



Exact HMC: irreducibility

® FEasy to see non irreducible in phase space

momentum

position

® Solution: refresh momentum



Symplectic HMC

® \We can’t simulate the exact Hamiltonian flow for
most targets of interest.

® |dea:

® solve the differential equation using numerical
methods and initial condition given by current
point

® can be done so that volume still preserved
(e.g. with leap-frog integrator)

® Hamiltonian no longer exactly preserved, so use
MH to accept-reject



Symplectic HMC

® Numerical solution example:

® Algorithm: numerically follow the
evolution of diff. equation

momentum (p)

® Simplest version: Euler method T T
i _ _8U d oU
it g pltre) = pilt) + e 0 = pl) = e ()
C;qtz — [M_lp]i G(t+e) = q(t) + 8%(15) = q(t) + 52%?

® Need something better: leap-frog

integrator (will see why soon when
going over invariance)



Rough idea

Use accept-reject

Proposal: deterministic, given by numerical
solution of DE followed for a fixed number

of steps

Accept-reject to take into account
numerical error

Why is this not quite correct!?



Def 47

Important, overlooked
condition on proposal g

® Mutual absolute continuity condition:
/ m(dx)q(x, B) >0 @/ m(dx)q(x, A) > 0
A B

® For example, in a discrete state space where
the target has full support, this means:

q(z,y) >0 q(y,z) >0

® This can be tricky in combinatorial spaces
(more on that soon)



Symplectic HMC

® 2 moves, which have to be deterministically
cycled

|.®:an MH move with proposal given by:
® follow the exaet discretized trajectory
® flip the momentum, R(q,p) = R(q, -p)
2.Momentum refreshment

® VWhat properties do we need for
invariance?



Symplectic HMC

® Numerical solution example:

® Algorithm: numerically follow the
evolution of diff. equation

momentum (p)

® Replace Euler by leaf-frog T
dp; _ U plt+=2) = plt) — (/2 5 a(0)
y - [;qu]. e a0+ HEE
dt Z ou

pit+e) = pi(t+¢/2) — (¢/2)

® Properties:let R(q,p) = (q,-p) (flip)
® involution: R(®P(R(P(2)))) = z

® hence, volume preservation



Practical considerations

® [wo critical parameters to tune:

|.L: number of leap-frog steps
2.epsilon: step size
® For L: Hoffman 201 I, Sohl-Dickstein 2016

® For epsilon: mostly heuristics/adaptation

(c) Leapfrog Method, stepsize 0.3 (d) Leapfrog Method, stepsize 1.2




Special case: Metropolis-
Adjusted Langevin (MALA)

® Use one leap frog step, and use the following
order for the kernels

® Refresh velocity first

® Then do one leap frog, which simplifies into:

. 528U() -
) e oU e U , |
p; = pi — 58%((1) — 58%(61)



Dimensionality scaling

running time =

HMC

MALA

Random walk
MH

number of samples
needed to get a
tolerance (with
orobability 95%)

compute cost per
sample
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SMC



Organization

® SMC on product spaces

® Transforming other problems into product
spaces (sequential change of measure)



Motivations for SMC on
product spaces

® Sequential predictions / streaming data / HMM / state space
models

® Jatent state from noisy observation
® change point
® Time series where ‘time’ is not time
® genomics:‘time’ = position on genome
® observations: SNP

® |atent: haploblock (chunk shared by several individuals)

Common feature: the latent space is a product space F; = E; X Ey X --- X E, indexed by the integers
tedl,...,n}



Sequence of targets

® Asin PT we now have a sequence of targets

® but: with different dimensionality now vs. fixed
dimensionality for PT

® |n the product space context, sometimes we care
about all targets (real time predictions), sometimes,
we care only about the last one

® TJypical problems:
® integrating test functions

® + computing normalization Z (e.g. for model
selection, where Z = P(data)



Building block: sequential
importance sampling

® Rewrite self-normalized importance sampling so
that it can be done with a sequence of targets

® Use the following identities:

’Y(wlzn) ’Y(wl:n—l) ’Y(xl:l)
’Y(:Cl:n—l) W(wlzn—2) o ’7(33@)

Y(T1m) = 3 (1) = q(z1|2p)q(z2|T10)9(23]T1:2) - - - @(@0|T1:0—1),

® Yields the recursions

zy ~q(-|zh, ;) w — M;
= (! 75 C T (@) gl )
r1: = (25, 1, 2), NT1:t-1) Q(T¢|T1:4-1

® Does not work! (Why?) But forms basis of SMC



Fix: resampling

® |ntuition: prune particles with low
normalized weights

® Constraints: we still want consistency

® |dea: resample N times according to the
normalized weights

® multinomial resampling



Notation for our goals

Given a model (joint)...: V¢ (Xt) — p(Xt, yt)

Sample from a target distribution: ¢ (Xt) = p(X¢|ye)

~7(xe)
T (Xy) = 72

..and/or evaluate the normalization: / — p(yt)



Notation

X State space
Ty € X Point in that space
Subscript: process index

Xt Many points in the state space

Yt Many observations

.I'tG/Y




Standard SMC

Output: competing ‘hypotheses’ &

¢ = last time observed

Hypothesis
1 =1

Hypothe5|s




Standard SMC

Output: competing ‘hypotheses’ &

weight for each of these w;

1 weight of
particle i = 1

weight of
I particle i = 5




Standard SMC

Output: competing ‘hypotheses’ &

weight for each of these w;ﬁ

D

Can view these as a (random) distribution
W,

{
Z wt

oy
Wy =




ytandard SMC inner

working: |.Assume inductively that we have
computed approximation for:

7Tt—1(Xt—1) — p(Xt—1|Yt—1)




ytandard SMC inner
working: |.Assume inductively...

2. Sample from ;1




ytandard SMC inner
working: |.Assume inductively...

2. Sample from ;1

3. Propose (extend):

~ ] N
Concatenate:
1
Xt —
~1 /)
----- (_Xt—l S xt)
J




ytandard SMC inner
working: |.Assume inductively...

2. Sample from ;1

3. Propose (extend)
g

4. Reweigh:




ytandard SMC inner
working: |.Assume inductively...

2. Sample from ;1

Repeat for
each particle 3. Propose (extend)
(5 times)

4. Reweigh




Some pointers

® Theory:see Del Moral, 2013 for LLN, CLT

® How to build MC intervals: see J. Olsson, R.
Douc (2018)

® Proposals:
® sometimes, forced to pick dynamics

® e¢lse, various options, e.g.
lookahead proposal



Resampling

® [Efficient implementation
® Poisson process trick, see March 7

® Often important not perform resampling at
every step

® Monitor relative ESS (March 12) after each
proposal round (B W) (£ W)
E,W2 (W)

® Resample when it drops under a threshold
(0.5) typically

® Finally, alternatives to multinomial resampling
exist, see Mathieu Gerber; Nicolas Chopin, Nick
Whiteley, 2017 for recent analysis of those



Organization

® SMC on product spaces

® Transforming other problems into
product spaces (sequential change of
measure)



AlS / Jarzynski’s trick

® Target spaces F;, not product spaces,
® important e.g. F; = S (change of measure)

® Auxiliary spaces:
Si,, =3XS§X...8

® Distribution on those? Use a backward
kernel B

ﬂl:n(xlzn) — ﬂn(xn) Hm<n Bm(xm‘xm+1)

® Get weight update:

~ B )
W(X1;n_1,x1:n) = }/n('x”) n l(xn 1|xn)

Yn—1 (xn—l) Kn (xn |-xn—1)




Example

Setup: change of measure on annealed distributions
Kn: Tty invariant kernel (from MH)
Problem: cannot compute weight in general

Vn (xn) Bn—l (xn—l |xn)
Yn—1 (xn—l ) Kn (xn |xn—1 )

|dea: use fact we are free to pick B as we wish; use

w(xl:n—laxlzn) —

Ty (-xn—l )Kn (xn |xn—1 )

7, (x,)

Bn—l (xn—l |xn) —

Weight update simplifies (check)

\;\v/ - }/n(xn—l)
yn—l(xn—l)



