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Figure 3: Left: A BPS trajectory containing 200 segments/bounces and no refreshment (for clarity,
the first 15 segments are in black and the following ones are in light grey): the center of the space
is never explored. Right, solid line: ESS per CPU second as a function of d (log-log scale), along
with 95% confidence intervals based on 40 independent runs (the intervals are small and may be
difficult to see). Dashed line: linear regression curve. See Section 4.1 for details.

4 Numerical results

4.1 Gaussian distributions and the need for refreshment

We consider an isotropic multivariate Gaussian target distribution, U (x) = kxk2, to illustrate the
need for refreshment. Without refreshment, we obtain from Equation (7)
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see Material for details. In particular, these calculations show if
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for i � 2. In particular for x(0)

= e
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2

with e
i

being elements of standard basis of Rd, the norm of the position at all points
along the trajectory can never be smaller than 1 as illustrated in Figure 3.

In this scenario, we show that BPS without refreshment admits a countably infinite collection of
invariant distributions. Let us define r (t) = kx (t)k and m (t) = hx (t) , v (t)i / kx (t)k and denote
by �

k

the probability density of the chi distribution with k degrees of freedom.

Proposition 2. For any dimension d � 2, the process (r (t) ,m (t))
t�0

is Markov and its transition
kernel is invariant with respect to the probability densities
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.

The proof is given in Appendix 2. By Theorem 1, we have a unique invariant measure as soon as
�ref > 0.
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Announcements

• Assignment due tomorrow morning

• Project

• Due: April 26 (send code + pdf by email)

• Send informal plan for project by email by 
tomorrow morning

• One final lab next Wednesday (participation points) 
during office hours

• Extra optional lecture Friday DMP 110, 4:00-4:45



Gradient-based 
methods



Hamiltonian Monte 
Carlo: intuition

• Physical ball rolling on 
the energy

• U(x) = -log(p(x))

• Motion described by 
the Hamiltonian flow

• Phase space on a 
Gaussian target:

position

momentum



HMC: auxiliary variables
• Physics’ notation: z = (q, p)

• position q

• Augment the state with a momentum random 
variable p

• Put an auxiliary distribution on p, with  
f(p) = exp(-K(p)) and s.t.  
K(p) = K(-p), e.g. normal.  
 

• Can think of p as a velocity (when the mass matrix, 
i.e. covariance of f(x) is identity).

• Statistical notation would be then z = (x, v)

4 MCMC USING HAMILTONIAN DYNAMICS

Here, M is a symmetric, positive-definite “mass matrix”, which is typically diagonal, and
is often a scalar multiple of the identity matrix. This form for K(p) corresponds to minus
the log probability density (plus a constant) of the zero-mean Gaussian distribution with
covariance matrix M .

With these forms for H and K, Hamilton’s equations, (2.1) and (2.2), can be written as
follows, for i = 1, . . . , d:

dqi
dt

= [M−1p]i (2.7)

dpi
dt

= −
∂U

∂qi
(2.8)

A one-dimensional example. Consider a simple example in one dimension (for which
q and p are scalars and will be written without subscripts), in which the Hamiltonian is
defined as follows:

H(q, p) = U(q) +K(p), U(q) = q2/2, K(p) = p2/2 (2.9)

As we’ll see later in Section 3.1, this corresponds to a Gaussian distribution for q with
mean zero and variance one. The dynamics resulting from this Hamiltonian (following equa-
tions (2.7) and (2.8)) is

dq

dt
= p,

dp

dt
= −q, (2.10)

Solutions have the following form, for some constants r and a:

q(t) = r cos(a+ t), p(t) = −r sin(a+ t) (2.11)

Hence the mapping Ts is a rotation by s radians clockwise around the origin in the (q, p)
plane. In higher dimensions, Hamiltonian dynamics generally does not have such a simple
periodic form, but this example does illustrate some important properties that we will look
at next.

2.2 Properties of Hamiltonian dynamics

Several properties of Hamiltonian dynamics are crucial to its use in constructing Markov
chain Monte Carlo updates.

Reversibility. First, Hamiltonian dynamics is reversible — the mapping Ts from the state
at time t, (q(t), p(t)), to the state at time t+s, (q(t+s), p(t+s)), is one-to-one, and hence has
an inverse, T−s. This inverse mapping is obtained by simply negating the time derivatives
in equations (2.1) and (2.2). When the Hamiltonian has the form in equation (2.5), and
K(p) = K(−p), as in the quadratic form for the kinetic energy of equation (2.6), the inverse
mapping can also be obtained by negating p, applying Ts, and then negating p again.

In the simple 1D example of equation (2.9), T−s is just a counter-clockwise rotation by s
radians, undoing the clockwise rotation of Ts.

The reversibility of Hamiltonian dynamics is important for showing that MCMC updates
that use the dynamics leave the desired distribution invariant, since this is most easily proved
by showing reversibility of the Markov chain transitions, which requires reversibility of the
dynamics used to propose a state.



Exact HMC
• MCMC kernel is a non-reversible

• Given by a Dirac delta: k(z, dz’) = δΦ(z)(dz’)

• Φ is the Hamiltonian flow, i.e. solutions of the 
differential equations 
 
 
 

• Exact HMC: Analytic solution only in special 
cases, e.g. for  (truncated) normal target we get:
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hence p) is zero, at which point it will slide back down (with kinetic energy increasing and
potential energy decreasing).

In non-physical MCMC applications of Hamiltonian dynamics, the position will corre-
spond to the variables of interest. The potential energy will be minus the log of the proba-
bility density for these variables. Momentum variables, one for each position variable, will
be introduced artificially.

These interpretations may help motivate the exposition below, but if you find otherwise,
the dynamics can also be understood as simply resulting from a certain set of differential
equations.

2.1 Hamilton’s equations

Hamiltonian dynamics operates on a d-dimensional position vector, q, and a d-dimensional
momentum vector, p, so that the full state space has 2d dimensions. The system is described
by a function of q and p known as the Hamiltonian, H(q, p).

Equations of motion. The partial derivatives of the Hamiltonian determine how q and
p change over time, t, according to Hamilton’s equations:

dqi
dt

=
∂H

∂pi
(2.1)

dpi
dt

= −
∂H

∂qi
(2.2)

for i = 1, . . . , d. For any time interval of duration s, these equations define a mapping, Ts,
from the state at any time t to the state at time t+ s. (Here, H , and hence Ts, are assumed
to not depend on t.)

Alternatively, we can combine the vectors q and p into the vector z = (q, p) with 2d
dimensions, and write Hamilton’s equations as

dz

dt
= J ∇H(z) (2.3)

where ∇H is the gradient of H (ie, [∇H ]k = ∂H/∂zk), and

J =

[

0d×d Id×d

−Id×d 0d×d

]

(2.4)

is a 2d× 2d matrix whose quadrants are defined above in terms identity and zero matrices.

Potential and kinetic energy. For Hamiltonian Monte Carlo, we usually use Hamilto-
nian functions that can be written as follows:

H(q, p) = U(q) + K(p) (2.5)

Here, U(q) is called the potential energy, and will be defined to be minus the log probability
density of the distribution for q that we wish to sample, plus any constant that is convenient.
K(p) is called the kinetic energy, and is usually defined as

K(p) = pTM−1p / 2 (2.6)

⟹



Application: truncated 
normal distributions

• See Pakman and Paninski (2014)

• Truncated normal arise in many 
practical contexts:

• Probit and tobit models 

• Bayesian splines for positive 
functions

• Bayesian lasso

526 A. PAKMAN AND L. PANINSKI
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Figure 2. Truncation by quadratic inequalities. Above: 6000 samples of a two-dimensional canonical normal
distribution, constrained by the quadratic inequalities (2.54) and (2.55). The piecewise elliptic curve shows the
trajectory of the particle in the first iterations, with starting point (x, y) = (2, 0). Below: first 800 iterations of
the vertical coordinate. For the algebraic solution of (2.48), we used the C++ code from the DynamO package
(Bannerman, Sargant, and Lue 2011).

the sampling efficient at least for those trajectories with no wall hits. The efficiency can
be quantified via the effective sample factor (ESF) and effective sample size (ESS) (Liu
2008). Let us call the samples X(p). The variance in the estimation of the expected value of
a function h(X) using m samples is

var
(

h(X(1)) + · · · + h(X(m))
m

)
= var(h(X))

m

⎡

⎣1 +
m−1∑

j=1

(
1 − j

m

)
ρj

⎤

⎦ (2.57)
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3. EXAMPLES

In this section, we present four example applications of our algorithm. In the first
example, we present a detailed efficiency comparison between the HMC and the Gibbs
samplers. As mentioned in Section 2.2, in both frames (2.6) and (2.31), for each sample
of the HMC, we must act with a matrix R−1, where M = RT R, or multiply by ZT , where
M−1 = ! = ZT Z. In all our examples, we show how some special structure of M or
! allows us to accelerate these operations.

3.1 PROBIT AND TOBIT MODELS

The probit model is a popular discriminative probabilistic model for binary classification
with continuous inputs (Albert and Chib 1993). The conditional probabilities for the binary
labels y = ±1 are given by

p(y = −1|z,β) = "(z · β) = 1√
2π

∫ z·β

−∞
dw e− w2

2 (3.1)

= 1√
2π

∫ 0

−∞
dw e− (w+z·β)2

2 (3.2)

p(y = +1|z,β) = 1 − "(z · β) (3.3)

= 1√
2π

∫ +∞

0
dw e− (w+z·β)2

2 , (3.4)

where z ∈ Rp is a vector of regressors and β ∈ Rp are the parameters of the model. Given
N pairs of labels and regressors

Y = (y1, . . . , yN ), (3.5)

Z = (z1, . . . , zN ), (3.6)

the posterior distribution of the parameters β is

p(β|Y, Z) ∝ p(β)
N∏

i=1

p(yi |zi ,β) (3.7)

∝ p(β)
∫

yiwi≥0
dw1, . . . , dwN e− 1

2

∑N
i=1(wi+zi ·β)2

i = 1, . . . , N, (3.8)

where p(β) is the prior distribution. The likelihood p(yi |zi ,β) corresponds to a model

yi = sign(wi) (3.9)

wi = −zi · β + εi (3.10)

εi ∼ N (0, 1) (3.11)

in which only the sign of wi is observed but not its value. Assuming a Gaussian prior
with zero mean and covariance σ 2Ip, expression (3.8) is the marginal distribution of a
multivariate Gaussian on (β, w1, . . . , wN ), truncated to yiwi ≥ 0 for i = 1, . . . , N . The



Exact HMC: invariance
• MCMC kernel is non-reversible

• Given by a Dirac delta: k(z, dz’) = δΦ(z)(dz’)

• Invariance equivalent to:

• given Z ~ extended target π’  
π’(x, v) = π(x) x normal(v)

• Define Y = Φ(Z)

• Do we have Y ~ π’ ? 



Exact HMC: invariance
• By change of variable formula, break into two 

factors:  
 
 
 
hence ingredient to show Y ~ π’ are:

• Φ invertible (yes, for inverse set v ⟵ -v)

• Conservation of Hamiltonian: first factor is 
constant

• Volume preservation: second factor is constant

fY (y) = fZ(�
�1(y)) | det J��1(y)|



Conservation of Hamiltonian
• Want f(z) = f(Φ(z))

• Enough: no infinitesimal Hamiltonian changes,  
H’ = 0 [prime notation: derivative w.r.t t]

• Use total derivative identity  
 

• Then substitute our choice of the differential 
equation:

2. Hamiltonian dynamics 5

Conservation of the Hamiltonian. A second property of the dynamics is that it keeps
the Hamiltonian invariant (ie, conserved). This is easily seen from equations (2.1) and (2.2)
as follows:

dH

dt
=

d
∑

i=1

[

dqi
dt

∂H

∂qi
+

dpi
dt

∂H

∂pi

]

=
d

∑

i=1

[

∂H

∂pi

∂H

∂qi
−

∂H

∂qi

∂H

∂pi

]

= 0 (2.12)

With the Hamiltonian of equation (2.9), the value of the Hamiltonian is half the squared
distance from the origin, and the solutions (equation (2.11)) stay at a constant distance from
the origin, keeping H constant.

For Metropolis updates using a proposal found by Hamiltonian dynamics, which form
part of the HMC method, the acceptance probability is one if H is kept invariant. We will
see later, however, that in practice we can only make H approximately invariant, and hence
we will not quite be able to achieve this.

Volume preservation. A third fundamental property of Hamiltonian dynamics is that it
preserves volume in (q, p) space (a result known as Liouville’s Theorem). If we apply the
mapping Ts to the points in some region R of (q, p) space, with volume V , the image of R
under Ts will also have volume V .

With the Hamiltonian of equation (2.9), the solutions (equation (2.11)) are rotations,
which obviously do not change the volume. Such rotations also do not change the shape of a
region, but this is not so in general — Hamiltonian dynamics might stretch a region in one
direction, as long as the region is squashed in some other direction so as to preserve volume.

The significance of volume preservation for MCMC is that we needn’t account for any
change in volume in the acceptance probability for Metropolis updates. If we proposed new
states using some arbitrary, non-Hamiltonian, dynamics, we would need to compute the
determinant of the Jacobian matrix for the mapping the dynamics defines, which might well
be infeasible.

The preservation of volume by Hamiltonian dynamics can be proved in several ways. One
is to note that the divergence of the vector field defined by equations (2.1) and (2.2) is zero,
which can be seen as follows:

d
∑

i=1

[

∂

∂qi

dqi
dt

+
∂

∂pi

dpi
dt

]

=
d

∑

i=1

[

∂

∂qi

∂H

∂pi
−

∂

∂pi

∂H

∂qi

]

=
d

∑

i=1

[

∂2H

∂qi∂pi
−

∂2H

∂pi∂qi

]

= 0 (2.13)

A vector field with zero divergence can be shown to preserve volume (Arnold, 1989).

Here, I will show informally that Hamiltonian dynamics preserves volume more directly,
without presuming this property of the divergence. I will, however, take as given that volume
preservation is equivalent to the determinant of the Jacobian matrix of Ts having absolute
value one, which is related to the well-known role of this determinant in regard to the effect
of transformations on definite integrals and on probability density functions.

The 2d × 2d Jacobian matrix of Ts, seen as a mapping of z = (q, p), will be written as
Bs. In general, Bs will depend on the values of q and p before the mapping. When Bs is
diagonal, it is easy to see that the absolute values of its diagonal elements are the factors by
which Ts stretches or compresses a region in each dimension, so that the product of these
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hence p) is zero, at which point it will slide back down (with kinetic energy increasing and
potential energy decreasing).

In non-physical MCMC applications of Hamiltonian dynamics, the position will corre-
spond to the variables of interest. The potential energy will be minus the log of the proba-
bility density for these variables. Momentum variables, one for each position variable, will
be introduced artificially.

These interpretations may help motivate the exposition below, but if you find otherwise,
the dynamics can also be understood as simply resulting from a certain set of differential
equations.

2.1 Hamilton’s equations

Hamiltonian dynamics operates on a d-dimensional position vector, q, and a d-dimensional
momentum vector, p, so that the full state space has 2d dimensions. The system is described
by a function of q and p known as the Hamiltonian, H(q, p).

Equations of motion. The partial derivatives of the Hamiltonian determine how q and
p change over time, t, according to Hamilton’s equations:

dqi
dt

=
∂H

∂pi
(2.1)
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dt
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for i = 1, . . . , d. For any time interval of duration s, these equations define a mapping, Ts,
from the state at any time t to the state at time t+ s. (Here, H , and hence Ts, are assumed
to not depend on t.)
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(2.4)

is a 2d× 2d matrix whose quadrants are defined above in terms identity and zero matrices.

Potential and kinetic energy. For Hamiltonian Monte Carlo, we usually use Hamilto-
nian functions that can be written as follows:

H(q, p) = U(q) + K(p) (2.5)

Here, U(q) is called the potential energy, and will be defined to be minus the log probability
density of the distribution for q that we wish to sample, plus any constant that is convenient.
K(p) is called the kinetic energy, and is usually defined as

K(p) = pTM−1p / 2 (2.6)

⟹
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without presuming this property of the divergence. I will, however, take as given that volume
preservation is equivalent to the determinant of the Jacobian matrix of Ts having absolute
value one, which is related to the well-known role of this determinant in regard to the effect
of transformations on definite integrals and on probability density functions.

The 2d × 2d Jacobian matrix of Ts, seen as a mapping of z = (q, p), will be written as
Bs. In general, Bs will depend on the values of q and p before the mapping. When Bs is
diagonal, it is easy to see that the absolute values of its diagonal elements are the factors by
which Ts stretches or compresses a region in each dimension, so that the product of these



Volume preservation

• See Neal (2012). MCMC using Hamiltonian 
dynamics for another, more direct argument
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Exact HMC: irreducibility

• Easy to see non irreducible in phase space  
 
 
 
 
 

• Solution: refresh momentum

position

momentum



Symplectic HMC
• We can’t simulate the exact Hamiltonian flow for 

most targets of interest.

• Idea: 

• solve the differential equation using numerical 
methods and initial condition given by current 
point

• can be done so that volume still preserved 
(e.g. with leap-frog integrator)

• Hamiltonian no longer exactly preserved, so use 
MH to accept-reject



Symplectic HMC
• Numerical solution example:

• Algorithm: numerically follow the 
evolution of diff. equation

• Simplest version: Euler method  
 
 

• Need something better: leap-frog 
integrator (will see why soon when 
going over invariance)

2. Hamiltonian dynamics 9

−2 −1 0 1 2

−2
−1

0
1

2

position (q)

m
om

en
tu

m
 (p

)

(a) Euler’s Method, stepsize 0.3

−2 −1 0 1 2

−2
−1

0
1

2

position (q)

m
om

en
tu

m
 (p

)

(b) Modified Euler’s Method, stepsize 0.3

−2 −1 0 1 2

−2
−1

0
1

2

position (q)

m
om

en
tu

m
 (p

)

(c) Leapfrog Method, stepsize 0.3

−2 −1 0 1 2

−2
−1

0
1

2

position (q)

m
om

en
tu

m
 (p

)

(d) Leapfrog Method, stepsize 1.2

Figure 1: Results using three methods for approximating Hamiltonian dynamics, when
H(q, p) = q2/2 + p2/2. The initial state was q = 0, p = 1. The stepsize was ε = 0.3
for (a), (b), and (c), and ε = 1.2 for (d). Twenty steps of the simulated trajectory are shown
for each method, along with the true trajectory (in gray).
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rows indexed by i and columns by j:

Bδ =

⎡

⎢

⎢

⎢

⎢

⎣

I + δ

[

∂2H

∂qj∂pi

]

δ

[

∂2H

∂pj∂pi

]

−δ

[

∂2H

∂qj∂qi

]

I − δ

[

∂2H

∂pj∂qi

]

⎤

⎥

⎥

⎥

⎥

⎦

+ terms of order δ2 or higher (2.21)

As for d = 1, the determinant of this matrix will be one plus terms of order δ2 or higher,
since all the terms of order δ cancel. The remainder of the argument above then applies
without change.

Symplecticness. Volume preservation is also a consequence of Hamiltonian dynamics be-
ing symplectic. Letting z = (q, p), and defining J as in equation(2.4), the symplecticness
condition is that the Jacobian matrix, Bs, of the mapping Ts satisfies

BT

s J
−1Bs = J−1 (2.22)

This implies volume conservation, since det(BT

s ) det(J
−1) det(Bs) = det(J−1) implies that

det(Bs)2 is one. When d > 1, the symplecticness condition is stronger than volume preser-
vation. Hamiltonian dynamics and the symplecticness condition can be generalized to where
J is any matrix for which JT = −J and det(J) ̸= 0.

Crucially, reversibility, preservation of volume, and symplecticness can be maintained
exactly even when, as is necessary in practice, Hamiltonian dynamics is approximated, as
we will see next.

2.3 Discretizing Hamilton’s equations — the leapfrog method

For computer implementation, Hamilton’s equations must be approximated by discretizing
time, using some small stepsize, ε. Starting with the state at time zero, we iteratively
compute (approximately) the state at times ε, 2ε, 3ε, etc.

In discussing how to do this, I will assume that the Hamiltonian has the form H(q, p) =
U(q)+K(p), as in equation (2.5). Although the methods below can be applied with any form
for the kinetic energy, I for simplicity assume that K(p) = pTM−1p, as in equation (2.6),
and furthermore that M is diagonal, with diagonal elements m1, . . . , md, so that

K(p) =
d

∑

i=1

p2i
2mi

(2.23)

Euler’s method. Perhaps the best-known way to approximate the solution to a system
of differential equations is Euler’s method. For Hamilton’s equations, this method performs
the following steps, for each component of position and momentum, indexed by i = 1, . . . , d:

pi(t+ ε) = pi(t) + ε
dpi
dt

(t) = pi(t) − ε
∂U

∂qi
(q(t)) (2.24)

qi(t+ ε) = qi(t) + ε
dqi
dt

(t) = qi(t) + ε
pi(t)

mi
(2.25)

4 MCMC USING HAMILTONIAN DYNAMICS

Here, M is a symmetric, positive-definite “mass matrix”, which is typically diagonal, and
is often a scalar multiple of the identity matrix. This form for K(p) corresponds to minus
the log probability density (plus a constant) of the zero-mean Gaussian distribution with
covariance matrix M .

With these forms for H and K, Hamilton’s equations, (2.1) and (2.2), can be written as
follows, for i = 1, . . . , d:

dqi
dt

= [M−1p]i (2.7)

dpi
dt

= −
∂U

∂qi
(2.8)

A one-dimensional example. Consider a simple example in one dimension (for which
q and p are scalars and will be written without subscripts), in which the Hamiltonian is
defined as follows:

H(q, p) = U(q) +K(p), U(q) = q2/2, K(p) = p2/2 (2.9)

As we’ll see later in Section 3.1, this corresponds to a Gaussian distribution for q with
mean zero and variance one. The dynamics resulting from this Hamiltonian (following equa-
tions (2.7) and (2.8)) is

dq

dt
= p,

dp

dt
= −q, (2.10)

Solutions have the following form, for some constants r and a:

q(t) = r cos(a+ t), p(t) = −r sin(a+ t) (2.11)

Hence the mapping Ts is a rotation by s radians clockwise around the origin in the (q, p)
plane. In higher dimensions, Hamiltonian dynamics generally does not have such a simple
periodic form, but this example does illustrate some important properties that we will look
at next.

2.2 Properties of Hamiltonian dynamics

Several properties of Hamiltonian dynamics are crucial to its use in constructing Markov
chain Monte Carlo updates.

Reversibility. First, Hamiltonian dynamics is reversible — the mapping Ts from the state
at time t, (q(t), p(t)), to the state at time t+s, (q(t+s), p(t+s)), is one-to-one, and hence has
an inverse, T−s. This inverse mapping is obtained by simply negating the time derivatives
in equations (2.1) and (2.2). When the Hamiltonian has the form in equation (2.5), and
K(p) = K(−p), as in the quadratic form for the kinetic energy of equation (2.6), the inverse
mapping can also be obtained by negating p, applying Ts, and then negating p again.

In the simple 1D example of equation (2.9), T−s is just a counter-clockwise rotation by s
radians, undoing the clockwise rotation of Ts.

The reversibility of Hamiltonian dynamics is important for showing that MCMC updates
that use the dynamics leave the desired distribution invariant, since this is most easily proved
by showing reversibility of the Markov chain transitions, which requires reversibility of the
dynamics used to propose a state.
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Rough idea

• Use accept-reject

• Proposal: deterministic, given by numerical 
solution of DE followed for a fixed number 
of steps

• Accept-reject to take into account 
numerical error

• Why is this not quite correct?



Important, overlooked 
condition on proposal q
• Mutual absolute continuity condition:  
 

• For example, in a discrete state space where  
the target has full support, this means:  
 

• This can be tricky in combinatorial spaces 
(more on that soon)

Z

A
⇡(dx)q(x,B) > 0 ,

Z

B
⇡(dx)q(x,A) > 0

q(x, y) > 0 , q(y, x) > 0

Def 47



Symplectic HMC
• 2 moves, which have to be deterministically 

cycled

1.Φ: an MH move with proposal given by:

• follow the exact discretized trajectory

• flip the momentum, R(q,p) = R(q, -p)

2.Momentum refreshment

• What properties do we need for 
invariance?



Symplectic HMC
• Numerical solution example:

• Algorithm: numerically follow the 
evolution of diff. equation

• Replace Euler by leaf-frog  
 
 

• Properties: let R(q,p) = (q,-p) (flip)

• involution: R(Φ(R(Φ(z)))) = z

• hence, volume preservation 
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(d) Leapfrog Method, stepsize 1.2

Figure 1: Results using three methods for approximating Hamiltonian dynamics, when
H(q, p) = q2/2 + p2/2. The initial state was q = 0, p = 1. The stepsize was ε = 0.3
for (a), (b), and (c), and ε = 1.2 for (d). Twenty steps of the simulated trajectory are shown
for each method, along with the true trajectory (in gray).
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Hence the mapping Ts is a rotation by s radians clockwise around the origin in the (q, p)
plane. In higher dimensions, Hamiltonian dynamics generally does not have such a simple
periodic form, but this example does illustrate some important properties that we will look
at next.

2.2 Properties of Hamiltonian dynamics

Several properties of Hamiltonian dynamics are crucial to its use in constructing Markov
chain Monte Carlo updates.

Reversibility. First, Hamiltonian dynamics is reversible — the mapping Ts from the state
at time t, (q(t), p(t)), to the state at time t+s, (q(t+s), p(t+s)), is one-to-one, and hence has
an inverse, T−s. This inverse mapping is obtained by simply negating the time derivatives
in equations (2.1) and (2.2). When the Hamiltonian has the form in equation (2.5), and
K(p) = K(−p), as in the quadratic form for the kinetic energy of equation (2.6), the inverse
mapping can also be obtained by negating p, applying Ts, and then negating p again.

In the simple 1D example of equation (2.9), T−s is just a counter-clockwise rotation by s
radians, undoing the clockwise rotation of Ts.

The reversibility of Hamiltonian dynamics is important for showing that MCMC updates
that use the dynamics leave the desired distribution invariant, since this is most easily proved
by showing reversibility of the Markov chain transitions, which requires reversibility of the
dynamics used to propose a state.

4 MCMC USING HAMILTONIAN DYNAMICS

Here, M is a symmetric, positive-definite “mass matrix”, which is typically diagonal, and
is often a scalar multiple of the identity matrix. This form for K(p) corresponds to minus
the log probability density (plus a constant) of the zero-mean Gaussian distribution with
covariance matrix M .

With these forms for H and K, Hamilton’s equations, (2.1) and (2.2), can be written as
follows, for i = 1, . . . , d:

dqi
dt

= [M−1p]i (2.7)

dpi
dt

= −
∂U

∂qi
(2.8)

A one-dimensional example. Consider a simple example in one dimension (for which
q and p are scalars and will be written without subscripts), in which the Hamiltonian is
defined as follows:

H(q, p) = U(q) +K(p), U(q) = q2/2, K(p) = p2/2 (2.9)

As we’ll see later in Section 3.1, this corresponds to a Gaussian distribution for q with
mean zero and variance one. The dynamics resulting from this Hamiltonian (following equa-
tions (2.7) and (2.8)) is

dq

dt
= p,

dp

dt
= −q, (2.10)

Solutions have the following form, for some constants r and a:

q(t) = r cos(a+ t), p(t) = −r sin(a+ t) (2.11)

Hence the mapping Ts is a rotation by s radians clockwise around the origin in the (q, p)
plane. In higher dimensions, Hamiltonian dynamics generally does not have such a simple
periodic form, but this example does illustrate some important properties that we will look
at next.

2.2 Properties of Hamiltonian dynamics

Several properties of Hamiltonian dynamics are crucial to its use in constructing Markov
chain Monte Carlo updates.

Reversibility. First, Hamiltonian dynamics is reversible — the mapping Ts from the state
at time t, (q(t), p(t)), to the state at time t+s, (q(t+s), p(t+s)), is one-to-one, and hence has
an inverse, T−s. This inverse mapping is obtained by simply negating the time derivatives
in equations (2.1) and (2.2). When the Hamiltonian has the form in equation (2.5), and
K(p) = K(−p), as in the quadratic form for the kinetic energy of equation (2.6), the inverse
mapping can also be obtained by negating p, applying Ts, and then negating p again.

In the simple 1D example of equation (2.9), T−s is just a counter-clockwise rotation by s
radians, undoing the clockwise rotation of Ts.

The reversibility of Hamiltonian dynamics is important for showing that MCMC updates
that use the dynamics leave the desired distribution invariant, since this is most easily proved
by showing reversibility of the Markov chain transitions, which requires reversibility of the
dynamics used to propose a state.

8 MCMC USING HAMILTONIAN DYNAMICS

The time derivatives above are from the form of Hamilton’s equations given by (2.7) and (2.8).
If we start at t = 0 with given values for qi(0) and pi(0), we can iterate the steps above to
get a trajectory of position and momentum values at times ε, 2ε, 3ε, . . ., and hence find
(approximate) values for q(τ) and p(τ) after τ/ε steps (assuming τ/ε is an integer).

Figure 1(a) shows the result of using Euler’s method to approximate the dynamics defined
by the Hamiltonian of (2.9), starting from q(0) = 0 and p(0) = 1, and using a stepsize of
ε = 0.3 for 20 steps (ie, to τ = 0.3 × 20 = 6). The results aren’t good — Euler’s method
produces a trajectory that diverges to infinity, but the true trajectory is a circle. Using a
smaller value of ε, and correspondingly more steps, produces a more accurate result at τ = 6,
but although the divergence to infinity is slower, it is not eliminated.

A modification of Euler’s method. Much better results can be obtained by slightly
modifying Euler’s method, as follows:

pi(t+ ε) = pi(t) − ε
∂U

∂qi
(q(t)) (2.26)

qi(t+ ε) = qi(t) + ε
pi(t+ ε)

mi
(2.27)

We simply use the new value for the momentum variables, pi, when computing the new
value for the position variables, qi. A method with similar performance can be obtained by
instead updating the qi first and using their new values to update the pi.

Figure 1(b) shows the results using this modification of Euler’s method with ε = 0.3.
Though not perfect, the trajectory it produces is much closer to the true trajectory than
that obtained using Euler’s method, with no tendency to diverge to infinity. This better
performance is related to the modified method’s exact preservation of volume, which helps
avoid divergence to infinity or spiraling into the origin, since these would typically involve
the volume expanding to infinity or contracting to zero.

To see that this modification of Euler’s method preserves volume exactly despite the finite
discretization of time, note that both the transformation from (q(t), p(t)) to (q(t), p(t + ε))
via equation (2.26) and the transformation from (q(t), p(t+ε)) to (q(t+ε), p(t+ε)) via equa-
tion (2.27) are “shear” transformations, in which only some of the variables change (either
the pi or the qi), by amounts that depend only on the variables that do not change. Any
shear transformation will preserve volume, since its Jacobian matrix will have determinant
one (as the only non-zero term in the determinant will be the product of diagonal elements,
which will all be one).

The leapfrog method. Even better results can be obtained with the leapfrog method,
which works as follows:

pi(t+ ε/2) = pi(t) − (ε/2)
∂U

∂qi
(q(t)) (2.28)

qi(t + ε) = qi(t) + ε
pi(t+ ε/2)

mi
(2.29)

pi(t + ε) = pi(t + ε/2) − (ε/2)
∂U

∂qi
(q(t+ ε)) (2.30)



Practical considerations
• Two critical parameters to tune:

1.L: number of leap-frog steps

2.epsilon: step size

• For L: Hoffman 2011, Sohl-Dickstein 2016

• For epsilon: mostly heuristics/adaptation
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(d) Leapfrog Method, stepsize 1.2

Figure 1: Results using three methods for approximating Hamiltonian dynamics, when
H(q, p) = q2/2 + p2/2. The initial state was q = 0, p = 1. The stepsize was ε = 0.3
for (a), (b), and (c), and ε = 1.2 for (d). Twenty steps of the simulated trajectory are shown
for each method, along with the true trajectory (in gray).



Special case: Metropolis-
Adjusted Langevin (MALA)
• Use one leap frog step, and use the following 

order for the kernels

• Refresh velocity first

• Then do one leap frog, which simplifies into:  
 
 

5. Extensions and variations on HMC 37

For each variable, i = 1, . . . , d:

1) Let p′i = pi(t + ε/2)

2) Let q′i = qi(t) + εp′i/mi

3) If qi is constrained, repeat the following until q′i
satisfies all constraints:

a) If qi has an upper constraint, and q′i > ui

Let q′i = ui − (q′i − ui) and p′i = −p′i

b) If qi has a lower constraint, and q′i < li

Let q′i = li + (li − q′i) and p′i = −p′i

4) Let qi(t+ ε) = q′i and pi(t + ε/2) = p′i

Figure 8: Modification to the leapfrog update of q (equation (2.29)) to handle constraints of
the form qi ≤ ui or qi ≤ li.

If several variables have constraints, we must follow this procedure for each, and if a
variable has both upper and lower constraints, we must repeat the procedure until neither
constraint is violated. The end result is that the full step for q of equation (2.29) is replaced
by the procedure shown in Figure 8. Intuitively, the trajectory just bounces off the “walls”
given by the constraints. If U∗(q) is constant, these bounces are the only interesting aspect
of the dynamics, and the procedure is sometimes referred to as “billiards” (see, for example,
Ruján, 1997).

5.2 Taking one step at a time — the Langevin method

A special case of Hamiltonian Monte Carlo arises when the trajectory used to propose a new
state consists of only a single leapfrog step. Suppose that we use the kinetic energy K(p) =
(1/2)

∑

p2i . An iteration of HMC with one leapfrog step can be expressed in the following
way. We sample values for the momentum variables, p, from their Gaussian distributions
with mean zero and variance one, and then propose new values, q∗ and p∗, as follows:

q∗i = qi −
ε2

2

∂U

∂qi
(q) + εpi (5.12)

p∗i = pi −
ε

2

∂U

∂qi
(q) −

ε

2

∂U

∂qi
(q∗) (5.13)

We accept q∗ as the new state with probability

min
[

1, exp
(

− (U(q∗)− U(q)) −
1

2

∑

i

((p∗i )
2 − p2i )

)]

(5.14)

and otherwise keep q as the new state.

Equation (5.12) is known in physics as one type of “Langevin equation”, and this method
is therefore known as Langevin Monte Carlo (LMC) in the the lattice field theory literature
(eg, Kennedy, 1990).



Dimensionality scaling

running time =

number of samples 
needed to get a 
tolerance (with 

probability 95%)
x compute cost per 

sample
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SMC



Organization

• SMC on product spaces

• Transforming other problems into product 
spaces (sequential change of measure)



Motivations for SMC on 
product spaces

• Sequential predictions / streaming data / HMM / state space 
models

• latent state from noisy observation

• change point

• Time series where ‘time’ is not time

• genomics: ‘time’ = position on genome

• observations: SNP

• latent: haploblock (chunk shared by several individuals) 
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Lecture 7: Sequential Monte Carlo
15 Mar 2015

Instructor: Alexandre Bouchard-Côté 
Editor: TBA

Review of importance sampling (IS)
IS with known normalization constants.
IS without the normalization constants (self-normalizing IS).

Sequential Monte Carlo (SMC) on product spaces
Examples
Let us start with some examples where SMC is useful in Bayesian statistics:

State space models from assignment 1:
: time index (day)

Observed number of text messages: , 
Latent category ,  (note:  was denoted  earlier on)

Genomics:
: positions on a chromosome.

Observed single nucleotide polymorphisms (SNP): , 
Latent haploblock. An haploblock is a chunk of the genome with SNP states shared by several
individuals. Since there are not too many recombinations, there are well documented haploblocks
available for each position , , where  is some discrete set.

Ultrametric (clock) phylogenetic trees.
Species: .

 contains a partition of  into  blocks (to encode the topology of the tree after the -th
speciation event), and a real number (the speciation time).

Common feature: the latent space is a product space  indexed by the integers 
.

Notes:

We may only care about the probability  defined on , called the target; the other ones (
) are called intermediate.

This setup was historically the motivation for SMC methods.
However, it was discovered in the 2000's that SMC also applies to situations where this is not the case. But
let us start by assuming  is a product space, we will get to the general construction later on.

Notation and goal



Sequence of targets
• As in PT we now have a sequence of targets

• but: with different dimensionality now vs. fixed 
dimensionality for PT

• In the product space context, sometimes we care 
about all targets (real time predictions), sometimes, 
we care only about the last one

• Typical problems:

• integrating test functions

• + computing normalization Z (e.g. for model 
selection, where Z = P(data)



Building block: sequential 
importance sampling

• Rewrite self-normalized importance sampling so 
that it can be done with a sequence of targets

• Use the following identities:  
 

• Yields the recursions 
 

• Does not work! (Why?) But forms basis of SMC
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Target distribution, with density  (note:  was denoted  last time;  was )

Goals:

Computing  (e.g. to perform model selection)
Computing , where  is a test function.

For example, in the context of Bayesian inference, , the marginal likelihood studied last week, and if
, then  is the posterior mean .

Sequential Importance Sampling (SIS)
Based on two simple identities:

and

we can write an iterative version of importance sampling, where at each iteration , we carry a
population of particles  with corresponding unnormalized weights  (see slides).

In SIS, we propose incrementally:

and update the weights using:

Exercise: compute the weights at the last iteration, . What is the implication?

The sequential nature of the particle recursions makes it tempting to use SIS in an online setting. This is a bad idea!
As we will see, the approximation fails exponentially fast in the number of time steps . Symptom: all the
normalized weights converge to 0 except for 1 particle which takes all the normalized weight.

Examples of weight updates:

HMM. (exercise)
A coalescent model.
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Fix: resampling

• Intuition: prune particles with low 
normalized weights

• Constraints: we still want consistency 

• Idea: resample N times according to the 
normalized weights

• multinomial resampling



Notation for our goals

⇡t(xt) =
�t(xt)

Zt

⇡t(xt) = p(xt|yt)

�t(xt) = p(xt,yt)

Z = p(yt)

Sample from a target distribution:

Given a model (joint)...:

.. and/or evaluate the normalization:



X State space

xt 2 X Point in that space

Subscript: process index

xt Many points in the state space
yt Many observations

R

xt 2 X

X

t

y1 = xt1 y3 = xt3y2 = xt2
y2 y3

N
ot

at
io

n

A
C
G
T



Standard SMC
x

i
tOutput: competing ‘hypotheses’

Hypothesis
i = 1

Hypothesis
i = 5

t = last time observed 

...



x

i
tOutput: competing ‘hypotheses’

weight for each of these wi
t

weight of 
particle i = 1

weight of 
particle i = 5

...

Standard SMC



x

i
tOutput: competing ‘hypotheses’

weight for each of these wi
t

Can view these as a (random) distribution 

w̃i
t =

wi
tP

j w
j
t

⇡̃t(·) =
X

i

w̃i
t�xi

t
(·)

Standard SMC



Standard SMC inner 
working:

⇡̃t⇡̃t�1

1. Assume inductively that we have 
computed approximation for: 

⇡t�1(xt�1) = p(xt�1|yt�1)



⇡̃t⇡̃t�1

2. Sample from

1. Assume inductively...

⇡̃t�1

x̃

i
t�1 ⇠ ⇡̃t�1

Standard SMC inner 
working:



2. Sample from

1. Assume inductively...

⇡̃t�1

3. Propose (extend):

x̃

i
t�1

xt|x̃t�1 ⇠ qt(·|x̃t�1)

x

i
t =
(�x̃

i
t�1�, x

i
t)

Concatenate:

Standard SMC inner 
working:



2. Sample from

1. Assume inductively...

⇡̃t�1

3. Propose (extend)

4. Reweigh:

w

i
t =

⇡t(xi
t)

⇡t�1(x̃i
t�1)

1

qt(xi
t|x̃i

t�1)

x̃

i
t�1

x

i
t

Standard SMC inner 
working:



2. Sample from

1. Assume inductively...

⇡̃t�1

3. Propose (extend)

4. Reweigh

Repeat for 
each particle 

(5 times)

Standard SMC inner 
working:



Some pointers

• Theory: see Del Moral, 2013 for LLN, CLT

• How to build MC intervals: see J. Olsson, R. 
Douc (2018)

• Proposals:

• sometimes, forced to pick dynamics

• else, various options, e.g.  
lookahead proposal



Resampling
• Efficient implementation

• Poisson process trick, see March 7

• Often important not perform resampling at 
every step

• Monitor relative ESS (March 12) after each 
proposal round 

• Resample when it drops under a threshold 
(0.5) typically

• Finally, alternatives to multinomial resampling 
exist, see Mathieu Gerber, Nicolas Chopin, Nick 
Whiteley, 2017 for recent analysis of those

(Eq[W̃ ])2

Eq[W̃ 2]
⇡

( 1n
P

W̃ (i))2

1
n

P
(W̃ (i))2



Organization

• SMC on product spaces

• Transforming other problems into 
product spaces (sequential change of 
measure)



AIS / Jarzynski’s trick

• Target spaces Ft, not product spaces, 

• important e.g. Ft = S (change of measure)

• Auxiliary spaces:  

• Distribution on those? Use a backward 
kernel B 

• Get weight update:

Sequential change of measure methods
state space  is arbitrary
sequence of targets, , , for 

, -invariant kernels
Ability to sample exactly from 
Goal:  for some arbitrary test function 

Pre-requisites:

Importance sampling
Annealed importance sampling (SIS)

Key idea 1: even if we only care about one  prior  likelihood, we can build a useful sequence ,
e.g. by exponentiating the likelihood

Why not exponentiating everything?
Alternate compute-aware choices of annealing distribution (e.g. for big data)
Terminology: annealing step. Difficulty: sensitivity to annealing step choice.

Key idea 2: build a product space via conditional distributions  (called a backward kernel) and chain
rule:

This means we can now apply standard SIS and get weight updates (check!)

Key idea 3: the above weight update is generally not computable (why?).

But we are free to pick !
Pick:

Weight update simplifies to

S
(x) ∝ (x)γn πn x ∈ S n = 1, 2, …

( |x)Kn x′ πn
π0

∫ F(x)π(x) F

Jarzynski's method / AIS

π ∝ × πn

Bn

= S × S × … SS1:n
( ) = ( ) ( | )π1:n x1:n πn xn ∏m<n Bm xm xm+1

( , ) =w̃ x1:n−1 x1:n
( )γn xn
( )γn−1 xn−1

( | )Bn−1 xn−1 xn
( | )Kn xn xn−1

B

( | ) =Bn−1 xn−1 xn
( ) ( | )πn xn−1 Kn xn xn−1

( )πn xn

=w̃ ( )γn xn−1
( )γn−1 xn−1
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Example
• Setup: change of measure on annealed distributions

• Kn: πn invariant kernel (from MH)

• Problem: cannot compute weight in general  
 

• Idea: use fact we are free to pick B as we wish; use  
 

• Weight update simplifies (check)
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