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Figure 3: Left: A BPS trajectory containing 200 segments/bounces and no refreshment (for clarity,
the first 15 segments are in black and the following ones are in light grey): the center of the space
is never explored. Right, solid line: ESS per CPU second as a function of d (log-log scale), along
with 95% confidence intervals based on 40 independent runs (the intervals are small and may be
difficult to see). Dashed line: linear regression curve. See Section 4.1 for details.

4 Numerical results

4.1 Gaussian distributions and the need for refreshment

We consider an isotropic multivariate Gaussian target distribution, U (x) = kxk2, to illustrate the
need for refreshment. Without refreshment, we obtain from Equation (7)
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see Material for details. In particular, these calculations show if
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for i � 2. In particular for x(0)

= e
1

and
v(0) = e

2

with e
i

being elements of standard basis of Rd, the norm of the position at all points
along the trajectory can never be smaller than 1 as illustrated in Figure 3.

In this scenario, we show that BPS without refreshment admits a countably infinite collection of
invariant distributions. Let us define r (t) = kx (t)k and m (t) = hx (t) , v (t)i / kx (t)k and denote
by �

k

the probability density of the chi distribution with k degrees of freedom.

Proposition 2. For any dimension d � 2, the process (r (t) ,m (t))
t�0

is Markov and its transition
kernel is invariant with respect to the probability densities

�

f
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(r,m) / �
k

(

p
2r) · (1�m2

)

(k�3)/2

; k 2 {2, 3, . . .}
 

.

The proof is given in Appendix 2. By Theorem 1, we have a unique invariant measure as soon as
�ref > 0.
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Computing difficult integrals using 
the law of large numbers

Goal:  Compute

3 Basics of Monte Carlo Methods

Consider for the time being the following generic problem. We are interested in computing

I =

Z

X
� (x)⇡ (x) dx

where ⇡ (x) is a probability density (w.r.t. to a dominating measure dx) on X and � : X ! R. The basic
Monte Carlo method proceeds as follows.

Monte Carlo method

• Simulate independent X
1

, ..., X
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n
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i

) .

It is trivial to check that bI
n

is unbiased. More importantly, this estimate is consistent.

Proposition 1 (Strong Law of large numbers): Assume E [|� (X)|] < 1 then bI
n

is a strongly consistent
estimator of I.

Proof. This follows from a direct application of the strong law of large numbers
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Monte Carlo 
Methods:

Truncate a Law of Large Numbers (LLN) 
converging to I.

Example  
(simple Monte Carlo):
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Goals of this course
• Motivate why we need Monte Carlo (MC) methods.

• For the users of MC: 

• Using probabilistic programming languages.

• Overview of the modern MC toolbox.   
We will iterate:

• Problem we can’t solve with what we know so far.

• Methodology that solves this problem.

• How theory helps you write correct + efficient MC.

• For the developers of new MC methods: 

• implementation and analysis of state-of-the-art MC algorithms. 

• Interested in what you work on to guide choice of topics.



Logistics

• Course webpage: http://tinyurl.com/starferret

• Check the syllabus for references, assessment,  
info on final project and more

• My office hour: after lecture?

• TA: Sohrab Salehi. Office hour TBA.

http://tinyurl.com/starferret


Logistics
• BRING LAPTOP IN CLASS! (Ask about windows users)

• Languages supported: Xtend/Java and Python

• Feel free to use other ones but strongly recommend learning a 
compiled language if serious about development of MC methods

• Install (use Piazza if encounter problems):

• git (see https://software-carpentry.org/)

• R

• Oracle Java 8

• PPLs:

• Stan: http://mc-stan.org/

• Blang: https://www.stat.ubc.ca/~bouchard/blang/Blang_IDE.html

https://software-carpentry.org/
https://www.stat.ubc.ca/~bouchard/blang/Blang_IDE.html


Motivation: phylogenetic

• Topology: shape of the tree  
(discrete)

• Branch length: each edge  
has a parameter  
encoding how much  
evolution on the branch  
(continuous)

• Data: DNA at leaves (for example)

• Goal: reconstruct the tree  
(and more! ancestral sequences, models, ...)

Ex. 2



Why phylo is important
• Signature left by evolution key to understand function 
 
 
 

• Where do we come from?

• Beyond the tree of life:

• cancer phylogenetics

• trees of languages



Challenges
• Trees space: 

• high-dimensional, 

• combinatorial, 

• non-convex

• Uncertainty does not vanish in asymptotic regime 
of interest  
(sequence length does not go to infinity)

• In many scientific applications, it is critical to 
quantify this uncertainty



Optimization and simulation

x

? 2 argmax p(y|x)
x

(i) ⇠ 1

Z

p(x)p(y|x)

x : unknown
y : data

Cases where this  
is advantageous...



1. Uncertainty over latent 
combinatorial structures

x = unknown phylogenetic tree

Question: is {human, monkey, lemur} a clade?



Uncertainty over latent 
combinatorial structures

x = phylogenetic tree

x(1) x(2) x(3)

Clade posterior probability: 2/3



2. Maximization can be 
misleading

• These cases arise in various contexts:

• stochastic processes/Bayesian non-parametrics, 

• high-dimensional models,

• partially identifiable models, ...

x

density



In high dimension, 
optimization and sampling 
are profoundly different



Motivations, continued

ϕ

ϕϕ

ϕϕϕ

ϕ



Large scale random 
effect models 

• e.g.: spatial and/or 
temporal data

• Models: Gaussian 
Markov random fields, 
cox processes, etc.

National Cancer Institute

Ex. 3a



Motivation, continued
• large networks

• www, e.g. bitcoin 
transactions, link 
analysis, etc

• biological processes

• sparse exchangeable 
graph models (e.g. 
Caron and Fox, 2017)

Image credit: Ryan Rossi

Ex. 3b



Astrophysics: Estimating the 
age and fate of the Universe

• Goals: finding the Universe’s

• age

• density (=> faith)

• Data: Cosmic Microwave 
Background (CMB): 
remnants of Big Bang 

• Detailed map from the 
Planck satellite

• Age, Physical constants => 
known distribution on CMP

• Invert using Bayes’ rule

Ex. 3c



More example:

• Computing volumes

• Physics

• Time series

Ex. 3d



Setup: large scale Bayesian 
or random effects models
• We are given a density known up to a 

normalization constant 
 

• Example:  

• We want a law of large number

⇡(x) =
�(x)

Z

1

N

NX

i=1

'(X(i)) !
Z

'(x)⇡(dx) a.s.

⇡(x) =

joint(x, y)

evidence(y)

x : unknown
y : data

‘test function’

Note: We almost 
never care about 
the samples 
themselves!

Def. 4



Overview of the literature

• Approximate 
Bayesian 
Computation 
(ABC)

• ‘Plug-and-play’ 
Sequential 
Monte Carlo 
(SMC)

Computationally 
efficient

Computationally 
expensive

More 
assumptions

Few 
assumptions

• Random walk 
Metropolis

• Gibbs 
sampling

• Hamiltonian 
Monte Carlo 
(HMC)

• Langevin 

y ⇠ p(·|x) �(x) = p(x)p(y|x) r log �(x)

Note 5



Overview of the literature
‘Naive’ MCMC 

• Deterministic 
start

• Apply kernel  
ad nauseam

• Burn-in, etc

Modern methods 

• Sequential change 
of measure-based

• Replica-based 
methods



Basics:  
Simple Monte Carlo 

Simple Monte Carlo:

3 Basics of Monte Carlo Methods

Consider for the time being the following generic problem. We are interested in computing

I =

Z

X
� (x)⇡ (x) dx

where ⇡ (x) is a probability density (w.r.t. to a dominating measure dx) on X and � : X ! R. The basic
Monte Carlo method proceeds as follows.

Monte Carlo method
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, ..., X
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• Return bI
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) .

It is trivial to check that bI
n

is unbiased. More importantly, this estimate is consistent.

Proposition 1 (Strong Law of large numbers): Assume E [|� (X)|] < 1 then bI
n

is a strongly consistent
estimator of I.
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Simple example
Ex. 7

Advanced Simulation Methods

Chapter 1 - Introduction

1 Introduction

In many scientific problems of interest including finance, operations research, statistical physics and statistics,
it is required to numerically compute integrals, i.e.,

I =

Z

X
f (x) dx

where f : X ! R.
When X = [0, 1], then we can simply approximate I through

bI
n

=
1

n

n�1X

i=0

f ((i+ 1/2) /n) .

When f is di↵erentiable and sup
x2[0,1]

|f 0 (x)| < M < 1 then the approximation error is O �
n�1

�
; see Figure 1.

1.3 A Brief History of Monte Carlo Methods 9

Recall that, for out Monte Carlo method the confidence interval was shrinking “only” at rate n�1/2.

However, it is easy to see that its speed of convergence is of the same order, regardless of the dimension

of the support of f . This is not the case for other (deterministic) numerical integration methods. For a

two-dimensional function f the error made by the Riemann approximation using n function evaluations

is O(n�1/2). 5

10

1

�

⇠
mid

x

|f(x)� f(⇠
mid

)| < �

2

·max |f 0(x)| for |x�⇠mid|�
2

Fig. 1.4. Illustration of numerical integration by Riemann sums

This makes the Monte Carlo methods especially suited for high-dimensional problems. Furthermore

the Monte Carlo method o↵ers the advantage of being relatively simple and thus easy to implement on a

computer.

1.3 A Brief History of Monte Carlo Methods

Experimental Mathematics is an old discipline: the Old Testament (1 Kings vii. 23 and 2 Chronicles iv.

2) contains a rough estimate of ⇡ (using the columns of King Solomon’s temple). Monte Carlo methods

are a somewhat more recent discipline. One of the first documented Monte Carlo experiments is Bu↵on’s

needle experiment (see example 1.3 below). Laplace (1812) suggested that this experiment can be used to

approximate ⇡.

Example 1.3 (Bu↵on’s needle). In 1733, the Comte de Bu↵on, George Louis Leclerc, asked the following

question (Bu↵on, 1733): Consider a floor with equally spaced lines, a distance � apart. What is the

probability that a needle of length l < � dropped on the floor will intersect one of the lines?

Bu↵on answered the question himself in 1777 (Bu↵on, 1777).

Assume the needle landed such that its angle is ✓ (see figure 1.5). Then the question whether the needle

intersects a line is equivalent to the question whether a box of width l sin ✓ intersects a line. The probability

of this happening is

P(intersect|✓) = l sin ✓

�
.

5 Assume we partition both axes into m segments, i.e. we have to evaluate the function n = m2 times. The error

made for each “bar” is O(m�3) (each of the two sides of the base area of the “bar” is proportional to m�1, so

is the upper bound on |f(x)� f(⇠
mid

)|, yielding O(m�3)). There are in total m2 bars, so the total error is only

O(m�1), or equivalently O(n�1/2).

Figure 1: Numerical Integration by Riemman sums

However, for X = [0, 1]⇥ [0, 1] assuming

bI
n

=
1

n

m�1X

i=0

m�1X

j=0

f ((i+ 1/2) /n, (j + 1/2) /n)

and n = m2 then the approximation error isO �
n�1/2

�
and generally for X = [0, 1]d we have an approximation

error in O �
n�1/d

�
. This suggests that this type of deterministic approximations is inappropriate to compute

high dimensional integrals.
The aim of this course is to introduce stochastic simulation methods, which are the most common tools

used to perform numerical integration in high-dimensional scenarios. These methods, also known as Monte
Carlo methods, were introduced in the 1940s and have become extremely popular in statistics over the past
20 years, as they allow to perform inference for complex statistical models. This course will be primarily
focused on applications of Monte Carlo methods to Bayesian statistics, although we will also discuss a few
other applications, as examplified below.

1

• Consider d-dimensional iid random 
standard normal vectors 

• What is the mean of the distance to the 
origin?

• Write as:



Computational motivation
Integrals: 1D case 
 

Prop. 8
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2) contains a rough estimate of ⇡ (using the columns of King Solomon’s temple). Monte Carlo methods

are a somewhat more recent discipline. One of the first documented Monte Carlo experiments is Bu↵on’s

needle experiment (see example 1.3 below). Laplace (1812) suggested that this experiment can be used to

approximate ⇡.

Example 1.3 (Bu↵on’s needle). In 1733, the Comte de Bu↵on, George Louis Leclerc, asked the following

question (Bu↵on, 1733): Consider a floor with equally spaced lines, a distance � apart. What is the

probability that a needle of length l < � dropped on the floor will intersect one of the lines?

Bu↵on answered the question himself in 1777 (Bu↵on, 1777).

Assume the needle landed such that its angle is ✓ (see figure 1.5). Then the question whether the needle

intersects a line is equivalent to the question whether a box of width l sin ✓ intersects a line. The probability

of this happening is

P(intersect|✓) = l sin ✓

�
.

5 Assume we partition both axes into m segments, i.e. we have to evaluate the function n = m2 times. The error

made for each “bar” is O(m�3) (each of the two sides of the base area of the “bar” is proportional to m�1, so

is the upper bound on |f(x)� f(⇠
mid

)|, yielding O(m�3)). There are in total m2 bars, so the total error is only

O(m�1), or equivalently O(n�1/2).

Figure 1: Numerical Integration by Riemman sums

However, for X = [0, 1]⇥ [0, 1] assuming

bI
n

=
1

n

m�1X

i=0

m�1X

j=0

f ((i+ 1/2) /n, (j + 1/2) /n)

and n = m2 then the approximation error isO �
n�1/2

�
and generally for X = [0, 1]d we have an approximation

error in O �
n�1/d

�
. This suggests that this type of deterministic approximations is inappropriate to compute

high dimensional integrals.
The aim of this course is to introduce stochastic simulation methods, which are the most common tools

used to perform numerical integration in high-dimensional scenarios. These methods, also known as Monte
Carlo methods, were introduced in the 1940s and have become extremely popular in statistics over the past
20 years, as they allow to perform inference for complex statistical models. This course will be primarily
focused on applications of Monte Carlo methods to Bayesian statistics, although we will also discuss a few
other applications, as examplified below.

1

One instance of the ‘curse of dimensionality’

(d)

m =
p
n



Interpretation
• Say found the first two decimal for the 

integral 0.45??? using a naive numerical 
integration...

• in 1d, to get one more decimal correct, 
need 10x more work

• in 2d, to get one more decimal correct, 
need 100x more work

• in 3d, to get one more decimal correct, 
need 1000x more work

• ...



Enters Simple Monte Carlo...

• Exercise:

• Use this plot to empirically derive the 
running time of Simple Monte Carlo for a 
given tolerence tol

• Create the plot for Example 7

Exerc. 10
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