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Def. 1

Computing difficult integrals using
the law of large numbers

Goal: Compute I = /X¢(x)7r(x) dx

Monte Carlo Truncate a Law of Large Numbers (LLN)
Methods: converging to I

Example e Simulate independent Xy, ..., X,, from .

(simple Monte Carlo): o Return fn _ %2?21 b (X;).



Goals of this course

® Motivate why we need Monte Carlo (MC) methods.
® For the users of MC:
® Using probabilistic programming languages.

® Qverview of the modern MC toolbox.
We will iterate:

® Problem we can’t solve with what we know so far.
® Methodology that solves this problem.
® How theory helps you write correct + efficient MC.
® For the developers of new MC methods:
® implementation and analysis of state-of-the-art MC algorithms.

® [nterested in what you work on to guide choice of topics.



Logistics

® Course webpage: http://tinyurl.com/starferret

® Check the syllabus for references, assessment,
info on final project and more

® My office hour: after lecture!?

® TA:Sohrab Salehi. Office hour TBA.


http://tinyurl.com/starferret

Logistics
BRING LAPTOP IN CLASS! (Ask about windows users)

Languages supported: Xtend/Java and Python

Feel free to use other ones but strongly recommend learning a
compiled language if serious about development of MC methods

Install (use Piazza if encounter problems):

® git (see https://software-carpentry.org/)
e R

® Oracle Java 8

® PPLs:

® Stan: http://mc-stan.org/

® Blang: https://www.stat.ubc.ca/~bouchard/blang/Blang IDE.html



https://software-carpentry.org/
https://www.stat.ubc.ca/~bouchard/blang/Blang_IDE.html
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Motivation: phylogenetic™

Topology: shape of the tree
(discrete)

[© 1] M F ] | /o
[ “ Wy A A
Branch Iength° each edge oy ) P S 2
° I e ~— El S ol A
'/7.: - - - - :_ - = -,' ’{-‘- # ," , . gz ’» o
Way Yerg, —— Vs P Mamm:
has a parameter Cambrs Bty ” L, fler
tan l/)/,,\/' //l/, =~ ~ S— y2 _;_/:{;_/_-_-
on s _ - =
. Z % = ,
encoding how much Y e
. % ——
evolution on the branch TR =
L2 ==
2 =
Birth ;", N

(continuous)

Millions of Y(,a,._\. Ago 3000 2000 1000 700  S41 444 370 252 201 66 Today

Data: DNA at leaves (for example)

Goal: reconstruct the tree
(and more! ancestral sequences, models, ...)



VWhy phylo is important

® Signature left by evolution key to understand function
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® Beyond the tree of life: il L

. Ghi .
® cancer phylogenetics oz (&)
® trees of languages



Challenges
® [rees space: LW
® high-dimensional,

® combinatorial,

® Nnon-convex

® Uncertainty does not vanish in asymptotic regime
of interest
(sequence length does not go to infinity)

® |n many scientific applications, it is critical to
quantify this uncertainty
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|. Uncertainty over latent
combinatorial structures

x = unknown phylogenetic tree

Question: is {human, monkey, lemur} a clade!?
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Uncertainty over latent
combinatorial structures

x = phylogenetic tree
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Clade posterior probability: 2/3



2. Maximization can be
misleading

A

density

_ I >
X

® These cases arise in various contexts:
® stochastic processes/Bayesian non-parametrics,
® high-dimensional models,

e partially identifiable models, ...



In high dimension,
optimization and sampling
are profoundly different




Motivations, continued

- NCI Map Story: November 2013
Lung Cancer Mortality Rates
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X. 3a

Large scale random
effect models

| ~ NCI Map Story: November 2013 |
' Lung C Mortality Rate .
. ,gi‘l\ e 0t 2010 ® e.g.:spatial and/or

temporal data

® Models: Gaussian
Markov random fields,
COX processes, etc.

Age Adjusted
Annual Death Rate
(Deaths per 100,000)
-105-446
[ Jur.s1s
[ |s18-572
[ Js13-619

[ Je20-680

B se 11032
-

Death data sourced from the National Vital Statistics System U.S. Rate =~ 51.7
’ public use data file organized by Heakh Service Area.

Data are suppres sed if the count for the time period s less than 16,
NCI Map Story: gis.cancer.govimapstory/lung Copyrght £2971 Exvi Delis me. NAVTEQ

National Cancer Institute



Ex. 3b
Motivation, continued

SEEy° 75 ® |arge networks

| ® www, e.g. bitcoin
Y LA, transactions, link
' N analysis, etc

® biological processes

O‘ ] ® sparse exchangeable
_ « graph models %e
Caron and Fox, 2017)

Image credit: Ryan Rossi



Ex. 3C

Astrophysics: Estimating the
age and fate of the Universe

OM = 0.3, OA\ = 0.7 ,‘

Goals: finding the Universe’s | F o=
® age
® density (=> faith)

Data: Cosmic Microwave
Background (CMB):
remnants of Big Bang

Average distance between galaxies

* Detailed map from the 157 IO 5 Billio(:)lsofyeargs from nol\? '5 -
Planck satellite

Age, Physical constants =>
known distribution on CMP

Invert using Bayes’ rule




Ex. 3d

More example:

® Computing volumes
® Physics

® |[ime series



Def. 4
Setup: large scale Bayesian

or random effects models

® We are given a density known up to a
normalization constant

v ()
() = 14
® Example: () = joint(x, y) X : unknown
evidence(y) |y :data

® We want a law of large number
Note: We almost

_ng X(z) / ( ) (dac) o q |nevercare about

the samples
‘test function’ themselves!




Note 5

Overview of the literature
C°mP“tat'-°”a"y—“mpum“’“"Y
expensive efficient
Few More

_ assumptions

assumptions

y ~ p(-|z) v(x) = p(z)p(y|z) Vlog y(z)
® Approximate ® Random walk
cB:ayeswm Metropolis ® Hamiltonian
omputation Monte Carlo
(ABC) ® Gibbs ':s iﬂ/ (H MC)
® ‘Plug-and-play’ sampling
Sequential ® |angevin

Monte Carlo
(SMC)




Overview of the literature

Naive’ MCMC Modern methods

® Deterministic

start } ® Sequential change

of measure-based
® Apply kernel

ad nauseam ® Replica-based
methods

® Burn-in, etc




Def. 6

Basics:
Simple Monte Carlo

e Simulate independent X4, ..., X,, from 7.
Simple Monte Carlo:

e Return I, = =3 (X))



Ex. 7

Simple example

® Consider d-dimensional iid random
standard normal vectors

® What is the mean of the distance to the
origin?

® \Write as:

I:/Xf(x)dx



Prop 3

Computational motivatio
Integrals: |D case I = /X f(x)dx

%i ((14+1/2) /n).

f is differentiable and sup |f’ (z)] < M < oo then the approximation error is O (n™!)
z€(0,1]
A
1y N\

f (@) = f(Emia)| < 2 - max |/ (@)] for fomial< 2

Y




Prop. 9
Computational motivation

Integrals: 2D case I: / f(x)dx
X

m—1m-—1

S S F G2 G2 ) m
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approximation error is O (n—l/ 2)

Integrals: dD case I'Z / f(z)dz
X

error in O (n_l/d)

One instance of the ‘curse of dimensionality’



Interpretation

® Say found the first two decimal for the
integral @.45777 using a naive numerical

Integration...

® in |d, to get one more decimal correct,
need |0x more work

® in 2d, to get one more decimal correct,
need |00x more work

® in 3d, to get one more decimal correct,
need |000x more work



Exerc. 10

Enters Simple Monte Carlo...

® Exercise:

® Use this plot to empirically derive the
running time of Simple Monte Carlo for a
given tolerence tol

® Create the plot for Example 7



