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Def. 1

Computing difficult integrals using
the law of large numbers

Goal: Compute I = /X¢(x)7r(x) dx

Monte Carlo Truncate a Law of Large Numbers (LLN)
Methods: converging to I

Example e Simulate independent Xy, ..., X,, from .

(simple Monte Carlo): o Return fn _ %2?21 b (X;).
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Def. 4
Setup: large scale Bayesian

or random effects models

® We are given a density known up to a
normalization constant

v ()
() = 14
® Example: () = joint(x, y) X : unknown
evidence(y) |y :data

® We want a law of large number
Note: We almost

_ng X(z) / ( ) (dac) o q |nevercare about

the samples
‘test function’ themselves!




Note 5

Overview of the literature
C°mP“tat'-°”a"y—“mpum“’“"Y
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Few More

_ assumptions

assumptions

y ~ p(-|z) v(x) = p(z)p(y|z) Vlog y(z)
® Approximate ® Random walk
cB:ayeswm Metropolis ® Hamiltonian
omputation Monte Carlo
(ABC) ® Gibbs ':s iﬂ/ (H MC)
® ‘Plug-and-play’ sampling
Sequential ® |angevin

Monte Carlo
(SMC)




Overview of the literature

Naive’ MCMC Modern methods

® Deterministic

start } ® Sequential change

of measure-based
® Apply kernel

ad nauseam ® Replica-based
methods

® Burn-in, etc




Ex. 7

Simple example

® Consider d-dimensional iid random
standard normal vectors

® What is the mean of the distance to the
origin?

® \Write as:

I:/Xf(x)dx



Prop 3

Computational motivatio
Integrals: |D case I = /X f(x)dx

%i ((14+1/2) /n).

f is differentiable and sup |f’ (z)] < M < oo then the approximation error is O (n™!)
z€(0,1]
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Prop. 9
Computational motivation

Integrals: 2D case I: / f(x)dx
X
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approximation error is O (n—l/ 2)

Integrals: dD case I'Z / f(z)dz
X

error in O (n_l/d)

One instance of the ‘curse of dimensionality’



Interpretation

® Say found the first two decimal for the
integral @.45777 using a naive numerical

Integration...

® in |d, to get one more decimal correct,
need |0x more work (2 digits: 100x)

® in 2d, to get one more decimal correct,
need 100x more work (2 digits: 10,000x)

® in 3d, to get one more decimal correct,
need |000x more work (2 digits: | e6x)



Exerc. 10

Enters Simple Monte Carlo...

® Exercise:

6
log(n)

® Use this plot to empirically derive the
running time of Simple Monte Carlo for a
given tolerence tol

® Create the plot for Example 7



Thm. 12

Theoretical foundations

® |aw of large number for iid random
variable

® Central limit theorem for iid random
variable

® IMPORTANT: there are LLNs and CLTs for
dependent random variable (later!)



Exact sampling
methods



Exact sampling:
simple cases

® |nversion method
® [ransformation method

® Augmentation method



) Def. 13
Inversion method

@ Consider a real-valued random variable X and its associated
cumulative distribution function (cdf)

F(x)=P (X <x)=F(x)

@ The cdf F: IR — [0, 1] is

o increasing; i.e. if x <y then F(x) < F(y)
o right continuous; i.e. F(x+¢€) — F(x)ase — 0 (e > 0)
o F(x) >0asx — —ooand F(x) — 1 as x — +oo.

@ We define the generalised inverse
F~(u) =inf{x € R; F (x) > u}

also known as the quantile function. Note that
F~ (u) = F~ 1 (u) if F is continuous.



o Proposition. Let F be a cdf and U ~ Ujg q). Then
X = F~ (U) has cdf F.

Proof. F~ (u) < x << u < F(x) so U~ Ujg 1}, we have

Exercise: construct a RNG for exponential random variables of a given rate



What about

multivariate
distributions!?



Def. 15

Transformation method

@ Let Y ~ g be a Y-valued random variable (rv) of, which we
can simulate (eg, by inversion)

@ Let X ~ 71 be a X-valued rv, which we wish to simulate.

@ It may be that we can find a function ¢ : Y — X with the
oroperty that if we simulate Y ~ g and then set X = ¢ (Y)
then we get X ~ 71.

@ Inversion is a special case of this idea.



Augmentation / auxiliary variables b 16
® Example: how to simulate from a mixture model?

® Key idea: marginalization is easy with Monte
Carlo methods

® Contrast with analytical marginalization

® Build (X,Y) such that distribution of interest is a
marginal

® Exercises:

® write pseudo-code to simulate from a mixture
distribution with 2 normal components,

‘ AValv. a alfa -1 a Aalnm Aala a aldAavVFal a
et VYV ¥ @ w @ w U CL



Running time of Monte
Carlo methods



Def 17

Fundamental equation to
analyze Monte Carlo
methods

number of samples
needed to get a compute cost per
tolerance (with sample
porobability 95%)

running time =

® Exercise:

® Compute the running time in tol and d
for Example 7 but with non-diagonal
covariance normal vectors



Using CLT in practice

® | et X be a random tree

® We are looking at a clade indicator f(X) as in
Example 2.

® After 500 iid trees your MC estimate for the
clade support is roughly 10%

® Should you extract more samples!?

® Say we want a scheme with relative error of
less than 10% for approximately 95% of the
random seeds



