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Figure 3: Left: A BPS trajectory containing 200 segments/bounces and no refreshment (for clarity,
the first 15 segments are in black and the following ones are in light grey): the center of the space
is never explored. Right, solid line: ESS per CPU second as a function of d (log-log scale), along
with 95% confidence intervals based on 40 independent runs (the intervals are small and may be
difficult to see). Dashed line: linear regression curve. See Section 4.1 for details.

4 Numerical results

4.1 Gaussian distributions and the need for refreshment

We consider an isotropic multivariate Gaussian target distribution, U (x) = kxk2, to illustrate the
need for refreshment. Without refreshment, we obtain from Equation (7)
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see Material for details. In particular, these calculations show if
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with e
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being elements of standard basis of Rd, the norm of the position at all points
along the trajectory can never be smaller than 1 as illustrated in Figure 3.

In this scenario, we show that BPS without refreshment admits a countably infinite collection of
invariant distributions. Let us define r (t) = kx (t)k and m (t) = hx (t) , v (t)i / kx (t)k and denote
by �

k

the probability density of the chi distribution with k degrees of freedom.

Proposition 2. For any dimension d � 2, the process (r (t) ,m (t))
t�0

is Markov and its transition
kernel is invariant with respect to the probability densities
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p
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; k 2 {2, 3, . . .}
 

.

The proof is given in Appendix 2. By Theorem 1, we have a unique invariant measure as soon as
�ref > 0.
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Computing difficult integrals using 
the law of large numbers

Goal:  Compute

3 Basics of Monte Carlo Methods

Consider for the time being the following generic problem. We are interested in computing

I =

Z

X
� (x)⇡ (x) dx

where ⇡ (x) is a probability density (w.r.t. to a dominating measure dx) on X and � : X ! R. The basic
Monte Carlo method proceeds as follows.
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It is trivial to check that bI
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is unbiased. More importantly, this estimate is consistent.
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is a strongly consistent
estimator of I.
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Methods:

Truncate a Law of Large Numbers (LLN) 
converging to I.

Example  
(simple Monte Carlo):
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Optimization and simulation

x

? 2 argmax p(y|x)
x

(i) ⇠ 1

Z

p(x)p(y|x)

x : unknown
y : data

Cases where this  
is advantageous...



Setup: large scale Bayesian 
or random effects models
• We are given a density known up to a 

normalization constant 
 

• Example:  

• We want a law of large number

⇡(x) =
�(x)

Z

1

N

NX

i=1

'(X(i)) !
Z

'(x)⇡(dx) a.s.

⇡(x) =

joint(x, y)

evidence(y)

x : unknown
y : data

‘test function’

Note: We almost 
never care about 
the samples 
themselves!

Def. 4



Overview of the literature

• Approximate 
Bayesian 
Computation 
(ABC)

• ‘Plug-and-play’ 
Sequential 
Monte Carlo 
(SMC)

Computationally 
efficient

Computationally 
expensive

More 
assumptions

Few 
assumptions

• Random walk 
Metropolis

• Gibbs 
sampling

• Hamiltonian 
Monte Carlo 
(HMC)

• Langevin 

y ⇠ p(·|x) �(x) = p(x)p(y|x) r log �(x)

Note 5



Overview of the literature
‘Naive’ MCMC 

• Deterministic 
start

• Apply kernel  
ad nauseam

• Burn-in, etc

Modern methods 

• Sequential change 
of measure-based

• Replica-based 
methods



Simple example
Ex. 7

Advanced Simulation Methods

Chapter 1 - Introduction

1 Introduction

In many scientific problems of interest including finance, operations research, statistical physics and statistics,
it is required to numerically compute integrals, i.e.,

I =

Z

X
f (x) dx

where f : X ! R.
When X = [0, 1], then we can simply approximate I through

bI
n

=
1

n

n�1X

i=0

f ((i+ 1/2) /n) .

When f is di↵erentiable and sup
x2[0,1]

|f 0 (x)| < M < 1 then the approximation error is O �
n�1

�
; see Figure 1.

1.3 A Brief History of Monte Carlo Methods 9

Recall that, for out Monte Carlo method the confidence interval was shrinking “only” at rate n�1/2.

However, it is easy to see that its speed of convergence is of the same order, regardless of the dimension

of the support of f . This is not the case for other (deterministic) numerical integration methods. For a

two-dimensional function f the error made by the Riemann approximation using n function evaluations

is O(n�1/2). 5

10

1

�

⇠
mid

x

|f(x)� f(⇠
mid

)| < �

2

·max |f 0(x)| for |x�⇠mid|�
2

Fig. 1.4. Illustration of numerical integration by Riemann sums

This makes the Monte Carlo methods especially suited for high-dimensional problems. Furthermore

the Monte Carlo method o↵ers the advantage of being relatively simple and thus easy to implement on a

computer.

1.3 A Brief History of Monte Carlo Methods

Experimental Mathematics is an old discipline: the Old Testament (1 Kings vii. 23 and 2 Chronicles iv.

2) contains a rough estimate of ⇡ (using the columns of King Solomon’s temple). Monte Carlo methods

are a somewhat more recent discipline. One of the first documented Monte Carlo experiments is Bu↵on’s

needle experiment (see example 1.3 below). Laplace (1812) suggested that this experiment can be used to

approximate ⇡.

Example 1.3 (Bu↵on’s needle). In 1733, the Comte de Bu↵on, George Louis Leclerc, asked the following

question (Bu↵on, 1733): Consider a floor with equally spaced lines, a distance � apart. What is the

probability that a needle of length l < � dropped on the floor will intersect one of the lines?

Bu↵on answered the question himself in 1777 (Bu↵on, 1777).

Assume the needle landed such that its angle is ✓ (see figure 1.5). Then the question whether the needle

intersects a line is equivalent to the question whether a box of width l sin ✓ intersects a line. The probability

of this happening is

P(intersect|✓) = l sin ✓

�
.

5 Assume we partition both axes into m segments, i.e. we have to evaluate the function n = m2 times. The error

made for each “bar” is O(m�3) (each of the two sides of the base area of the “bar” is proportional to m�1, so

is the upper bound on |f(x)� f(⇠
mid

)|, yielding O(m�3)). There are in total m2 bars, so the total error is only

O(m�1), or equivalently O(n�1/2).

Figure 1: Numerical Integration by Riemman sums

However, for X = [0, 1]⇥ [0, 1] assuming

bI
n

=
1

n

m�1X

i=0

m�1X

j=0

f ((i+ 1/2) /n, (j + 1/2) /n)

and n = m2 then the approximation error isO �
n�1/2

�
and generally for X = [0, 1]d we have an approximation

error in O �
n�1/d

�
. This suggests that this type of deterministic approximations is inappropriate to compute

high dimensional integrals.
The aim of this course is to introduce stochastic simulation methods, which are the most common tools

used to perform numerical integration in high-dimensional scenarios. These methods, also known as Monte
Carlo methods, were introduced in the 1940s and have become extremely popular in statistics over the past
20 years, as they allow to perform inference for complex statistical models. This course will be primarily
focused on applications of Monte Carlo methods to Bayesian statistics, although we will also discuss a few
other applications, as examplified below.

1

• Consider d-dimensional iid random 
standard normal vectors 

• What is the mean of the distance to the 
origin?

• Write as:



Computational motivation
Integrals: 1D case 
 

Prop. 8
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are a somewhat more recent discipline. One of the first documented Monte Carlo experiments is Bu↵on’s

needle experiment (see example 1.3 below). Laplace (1812) suggested that this experiment can be used to

approximate ⇡.

Example 1.3 (Bu↵on’s needle). In 1733, the Comte de Bu↵on, George Louis Leclerc, asked the following

question (Bu↵on, 1733): Consider a floor with equally spaced lines, a distance � apart. What is the

probability that a needle of length l < � dropped on the floor will intersect one of the lines?

Bu↵on answered the question himself in 1777 (Bu↵on, 1777).

Assume the needle landed such that its angle is ✓ (see figure 1.5). Then the question whether the needle

intersects a line is equivalent to the question whether a box of width l sin ✓ intersects a line. The probability

of this happening is

P(intersect|✓) = l sin ✓
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The aim of this course is to introduce stochastic simulation methods, which are the most common tools

used to perform numerical integration in high-dimensional scenarios. These methods, also known as Monte
Carlo methods, were introduced in the 1940s and have become extremely popular in statistics over the past
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Interpretation
• Say found the first two decimal for the 

integral 0.45??? using a naive numerical 
integration...

• in 1d, to get one more decimal correct, 
need 10x more work (2 digits: 100x)

• in 2d, to get one more decimal correct, 
need 100x more work (2 digits: 10,000x)

• in 3d, to get one more decimal correct, 
need 1000x more work (2 digits: 1e6x)

• ...



Enters Simple Monte Carlo...

• Exercise:

• Use this plot to empirically derive the 
running time of Simple Monte Carlo for a 
given tolerence tol

• Create the plot for Example 7

Exerc. 10
STAT 535: Computational Statistics (2018)
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Due: Monday, March 5th, 2018
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1. Use this plot to empirically derive the running time of Simple Monte Carlo for a given tolerance tol.

Create the plot for Example 7 [c.f. lecture slides].

2. Compute the running time in tol and d for Example 7 [c.f. lecture slides] but with non-diagonal

covariance normal vectors.

3. Let X be a random tree. We are looking at a clade indicator f(X) as in Example 2. After 500 iid trees

your MC estimate for the clade support is roughly 10%. Should you extract more samples?



Theoretical foundations

• Law of large number for iid random 
variable

• Central limit theorem for iid random 
variable

• IMPORTANT: there are LLNs and CLTs for 
dependent random variable (later!)

Thm. 12



Exact sampling 
methods



Exact sampling:  
simple cases

• Inversion method

• Transformation method

• Augmentation method



Inversion Method

Consider a real-valued random variable X and its associated
cumulative distribution function (cdf)

F (x) = P (X  x) = F (x)

The cdf F : R ! [0, 1] is

increasing; i.e. if x  y then F (x)  F (y)
right continuous; i.e. F (x + e) ! F (x) as e ! 0 (e > 0)
F (x) ! 0 as x ! �• and F (x) ! 1 as x ! +•.

We define the generalised inverse

F

� (u) = inf {x 2 R;F (x) � u}

also known as the quantile function. Note that
F

� (u) = F

�1 (u) if F is continuous.

Inversion method
Def. 13



Inversion Method

F

�
(u)

x

1

u

F (x)

Proposition. Let F be a cdf and U ⇠ U[0,1]. Then
X = F

� (U) has cdf F .

Proof. F� (u)  x , u  F (x) so U ⇠ U[0,1], we have

P
�
F

� (U)  x

�
= P (U  F (x)) = F (x) .

Exercise: construct a RNG for exponential random variables of a given rate

Prop. 14



What about 
multivariate 

distributions?



Transformation Method

Let Y ⇠ q be a Y-valued random variable (rv) of, which we
can simulate (eg, by inversion)

Let X ⇠ p be a X-valued rv, which we wish to simulate.

It may be that we can find a function j : Y ! X with the
property that if we simulate Y ⇠ q and then set X = j (Y )
then we get X ⇠ p.

Inversion is a special case of this idea.

Transformation method
Def. 15



Augmentation / auxiliary variables
• Example: how to simulate from a mixture model?

• Key idea: marginalization is easy with Monte 
Carlo methods

• Contrast with analytical marginalization

• Build (X, Y) such that distribution of interest is a 
marginal

• Exercises: 

• write pseudo-code to simulate from a mixture 
distribution with 2 normal components,

• show that rejection sampling is an augmentation  
sampling scheme

Def. 16



Running time of Monte 
Carlo methods



Fundamental equation to 
analyze Monte Carlo 

methods

running time =
number of samples 

needed to get a 
tolerance (with 

probability 95%)

x compute cost per 
sample

• Exercise:

• Compute the running time in tol and d 
for Example 7 but with non-diagonal 
covariance normal vectors
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Using CLT in practice
• Let X be a random tree

• We are looking at a clade indicator f(X) as in 
Example 2.

• After 500 iid trees your MC estimate for the 
clade support is roughly 10%

• Should you extract more samples?

• Say we want a scheme with relative error of 
less than 10% for approximately 95% of the 
random seeds


