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Ex 19

Example/exercise

= — x| - f(=) (Target)
- f(x) (direct sampling)
""" g (x) (IS t1)
9N(0,1)(5U) (IS N(0, 1))
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e Test function: |x|

® Target density: t-distribution, 3 degrees of freedom

® Compare (x-axis, |-1500, y axis, partial sum, range
of 100 replicates)

® Simple MC
® |S with t proposal, | degree of freedom

® |S with normal proposal



Non-convergence!

® |n the answer of Ex |9 (right), does IS still
converges (albeit slowly)?

® |f not, construct an example where the
following does not convergence (say in d)
to a constant random variable?

1 N
NZXZ-, X, iid
1=1



Prop 21

NIS: Analysis of the
asymptotic variance

Assume that V, (¢(X)w (X)) < oo and V, (w (X)) < oo then
Vn (E;HS - ]) 3 N (0, oy1g)
Exercise: compute asymptotic variance

Tool: delta method
If:  Vn(Z,—p) 2N (0,5).

Then: Vn(9(Z,) —g(w) =N (0,VTg(n) = Vg(n).



. Pr
NIS: Analysis of ™~
asymptotic bias
Assume that V, (¢(X)w (X)) < oo and V, (w (X)) < oo then

lim nE, (T;WS _ 1) = —covy (¢(X)w (X),w (X)) + Vy(w (X))I

n—oo

® Consequence: asymptotically, the bias is
negligible compared to the variance



Example 23

IS and RS in high
dimensions



m Toy example: Let X = R? and

- 1 Zf:i:1 77
" (o) exp( 2 )

and

m How do Rejection sampling and Importance sampling scale in
this context?



Rejection sampling (RS)

m We have
(%) d Zg=1 7] 1 d
w(x):q(@za exp( ; 1—; <o
for o > 1.
m Acceptance probability is
1
P (X accepted) = — — 0 as d — oo,
o

i.e. exponential degradation of performance.
m For d =100, c = 1.2, we have

P (X accepted) ~ 1.2 x 1078



Importance sampling

m \We have

w(z) = o exp (— Z%l 7 (1 — %)) .

m For the variance of the weights

0_4 d/2
VC][U}(X)]: <20_2_1> —1

where 0%/ (202 — 1) > 1 for any 0 > 1/2 = Exponential
variance increase.

m For d =100, 0 = 1.2, we have

V, [w(X)] ~ 1.8 x 10%.



Wait a minute..

Lecture 1:

m Simpson's rule for approximating integrals: error in C’)(n_l/d).

Lecture 2:

m Monte Carlo for approximating integrals: error in O(n_1/2)
with rate independent of d.

And now:

m Importance Sampling standard deviation in the Gaussian
example in exp(d)n~1/2,

= The rate is indeed independent of d but the constant explodes.



Diagnostic for IS



Building Monte Carlo e 2
confidence interval for IS

® Bias asymptotically negligible, use asymptotic
variance

® As in first exercise: for a 95% confidence interval,
use

Iy £ 1.961/ 02 i /7

® The asymptotic variance is...
® for BIS: o7y =V, (¢(X)w (X))
o for NIS: oxis :/(¢($)—1)

o 7 (z)
q ()

® |n both cases, replace unknowns by estimators...

dx




Effective sampling size (ESS)

® Note with method from previous slide we need to
fix a test function

® On one hand this is good since performance can
depend on the test function in general

® For example: rare events

® But often in practice performance more affected
by discrepancy between target and proposal

® Also, often have several test functions in mind

® So it’s useful to have diagnostic depending only on
the weights: use it to create the particles, ie pairs
(X, w), then apply all the test functions to it



Effective sampling size (ESS)

® Relative ESS: constructed from unnormalized
weights as follows (E,[W))? _ (151702
E, W2 L3 (WW)2

(Eq 25)

® Between [0, |]
® ESS: multiply by number of particles

® |nterpretation and caveats: roughly, how many
equivalent iid samples in terms of asymptotic
variance - details in Owen 9.3

® Theoretical justification: more application of delta
method, see Kong 1992, A note on importance
sampling using standardized weights



Markov chain
Monte Carlo



Motivation

® Methods we have seen so far (Simple MC,
RS, 1S)...

® do not scale well in d (except for a few
special cases)

® often work poorly in combinatorial
spaces



MCMC: main ideas

® Ve have LLNs and CLTs for Markov chains

® Question: how to characterize the limits?
(we cannot do it with the law of an
arbitrary X; as in iid case)

® Answer: use the stationary law instead

® We can design and simulate Markov chains
with a prescribed stationary distribution TT

® Even if we do not know the
normalization of TT



Towards MC
LLN&CLT:

Finite MC review



Def 26

m Let X be finite, w.l.o.g. X:={1,2,...,p}, then (X;),~, is a
Markov chain if -

P(X;=z| Xi=21,..,. K41 =31) =P( Xy = 2| X1 = 341).

m We restrict ourselves to homogeneous Markov chains:

Vm eN:P(X; =yl Xio1 =2) =P( X = y| Xpom—1 = ).

m | he so-called Markov transition kernel is

K(i,j) = Kij = P(Xy = j| Xy—1 = 1)



Prop 27
m Denoting u¢(x) = P (X; = x), the chain rule yields

t
P(Xl — X1, X2 — Xy euuy Xt — $t) — /11(5131) H KiEz‘—lﬂEi'
1=2

m We can also define the m-transition matrix K™ as
Kzf;.n = P( Xirm = j| X¢e = 10).
m Chapman-Kolmogorov equation:
KM = KmK"™
m We obtain
pir1(§) = > pe(i) Ky
i
I.e. in standard vector-matrix multiplication

pit1 = pe K.

and recursively s, = i K™,



Stationarity/invariance

Fixed points of the transition kernels

N




Def 28

m Definition: A distribution 7 is said to be invariant or
stationary for a Markov kernel, K, it tK = .

m If there exists ¢t such that X; ~ m where 7 is a stationary
distribution, then X; s ~ mK® = m for all s € N. (Note that
this tells us nothing about the correlation between the states

or their joint distribution.)

m Example: For any 0 € [0, 1]

admits

as invariant distribution.



Def 29

Definition: A Markov kernel K is w-reversible if
Ve, y € X Ky = 7y Kyy.

Lemma: If K is m-reversible then K is m-invariant.

Proof. Indeed we have

Z T Kpy = Z Ty Kyp = Ty,

reX reX
e . (TK), = my

Reversibility means that the statistics of the time-reversed
version of the process match those of the process in the
forward distribution, Ky is m-reversible as

m1Kp12 =5 (1 —0) = maKp 1.




Example 30

1/3 1/3 1/3
mlLet P = 1 0 0
0 1 0

We have P =7 for m = (1/2,1/3,1/6).

m P cannot be 7 reversible as
l—-3—=2—=1
IS a possible sequence whereas
l—-2—=3—=1

is not (as Py 3 = 0).
m Detailed balance does not hold as m9 Pog = 0 # w3 P3s.
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m All finite Markov chains have at least one stationary
distribution but not all stationary distributions are also
limiting distributions.

m Example

[ 04 06 0 0 )

0.2 08 0 0

0 0 0.4 0.6

\ 0 0 0.2 0.8 /

Two left eigenvectors of eigenvalue 1:

m = (1/4,3/4,0,0),
o = (0,0,1/4,3/4)

depending on initial state we get a different stationary
distribution.



Intuition
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Def 32

m Definition: A Markov chain is said to be irreducible if all the
states communicate with each other, that is Vz,y € X

nﬁ{tzkgf>0}<:al

m Definition: An irreducible Markov chain is aperiodic if there
exists ¢ € X such that

ged{s>1: K >0}=1
where gcd denotes the greatest common divisor.

m Example: Kg = ( ?—«9 é_g

and aperiodic if # € (0,1). If # =0, the gcd is 2.

) is irreducible if 6 € [0, 1)



Prop 33

m Proposition: If a finite state-space Markov chain is irreducible
then it has a unique stationary distribution and

o= =S 0(X) = T= 3 6(2) (o).

n t=1 reX

m Proposition: If a finite state-space Markov chain is irreducible
and aperiodic, then there exists 0 < o < 1 such that

1
5 P(X; = z| X1) — m(z)] < .

m Remark: Aperiodicity is not required for the averages to /\
converge to the expectation; e.g. take Kj.

This result (convergence
of marginals) is not as
useful to us




Exercise 34

Exercise

Construct an irreducible discrete Markov chain

Compute a Monte Carlo average with test
function = indicator on one of the states

Try to make an educated analytical guess for the
numerical value of asymptotic variance

Approximate numerically the asymptotic variance



Why we need a CLT

® As before with IS, we want;

® to determine when we have enough
samples

® to compare the running time of
competing methods



Hint for the exercise

Consider an irreducible chain then

J/

lim nVy (I,) = Vi (6 (X1)) + 2 i Covr (¢ (X1), ¢ (Xkt1))
k=1

I
—~

o
~

Proof: We have E. (Yn) — ] and

- 1
Vi (1) = ~2 > Covr (6 (Xi), 6 (X)))
=i =C(i~j)
1 n—1
— Z C(k)xg# pairs:z’—j:kz
k=—n+1 :nt|k|
n—1 00
k| &
kz;ﬂ (1 n) C (k) k;oo max (0, 1 n) C (k)

Now, specialize the Cov(...) expression for the setup of Exercise 34



