Monte Carlo methods

Alexandre Bouchard-Côté

Review / Q\&A / Exercise solutions

Example/exercise

- Target density: t-distribution, 3 degrees of freedom
- Compare (x-axis, l-I500, y axis, partial sum, range of 100 replicates)
- Simple MC
- IS with t proposal, I degree of freedom
- IS with normal proposal

Non-convergence?

- In the answer of Ex 19 (right), does IS still converges (albeit slowly)?
- If not, construct an example where the following does not convergence (say in d) to a constant random variable?

$$
\frac{1}{N} \sum_{i=1}^{N} X_{i}, \quad X_{i} \mathrm{iid}
$$

NIS:Analysis of the asymptotic variance

Prop 21

Assume that $\mathbb{V}_{q}(\phi(X) w(X))<\infty$ and $\mathbb{V}_{q}(w(X))<\infty$ then

$$
\sqrt{n}\left(\widehat{I}_{n}^{\mathrm{NIS}}-I\right) \xrightarrow{\mathrm{D}} \mathcal{N}\left(0, \sigma_{\mathrm{NIS}}^{2}\right)
$$

Exercise: compute asymptotic variance
Tool: delta method

$$
\text { If: } \quad \sqrt{n}\left(Z_{n}-\mu\right) \xrightarrow{D} \mathcal{N}(0, \Sigma) .
$$

Then: $\sqrt{n}\left(g\left(Z_{n}\right)-g(\mu)\right) \rightarrow \mathcal{N}\left(0, \nabla^{T} g(\mu) \Sigma \nabla g(\mu)\right)$.

NIS:Analysis of
 asymptotic bias

Prop 22

Assume that $\mathbb{V}_{q}(\phi(X) w(X))<\infty$ and $\mathbb{V}_{q}(w(X))<\infty$ then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n \mathbb{E}_{q}\left(\widehat{I}_{n}^{N I S}-I\right) & =-\operatorname{cov}_{q}(\phi(X) w(X), w(X))+\mathbb{V}_{q}(w(X)) I \\
& =-\int(\phi(x)-I) \frac{\pi^{2}(x)}{q(x)} d x
\end{aligned}
$$

- Consequence: asymptotically, the bias is negligible compared to the variance

Example 23

IS and RS in high dimensions

■ Toy example: Let $\mathbb{X}=\mathbb{R}^{d}$ and

$$
\pi(x)=\frac{1}{(2 \pi)^{d / 2}} \exp \left(-\frac{\sum_{i=1}^{d} x_{i}^{2}}{2}\right)
$$

and

$$
q(x)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{d / 2}} \exp \left(-\frac{\sum_{i=1}^{d} x_{i}^{2}}{2 \sigma^{2}}\right)
$$

■ How do Rejection sampling and Importance sampling scale in this context?

Rejection sampling (RS)

- We have

$$
w(x)=\frac{\pi(x)}{q(x)}=\sigma^{d} \exp \left(-\frac{\sum_{i=1}^{d} x_{i}^{2}}{2}\left(1-\frac{1}{\sigma^{2}}\right)\right) \leq \sigma^{d}
$$

for $\sigma>1$.

- Acceptance probability is

$$
\mathbb{P}(X \text { accepted })=\frac{1}{\sigma^{d}} \rightarrow 0 \text { as } d \rightarrow \infty
$$

i.e. exponential degradation of performance.

■ For $d=100, \sigma=1.2$, we have

$$
\mathbb{P}(X \text { accepted }) \approx 1.2 \times 10^{-8}
$$

Importance sampling

- We have

$$
w(x)=\sigma^{d} \exp \left(-\frac{\sum_{i=1}^{d} x_{i}^{2}}{2}\left(1-\frac{1}{\sigma^{2}}\right)\right) .
$$

- For the variance of the weights

$$
\mathbb{V}_{q}[w(X)]=\left(\frac{\sigma^{4}}{2 \sigma^{2}-1}\right)^{d / 2}-1
$$

where $\sigma^{4} /\left(2 \sigma^{2}-1\right)>1$ for any $\sigma^{2}>1 / 2 \Rightarrow$ Exponential variance increase.

- For $d=100, \sigma=1.2$, we have

$$
\mathbb{V}_{q}[w(X)] \approx 1.8 \times 10^{4}
$$

Lecture 1:

- Simpson's rule for approximating integrals: error in $\mathcal{O}\left(n^{-1 / d}\right)$.

Lecture 2:

- Monte Carlo for approximating integrals: error in $\mathcal{O}\left(n^{-1 / 2}\right)$ with rate independent of d.

And now:
■ Importance Sampling standard deviation in the Gaussian example in $\exp (d) n^{-1 / 2}$.
\Rightarrow The rate is indeed independent of d but the constant explodes.

Diagnostic for IS

Building Monte Carlo Prop 24

 confidence interval for IS- Bias asymptotically negligible, use asymptotic variance
- As in first exercise: for a 95\% confidence interval, use

$$
I_{n} \pm 1.96 \sqrt{\sigma_{\text {asympt }}^{2} / n}
$$

- The asymptotic variance is...
- for BIS: $\sigma_{\mathrm{IS}}^{2}:=\mathbb{V}_{q}(\phi(X) w(X))$
- for NIS: $\sigma_{\mathrm{NIS}}^{2}=\int(\phi(x)-I)^{2} \frac{\pi^{2}(x)}{q(x)} d x$
- In both cases, replace unknowns by estimators...

Effective sampling size (ESS)

- Note with method from previous slide we need to fix a test function
- On one hand this is good since performance can depend on the test function in general
- For example: rare events
- But often in practice performance more affected by discrepancy between target and proposal
- Also, often have several test functions in mind
- So it's useful to have diagnostic depending only on the weights: use it to create the particles, ie pairs (x, w), then apply all the test functions to it

Effective sampling size (ESS)

- Relative ESS: constructed from unnormalized weights as follows

$$
\frac{\left(E_{q}[\tilde{W}]\right)^{2}}{E_{q}\left[\tilde{W}^{2}\right]} \approx \frac{\left(\frac{1}{n} \sum \tilde{W}^{(i)}\right)^{2}}{\frac{1}{n} \sum\left(\tilde{W}^{(i)}\right)^{2}}(\text { Eq 25) }
$$

- Between [0, I]
- ESS: multiply by number of particles
- Interpretation and caveats: roughly, how many equivalent iid samples in terms of asymptotic variance - details in Owen 9.3
- Theoretical justification: more application of delta method, see Kong 1992, A note on importance sampling using standardized weights

Markov chain Monte Carlo

Motivation

- Methods we have seen so far (Simple MC, RS, IS)...
- do not scale well in d (except for a few special cases)
- often work poorly in combinatorial spaces

MCMC: main ideas

- We have LLNs and CLTs for Markov chains
- Question: how to characterize the limits? (we cannot do it with the law of an arbitrary X_{i} as in iid case)
- Answer: use the stationary law instead
- We can design and simulate Markov chains with a prescribed stationary distribution π
- Even if we do not know the normalization of π

Towards MC LLN\&CLT: Finite MC review

Def 26

■ Let \mathbb{X} be finite, w.l.o.g. $\mathbb{X}:=\{1,2, \ldots, p\}$, then $\left(X_{t}\right)_{t \geq 1}$ is a Markov chain if

$$
\mathbb{P}\left(X_{t}=x_{t} \mid X_{1}=x_{1}, \ldots, X_{t-1}=x_{t-1}\right)=\mathbb{P}\left(X_{t}=x_{t} \mid X_{t-1}=x_{t-1}\right)
$$

■ We restrict ourselves to homogeneous Markov chains:
$\forall m \in \mathbb{N}: \mathbb{P}\left(X_{t}=y \mid X_{t-1}=x\right)=\mathbb{P}\left(X_{t+m}=y \mid X_{t+m-1}=x\right)$.

- The so-called Markov transition kernel is

$$
K(i, j)=K_{i j}=\mathbb{P}\left(X_{t}=j \mid X_{t-1}=i\right)
$$

- Denoting $\mu_{t}(x)=\mathbb{P}\left(X_{t}=x\right)$, the chain rule yields

$$
\mathbb{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{t}=x_{t}\right)=\mu_{1}\left(x_{1}\right) \prod_{i=2}^{t} K_{x_{i-1} x_{i}}
$$

- We can also define the m-transition matrix K^{m} as

$$
K_{i j}^{m}:=\mathbb{P}\left(X_{t+m}=j \mid X_{t}=i\right) .
$$

- Chapman-Kolmogorov equation:

$$
K^{m+n}=K^{m} K^{n}
$$

- We obtain

$$
\mu_{t+1}(j)=\sum_{i} \mu_{t}(i) K_{i j}
$$

i.e. in standard vector-matrix multiplication

$$
\mu_{t+1}=\mu_{t} K
$$

and recursively $\mu_{t+m}=\mu_{t} K^{m}$.

Stationarity/invariance

Fixed points of the transition kernels

- Definition: A distribution π is said to be invariant or stationary for a Markov kernel, K, if $\pi K=\pi$.
■ If there exists t such that $X_{t} \sim \pi$ where π is a stationary distribution, then $X_{t+s} \sim \pi K^{s}=\pi$ for all $s \in \mathbb{N}$. (Note that this tells us nothing about the correlation between the states or their joint distribution.)
- Example: For any $\theta \in[0,1]$

$$
K_{\theta}=\left(\begin{array}{ll}
\theta & 1-\theta \\
1-\theta & \theta
\end{array}\right)
$$

admits

$$
\pi=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

as invariant distribution.

- Definition: A Markov kernel K is π-reversible if

$$
\forall x, y \in \mathbb{X}: \pi_{x} K_{x y}=\pi_{y} K_{y x} .
$$

- Lemma: If K is π-reversible then K is π-invariant.
- Proof. Indeed we have

$$
\begin{aligned}
& \sum_{x \in \mathbb{X}} \pi_{x} K_{x y}=\sum_{x \in \mathbb{X}} \pi_{y} K_{y x}=\pi_{y} \\
& \text { i.e } . \\
&(\pi K)_{y}=\pi_{y}
\end{aligned}
$$

■ Reversibility means that the statistics of the time-reversed version of the process match those of the process in the forward distribution, K_{θ} is π-reversible as
$\pi_{1} K_{\theta, 12}=\frac{1}{2}(1-\theta)=\pi_{2} K_{\theta, 21}$.

- Let $P=\left(\begin{array}{lll}1 / 3 & 1 / 3 & 1 / 3 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$.

We have $\pi P=\pi$ for $\pi=(1 / 2,1 / 3,1 / 6)$.

- P cannot be π reversible as

$$
1 \rightarrow 3 \rightarrow 2 \rightarrow 1
$$

is a possible sequence whereas

$$
1 \rightarrow 2 \rightarrow 3 \rightarrow 1
$$

is not (as $P_{2,3}=0$).

- Detailed balance does not hold as $\pi_{2} P_{23}=0 \neq \pi_{3} P_{32}$.

■ All finite Markov chains have at least one stationary distribution but not all stationary distributions are also limiting distributions.
■ Example

$$
P=\left(\begin{array}{llll}
0.4 & 0.6 & 0 & 0 \\
0.2 & 0.8 & 0 & 0 \\
0 & 0 & 0.4 & 0.6 \\
0 & 0 & 0.2 & 0.8
\end{array}\right)
$$

Two left eigenvectors of eigenvalue 1 :

$$
\begin{aligned}
& \pi_{1}=(1 / 4,3 / 4,0,0) \\
& \pi_{2}=(0,0,1 / 4,3 / 4)
\end{aligned}
$$

depending on initial state we get a different stationary distribution.

Intuition

- Definition: A Markov chain is said to be irreducible if all th ϵ states communicate with each other, that is $\forall x, y \in \mathbb{X}$ $\inf \left\{t: K_{x y}^{t}>0\right\}<\infty$.
- Definition: An irreducible Markov chain is aperiodic if there exists $x \in \mathbb{X}$ such that

$$
\operatorname{gcd}\left\{s \geq 1: K_{x x}^{s}>0\right\}=1
$$

where gcd denotes the greatest common divisor.

- Example: $K_{\theta}=\left(\begin{array}{ll}\theta & 1-\theta \\ 1-\theta & \theta\end{array}\right)$ is irreducible if $\theta \in[0,1)$ and aperiodic if $\theta \in(0,1)$. If $\theta=0$, the gcd is 2 .
- Proposition: If a finite state-space Markov chain is irreducible then it has a unique stationary distribution and

$$
\widehat{I}_{n}:=\frac{1}{n} \sum_{t=1}^{n} \phi\left(X_{t}\right) \rightarrow I:=\sum_{x \in \mathbb{X}} \phi(x) \pi(x) .
$$

- Proposition: If a finite state-space Markov chain is irreducible and aperiodic, then there exists $0 \leq \alpha<1$ such that

$$
\frac{1}{2}\left|\mathbb{P}\left(X_{t}=x \mid X_{1}\right)-\pi(x)\right| \leq \alpha^{t} .
$$

- Remark: Aperiodicity is not required for the averages to converge to the expectation; e.g. take K_{0}.

Exercise

- Construct an irreducible discrete Markov chain
- Compute a Monte Carlo average with test function $=$ indicator on one of the states
- Try to make an educated analytical guess for the numerical value of asymptotic variance
- Approximate numerically the asymptotic variance

Why we need a CLT

- As before with IS, we want:
- to determine when we have enough samples
- to compare the running time of competing methods

Hint for the exercise

Consider an irreducible chain then

$$
\lim _{n \rightarrow \infty} n \mathbb{V}_{\pi}\left(\widehat{I}_{n}\right)=\mathbb{V}_{\pi}\left(\phi\left(X_{1}\right)\right)+2 \sum_{k=1}^{\infty} \underbrace{\operatorname{Cov}_{\pi}\left(\phi\left(X_{1}\right), \phi\left(X_{k+1}\right)\right)}_{:=C(k)}
$$

Proof: We have $\mathbb{E}_{\pi}\left(\hat{I}_{n}\right)=I$ and

$$
\begin{aligned}
& n \mathbb{V}_{\pi}\left(\widehat{I}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \underbrace{\operatorname{Cov}_{\pi}\left(\phi\left(X_{i}\right), \phi\left(X_{j}\right)\right)}_{=C(i-j)} \\
& =\frac{1}{n} \sum_{k=-n+1}^{n-1} C(k) \times \underbrace{(\# \text { pairs }: i-j=k)}_{=n-|k|} \\
& =\sum_{k=-n+1}^{n-1}\left(1-\frac{|k|}{n}\right) C(k)=\sum_{k=-\infty}^{\infty} \max \left(0,1-\frac{|k|}{n}\right) C(k)
\end{aligned}
$$

Now, specialize the $\operatorname{Cov}(\ldots)$ expression for the setup of Exercise 34

