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Figure 3: Left: A BPS trajectory containing 200 segments/bounces and no refreshment (for clarity,
the first 15 segments are in black and the following ones are in light grey): the center of the space
is never explored. Right, solid line: ESS per CPU second as a function of d (log-log scale), along
with 95% confidence intervals based on 40 independent runs (the intervals are small and may be
difficult to see). Dashed line: linear regression curve. See Section 4.1 for details.

4 Numerical results

4.1 Gaussian distributions and the need for refreshment

We consider an isotropic multivariate Gaussian target distribution, U (x) = kxk2, to illustrate the
need for refreshment. Without refreshment, we obtain from Equation (7)

D

x(i), v(i)
E

=

(

�
p
� log V

i

if
⌦

x(i�1), v(i�1)

↵

 0,

�
q

⌦

x(i�1), v(i�1)

↵

2 � log V
i

otherwise,

and

�

�

�

x(i)

�

�

�

2

=

(

�

�x(i�1)

�

�

2 �
⌦

x(i�1), v(i�1)

↵

2 � log V
i

if
⌦

x(i�1), v(i�1)

↵

 0,
�

�x(i�1)

�

�

2 � log V
i

otherwise,

see Material for details. In particular, these calculations show if
⌦

x(i), v(i)
↵

 0 then
⌦

x(j), v(j)
↵

 0

for j > i so that kx(i)k2 =

�

�x(1)

�

�

2 �
⌦

x(1), v(1)
↵

2 � log V
i

for i � 2. In particular for x(0)

= e
1

and
v(0) = e

2

with e
i

being elements of standard basis of Rd, the norm of the position at all points
along the trajectory can never be smaller than 1 as illustrated in Figure 3.

In this scenario, we show that BPS without refreshment admits a countably infinite collection of
invariant distributions. Let us define r (t) = kx (t)k and m (t) = hx (t) , v (t)i / kx (t)k and denote
by �

k

the probability density of the chi distribution with k degrees of freedom.

Proposition 2. For any dimension d � 2, the process (r (t) ,m (t))
t�0

is Markov and its transition
kernel is invariant with respect to the probability densities

�

f
k

(r,m) / �
k

(

p
2r) · (1�m2

)

(k�3)/2

; k 2 {2, 3, . . .}
 

.

The proof is given in Appendix 2. By Theorem 1, we have a unique invariant measure as soon as
�ref > 0.
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Example/exercise

• Test function: |x|

• Target density: t-distribution, 3 degrees of freedom

• Compare (x-axis, 1-1500, y axis, partial sum, range 
of 100 replicates)

• Simple MC

• IS with t proposal, 1 degree of freedom

• IS with normal proposal

Proposition 2 The optimal proposal minimising V
q

⇣

bIIS
n

⌘

is given by

q
opt

(x) =
|�(x)|⇡ (x)

R

X |�(x)|⇡ (x) dx
.

Proof. We have indeed
V

q

(�(X)w (X)) = E
q

�

�2(X)w2 (X)
�

� I2.

For q = q
opt

, we have

E
q

opt

�

�2(X)w2 (X)
�

=

Z

X

�2(x)⇡2 (x)

|�(x)|⇡ (x)
dx.

Z

X
|�(x)|⇡ (x) dx

=

✓

Z

X
|�(x)|⇡ (x) dx

◆

2

We also have by Jensen’s inequality

E
q

�

�2(X)w2 (X)
�

� E2

q

(|�(X)|w (X)) =

✓

Z

X
|�(x)|⇡ (x) dx

◆

2

so we can conclude. ⌅

This optimal variance estimator cannot typically be implemented; e.g for � (x) > 0 we have q
opt

(x) =

�(x)⇡ (x) /I and V
q

opt

⇣

bIIS
n

⌘

= 0 but this cannot be implemented as this required knowing I! This can be

however use as a guideline to select q; i.e. select q (x) such that it approaches q
opt

(x) in some respect.

Example 1 Importance sampling for t-distribution. Assume we are interested in computing

I = E
⇡

(|X|)

where ⇡ (x) = f (x) a t

3

-distribution, that is a t-distribution with 3 degrees of freedom using Monte Carlo.

We propose 3 sampling schemes to compute I where (a) we directly sample from q (x) = f (x) , (b) we use

importance sampling with q (x) = g
t

1

(x) being a t

1

-distribution (that is a Cauchy) (c) we use importance

sampling with q (x) = g
N(0,1)

(x) being a standard normal distribution; see Figure 1 for an illustration.

The performance of the estimates are displayed in Figure 2 and the associated sample weights in Figure

3. We see that q (x) = g
N(0,1)

(x) yields a poor estimate as the variance of the weights is infinite whereas it

can be shown that g
t

1

yields a smaller variance estimate that f (x) .
22 2. Fundamental Concepts: Transformation, Rejection, and Reweighting
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Fig. 2.4. Illustration of the di↵erent instrumental distributions in example 2.5.

Sampling directly from the t

3

distribution can be seen as importance sampling with all weights w
i

⌘ 1,

this choice clearly minimises the variance of the weights. This however does not imply that this yields

an estimate of the integral
R

|x|f(x) dx of minimal variance. Indeed, after 1500 iterations the empirical

standard deviation (over 100 realisations) of the direct estimate is 0.0345, which is larger than the empirical

standard deviation of µ̃ when using a t

1

distribution as instrumental distribution, which is 0.0182. So using

a t

1

distribution as instrumental distribution is super-e�cient (see figure 2.5).

Figure 2.6 somewhat explains why the t
1

distribution is a far better choice than the N(0, 1) distributon. As

the N(0, 1) distribution does not have heavy enough tails, the weight tends to infinity as |x| ! +1. Thus

large |x| get large weights, causing the jumps of the estimate µ̃ shown in figure 2.5. The t

1

distribution

has heavy enough tails, so the weights are small for large values of |x|, explaining the small variance of

the estimate µ̃ when using a t

1

distribution as instrumental distribution. /

Figure 1: Di↵erent proposal distributions

2

Ex 19



Non-convergence?

• In the answer of Ex 19 (right), does IS still 
converges (albeit slowly)?

• If not, construct an example where the 
following does not convergence (say in d) 
to a constant random variable?

1

N

NX

i=1

Xi, Xi iid



NIS: Analysis of the 
asymptotic variance 

Let g : Rk ! R and let

rg =

✓

@g

@z
1

· · · @g

@z
k

◆

T

.

Let rg (µ) be rg evaluated z = µ and assume the elements of rg (µ) are non-zero then

p
n (g (Z

n

)� g (µ)) ! N
�

0,rTg (µ) ⌃ rg (µ)
�

.

Proposition 4 (CLT for Normalised Importance Sampling)

Assume that V
q

(�(X)w (X)) < 1 and V
q

(w (X)) < 1 then

p
n
⇣

bINIS

n

� I
⌘

D! N
�

0,�2

NIS

�

where

�2

NIS

= V
q

(�(X)w (X)) + I2V
q

(w (X))� 2Icov
q

(�(X)w (X) , w (X))

=

Z

(� (x)� I)2
⇡2 (x)

q (x)
dx

Proof. We apply the delta method to Z
n

= (Z
n1

, Z
n2

) where

Z
n1

=
1

n

n

X

i=1

�(X
i

)w(X
i

), Z
n2

=
1

n

n

X

i=1

w(X
i

)

and
bINIS

n

=
Z
n1

Z
n2

= g (Z
n

) .

By the CLT, we have

p
n

✓

Z
n1

� E
q

(�(X)w (X))
Z
n2

� E
q

(w (X))

◆

! N
✓

0,

✓

V
q

(�(X)w (X)) cov
q

(�(X)w (X) , w (X))
cov

q

(�(X)w (X) , w (X)) V
q

(w (X))

◆◆

(1)
and

rg =

 

@g

@z

1

@g

@z

2

!

=

✓

1/z
2

�z
1

/z2
2

◆

so

rg (µ) =

✓

1/E
q

(w (X)
�E

q

(�(X)w (X)) /E2

q

(w (X)

◆

=

✓

1
�E

q

(�(X)w (X))

◆

.

Hence we have

rTg (µ) ⌃ rg (µ) = V
q

(�(X)w (X)) + E2

q

(�(X)w (X))V
q

(w (X))� 2E
q

(�(X)w (X)) cov
q

(�(X)w (X) , w (X))

= V
q

(�(X)w (X)) + I2V
q

(w (X))� 2Icov
q

(�(X)w (X) , w (X))

Rearranging the terms, we obtain the desired expression. ⌅

Remark. We can have either �2

IS

< �2

NIS

or �2

IS

> �2

NIS

as it is demonstrated here on a toy example.
Indeed, we have

�2

NIS

� �2

IS

=

Z

(� (x)� I)2
⇡2 (x)

q (x)
dx�

Z

�2 (x)
⇡2 (x)

q (x)
dx

= I

✓

I

Z

⇡2 (x)

q (x)
dx� 2

Z

� (x)
⇡2 (x)

q (x)
dx

◆

.

For ⇡ (x) = N (x; 0, 1), q (x) = N
�

x; 0,�2

�

so

⇡2 (x)

q (x)
=

1p
2⇡

� exp

✓

�
✓

1� 1

2�2

◆

x2

◆

= ��0 1p
2⇡�0

exp

 

� x2

2 (�0)2

!

4

Exercise: compute asymptotic variance
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000 -2-2-2 -4-4-4 222 444

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

W
ei
gh

ts
W

i

Sample X
i

from the instrumental distribution

Sampling directly from t

3

IS using t

1

as instrumental distribution IS using N(0, 1) as instrumental distribution

Fig. 2.6. Weights W
i

obtained for 20 realisations X
i

from the di↵erent instrumental distributions.
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100 independent replications.
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Figure 3: Sample weights obtained for 20 realisations of X
i

from the di↵erent proposal distributions

1.2 Normalised Importance Sampling

Practically standard importance sampling has limited applications as it requires knowing ⇡ (x) exactly con-
trary to rejection sampling where ⇡ (x) and q (x) can be known only up to some normalising constants.
However there is an alternative version of importance sampling known as normalised importance sampling
which bypasses this problem. It relies on the following identity which holds whenever ⇡ (x) > 0 ) q(x) > 0

I = E
⇡

(�(X)) =

Z

X
� (x)⇡ (x) dx

=

R

X � (x)w (x) q (x) dx
R

X w (x) q (x) dx

=
E
q

(�(X)w (X))

E
q

(w (X))
.

Now let X
1

, ..., X
n

be a sample of independent random variables distributed according to q then the
estimator

bINIS

n

=

P

n

i=1

�(X
i

)w(X
i

)
P

n

i=1

w(X
i

)

is consistent through the strong law of large numbers as long as E
q

(|�(X)|w (X)) < 1.

The normalised importance sampling estimator bINIS

n

is a ratio of two estimators so we do not have simple
expressions for its finite bias and variance but we can obtain their asymptotic (i.e. as n ! 1) expression
by relying on the delta method.

Proposition 3 (The multivariate Delta method). Suppose Z
n

= (Z
n1

, ..., Z
nk

) is a sequence of random

vectors such that p
n (Z

n

� µ)
D! N (0,⌃) .

3

If:

Then:

Let g : Rk ! R and let

rg =

✓

@g

@z
1

· · · @g

@z
k

◆

T

.

Let rg (µ) be rg evaluated z = µ and assume the elements of rg (µ) are non-zero then

p
n (g (Z

n

)� g (µ)) ! N
�

0,rTg (µ) ⌃ rg (µ)
�

.

Proposition 4 (CLT for Normalised Importance Sampling)

Assume that V
q

(�(X)w (X)) < 1 and V
q

(w (X)) < 1 then

p
n
⇣

bINIS

n

� I
⌘

D! N
�

0,�2

NIS

�

where

�2

NIS

= V
q

(�(X)w (X)) + I2V
q

(w (X))� 2Icov
q

(�(X)w (X) , w (X))

=

Z

(� (x)� I)2
⇡2 (x)

q (x)
dx

Proof. We apply the delta method to Z
n

= (Z
n1

, Z
n2

) where

Z
n1

=
1

n

n

X

i=1

�(X
i

)w(X
i

), Z
n2

=
1

n

n

X

i=1

w(X
i

)

and
bINIS

n

=
Z
n1

Z
n2

= g (Z
n

) .

By the CLT, we have

p
n

✓

Z
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q

(�(X)w (X))
Z
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(w (X))

◆
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✓
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=
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◆
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✓
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Hence we have

rTg (µ) ⌃ rg (µ) = V
q

(�(X)w (X)) + E2

q

(�(X)w (X))V
q

(w (X))� 2E
q
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Rearranging the terms, we obtain the desired expression. ⌅

Remark. We can have either �2
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< �2

NIS

or �2

IS

> �2

NIS

as it is demonstrated here on a toy example.
Indeed, we have
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Tool: delta method

Prop 21



NIS: Analysis of  
asymptotic bias

• Consequence: asymptotically, the bias is 
negligible compared to the variance

where (�0)2 = �2/
�

2�2 � 1
�

. Hence for � (x) = x2 +m then for �2 > 1/2

I

Z

⇡2 (x)

q (x)
dx� 2

Z

� (x)
⇡2 (x)

q (x)
dx = ��0

n

(1 +m)� 2
⇣

(�0)
2

+m
⌘o

= ��0
nh

1� 2 (�0)
2

i

�m
o

.

For �2 2 (1/2,1) , we have 1 � 2 (�0)2 < 0. Hence if we vary m, the di↵erence can be either positive or
negative.

We know that bIIS
n

is unbiased whereas bINIS

n

is not. We give here an expression for the asymptotic bias.

Proposition 5 (Asymptotic Bias). Assume that V
q

(�(X)w (X)) < 1 and V
q

(w (X)) < 1 then we

have

lim
n!1

nE
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(�(X)w (X) , w (X)) + V
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(w (X))I

= �
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⇡2 (x)

q (x)
dx.

Sketch of proof. We have using the same notation as in the proof of the previous theorem
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Now using (1) and by taking expectations, we obtain the result. ⌅

Remark. The bias being of order 1/n, we can conclude that the mean square error of bINIS

n

is asymptot-
ically governed by its variance term.

Example 2 (Bayesian analysis of a Markov chain) Consider a two-state discrete time Markov chain (X
t

)
with transition matrix
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where (�0)2 = �2/
�
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. Hence for � (x) = x2 +m then for �2 > 1/2
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For �2 2 (1/2,1) , we have 1 � 2 (�0)2 < 0. Hence if we vary m, the di↵erence can be either positive or
negative.

We know that bIIS
n

is unbiased whereas bINIS

n

is not. We give here an expression for the asymptotic bias.
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Sketch of proof. We have using the same notation as in the proof of the previous theorem
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n2

� 1)2 (Z
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� E
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= Z
n1

� (Z
n2

� 1)Z
n1

+ (Z
n2

� 1)2 E
q

(�(X)w (X)) + . . . .

Hence we have

nbINIS

n

= nZ
n1

�
p
n (Z

n2

� 1)
p
nZ

n1

+
�p

n (Z
n2

� 1)
 

2 E
q

(�(X)w (X)) + . . . .

Now using (1) and by taking expectations, we obtain the result. ⌅

Remark. The bias being of order 1/n, we can conclude that the mean square error of bINIS

n

is asymptot-
ically governed by its variance term.

Example 2 (Bayesian analysis of a Markov chain) Consider a two-state discrete time Markov chain (X
t

)
with transition matrix

✓

↵
1

1� ↵
1

1� ↵
2

↵
2

◆

that is P (X
t+1

= 1|X
t

= 1) = 1�P (X
t+1

= 2|X
t

= 1) = ↵
1

and P (X
t+1

= 2|X
t

= 2) = 1�P (X
t+1

= 1|X
t

= 2) =
↵
2

. We assume that some physical constraints tell us that ↵
1

+ ↵
2

< 1. Assume we observe (X
1

, ..., X
m

) =
(x

1

, ..., x
m

) and want to perform Bayesian inference about (↵
1

,↵
2

). We set the following prior

p (↵
1

,↵
2

) = 2I
↵

1

+↵

2

1

then the posterior of interest is

p (↵
1

,↵
2

|x
1:m

) / ↵
m

1,1

1

(1� ↵
1

)m1,2 (1� ↵
2

)m2,1 ↵
m

2,2

2

I
↵

1

+↵

2

1

where

m
i,j

=
m�1

X

t=1

I
xt=i

I
xt+1

=i
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IS and RS in high 
dimensions

Example 23



Rejection and Importance Sampling in High Dimensions

Toy example: Let X = Rd and

π (x) = 1
(2π)d/2 exp

(

−
∑d

i=1 x2
i

2

)

and
q (x) = 1

(2πσ2)d/2 exp
(

−
∑d

i=1 x2
i

2σ2

)

.

How do Rejection sampling and Importance sampling scale in
this context?

Pierre Jacob Advanced Simulation 12/ 25



Rejection sampling (RS)Performance of Rejection Sampling

We have

w (x) = π (x)
q (x) = σd exp

(

−
∑d

i=1 x2
i

2

(
1 − 1

σ2

))

≤ σd

for σ > 1.
Acceptance probability is

P (X accepted) = 1
σd → 0 as d → ∞,

i.e. exponential degradation of performance.
For d = 100, σ = 1.2, we have

P (X accepted) ≈ 1.2 × 10−8

Pierre Jacob Advanced Simulation 13/ 25



Importance samplingPerformance of Importance Sampling

We have

w (x) = σd exp
(

−
∑d

i=1 x2
i

2

(
1 − 1

σ2

))

.

For the variance of the weights

Vq [w (X)] =
(

σ4

2σ2 − 1

)d/2
− 1

where σ4/
(
2σ2 − 1

)
> 1 for any σ2 > 1/2 ⇒ Exponential

variance increase.
For d = 100, σ = 1.2, we have

Vq [w (X)] ≈ 1.8 × 104.

Pierre Jacob Advanced Simulation 14/ 25



Wait a minute..Wait a minute. . .

Lecture 1:
Simpson’s rule for approximating integrals: error in O(n−1/d).

Lecture 2:
Monte Carlo for approximating integrals: error in O(n−1/2)
with rate independent of d.

And now:
Importance Sampling standard deviation in the Gaussian
example in exp(d)n−1/2.

⇒ The rate is indeed independent of d but the constant explodes.

Pierre Jacob Advanced Simulation 15/ 25



Diagnostic for IS



Building Monte Carlo 
confidence interval for IS

• Bias asymptotically negligible, use asymptotic 
variance

• As in first exercise: for a 95% confidence interval, 
use  

• The asymptotic variance is...

• for BIS:

• for NIS:

• In both cases, replace unknowns by estimators...

In ± 1.96
q
�2
asympt/n

Advanced Simulation Methods

Chapter 3 - Importance Sampling and Variance Reduction Methods

1 Importance Sampling

In the rejection sampling algorithm, we simulate from a distribution ⇡ by sampling from a proposal distri-
bution q and rejecting some of the proposed values. Importance sampling uses another correction scheme
based on reweighting. In this context the proposal q is also known as an importance distribution.

1.1 Standard Importance Sampling

Let q,⇡ be two pdfs on X such that ⇡ (x) > 0 ) q (x) > 0. Then, for any1 set A such that ⇡ (A) > 0

⇡ (A) :=

Z

A

⇡ (x) dx

=

Z

A

⇡ (x)

q (x)
| {z }

q

:=w(x)

(x) dx

=

Z

A

w (x) q (x) dx

where w : X ! R+ is the so-called importance weight function. This identity can be obviously generalised
to the expectation of any function. Assume ⇡ (x)� (x) > 0 ) q(x) > 0, then

I = E
⇡

(�(X)) =

Z

X
� (x)⇡ (x) dx

=

Z

X
� (x)w (x) q (x) dx

= E
q

(�(X)w (X)).

Now let X
1

, ..., X
n

be a sample of independent random variables distributed according to q then the
estimator

bIIS
n

=
1

n

n

X

i=1

�(X
i

)w(X
i

)

is consistent through the strong law of large numbers if E
q

(|�(X)|w (X)) < 1. We also obtain easily the
following result.

Proposition 1 (Bias and Variance of Standard Importance Sampling)

(a) E
q

⇣

bIIS
n

⌘

= I,

(b) V
q

⇣

bIIS
n

⌘

= 1

n

V
q

(�(X)w (X)) and if �2

IS

:= V
q

(�(X)w (X)) < 1

p
n
⇣

bIIS
n

� I
⌘

D! N
�

0,�2

IS

�

Remark. A su�cient condition for V
q

⇣

bIIS
n

⌘

to be finite is to have V
⇡

(�(X)) finite and ⇡ (x) /Mq (x) 
M < 1 for any x 2 X.

A natural question consists of choosing what is the best proposal distribution to minimize V
q

⇣

bIIS
n

⌘

.

1

For X = Rd

, we consider the Borel sigma algebra F = B
�
Rd

�
, A 2 F and the density is with respect to the Lebesgue

measure dx.
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Let g : Rk ! R and let

rg =

✓

@g

@z
1

· · · @g

@z
k

◆

T

.

Let rg (µ) be rg evaluated z = µ and assume the elements of rg (µ) are non-zero then

p
n (g (Z

n

)� g (µ)) ! N
�

0,rTg (µ) ⌃ rg (µ)
�

.

Proposition 4 (CLT for Normalised Importance Sampling)

Assume that V
q

(�(X)w (X)) < 1 and V
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(w (X)) < 1 then
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Rearranging the terms, we obtain the desired expression. ⌅
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as it is demonstrated here on a toy example.
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Effective sampling size (ESS)
• Note with method from previous slide we need to 

fix a test function

• On one hand this is good since performance can 
depend on the test function in general

• For example: rare events

• But often in practice performance more affected 
by discrepancy between target and proposal

• Also, often have several test functions in mind

• So it’s useful to have diagnostic depending only on 
the weights: use it to create the particles, ie pairs 
(x, w), then apply all the test functions to it



Effective sampling size (ESS)
• Relative ESS: constructed from unnormalized 

weights as follows 

• Between [0, 1]

• ESS: multiply by number of particles

• Interpretation and caveats: roughly, how many 
equivalent iid samples in terms of asymptotic 
variance - details in Owen 9.3

• Theoretical justification: more application of delta 
method, see Kong 1992,  A note on importance 
sampling using standardized weights

(Eq[W̃ ])2

Eq[W̃ 2]
⇡

( 1n
P

W̃ (i))2

1
n

P
(W̃ (i))2

(Eq 25)



Markov chain  
Monte Carlo



Motivation

• Methods we have seen so far (Simple MC, 
RS, IS)...

• do not scale well in d (except for a few 
special cases)

• often work poorly in combinatorial 
spaces



MCMC: main ideas
• We have LLNs and CLTs for Markov chains

• Question: how to characterize the limits? 
(we cannot do it with the law of an 
arbitrary Xi as in iid case)

• Answer: use the stationary law instead

• We can design and simulate Markov chains 
with a prescribed stationary distribution π

• Even if we do not know the 
normalization of π



Towards MC 
LLN&CLT:

Finite MC review



Markov chains - Finite State Space

Let X be finite, w.l.o.g. X := {1, 2, ..., p}, then (Xt)t≥1 is a
Markov chain if

P(Xt = xt | X1 = x1, ..., Xt−1 = xt−1) = P(Xt = xt | Xt−1 = xt−1).

We restrict ourselves to homogeneous Markov chains:

∀m ∈ N : P(Xt = y| Xt−1 = x) = P(Xt+m = y| Xt+m−1 = x).

The so-called Markov transition kernel is

K (i, j) = Kij = P(Xt = j| Xt−1 = i)
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Markov chains - Finite State Space
Denoting µt(x) = P (Xt = x), the chain rule yields

P(X1 = x1, X2 = x2, ..., Xt = xt) = µ1(x1)
t∏

i=2
Kxi−1xi .

We can also define the m-transition matrix Km as
Km

ij := P(Xt+m = j| Xt = i).
Chapman-Kolmogorov equation:

Km+n = KmKn .

We obtain
µt+1(j) =

∑

i
µt(i)Kij

i.e. in standard vector-matrix multiplication
µt+1 = µtK .

and recursively µt+m = µtKm .
Pierre Jacob Advanced Simulation 18/ 25
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Stationarity/invariance
Fixed points of the transition kernels



Invariant Distribution

Definition: A distribution π is said to be invariant or
stationary for a Markov kernel, K , if πK = π.
If there exists t such that Xt ∼ π where π is a stationary
distribution, then Xt+s ∼ πK s = π for all s ∈ N. (Note that
this tells us nothing about the correlation between the states
or their joint distribution.)
Example: For any θ ∈ [0, 1]

Kθ =
(

θ 1 − θ
1 − θ θ

)

admits
π =

(
1
2

1
2

)

as invariant distribution.
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Reversibility - Detailed Balance

Definition: A Markov kernel K is π-reversible if

∀x, y ∈ X : πxKxy = πyKyx .

Lemma: If K is π-reversible then K is π-invariant.
Proof. Indeed we have

∑

x∈X
πxKxy =

∑

x∈X
πyKyx = πy,

i.e . (πK )y = πy

Reversibility means that the statistics of the time-reversed
version of the process match those of the process in the
forward distribution, Kθ is π-reversible as
π1Kθ,12 = 1

2 (1 − θ) = π2Kθ,21.
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Lack of Reversibility

Let P =

⎛

⎜⎝
1/3 1/3 1/3
1 0 0
0 1 0

⎞

⎟⎠.

We have πP = π for π = (1/2, 1/3, 1/6).
P cannot be π reversible as

1 → 3 → 2 → 1

is a possible sequence whereas

1 → 2 → 3 → 1

is not (as P2,3 = 0).
Detailed balance does not hold as π2P23 = 0 ̸= π3P32.
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Remarks

All finite Markov chains have at least one stationary
distribution but not all stationary distributions are also
limiting distributions.
Example

P =

⎛

⎜⎜⎜⎝

0.4 0.6 0 0
0.2 0.8 0 0
0 0 0.4 0.6
0 0 0.2 0.8

⎞

⎟⎟⎟⎠

Two left eigenvectors of eigenvalue 1:

π1 = (1/4, 3/4, 0, 0) ,

π2 = (0, 0, 1/4, 3/4)

depending on initial state we get a different stationary
distribution.

Pierre Jacob Advanced Simulation 22/ 25
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Intuition



Irreducibility and Aperiodicity

Definition: A Markov chain is said to be irreducible if all the
states communicate with each other, that is ∀x, y ∈ X
inf
{

t : K t
xy > 0

}
< ∞.

Definition: An irreducible Markov chain is aperiodic if there
exists x ∈ X such that

gcd {s ≥ 1 : K s
xx > 0} = 1

where gcd denotes the greatest common divisor.

Example: Kθ =
(

θ 1 − θ
1 − θ θ

)

is irreducible if θ ∈ [0, 1)

and aperiodic if θ ∈ (0, 1). If θ = 0, the gcd is 2.
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Some Asymptotic Results

Proposition: If a finite state-space Markov chain is irreducible
then it has a unique stationary distribution and

În := 1
n

n∑

t=1
φ (Xt) → I :=

∑

x∈X
φ (x) π(x).

Proposition: If a finite state-space Markov chain is irreducible
and aperiodic, then there exists 0 ≤ α < 1 such that

1
2 |P(Xt = x| X1) − π(x)| ≤ αt .

Remark: Aperiodicity is not required for the averages to
converge to the expectation; e.g. take K0.
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This result (convergence 
of marginals) is not as 

useful to us

Prop 33 



Exercise

• Construct an irreducible discrete Markov chain

• Compute a Monte Carlo average with test 
function = indicator on one of the states

• Try to make an educated analytical guess for the 
numerical value of asymptotic variance

• Approximate numerically the asymptotic variance

Exercise 34 



Why we need a CLT

• As before with IS, we want:

• to determine when we have enough 
samples 

• to compare the running time of 
competing methods



Variance of the Estimate
Consider an irreducible chain then

lim
n→∞

nVπ

(
În
)

= Vπ (φ (X1)) + 2
∞∑

k=1
Covπ (φ (X1) , φ (Xk+1))
︸ ︷︷ ︸

:=C(k)

Proof: We have Eπ

(
În
)

= I and

nVπ

(
În
)

= 1
n

n∑

i=1

n∑

j=1
Covπ (φ (Xi) , φ (Xj))︸ ︷︷ ︸

=C(i−j)

= 1
n

n−1∑

k=−n+1
C (k) × (# pairs : i − j = k)

︸ ︷︷ ︸
=n−|k|

=
n−1∑

k=−n+1

(
1 − |k|

n

)
C (k) =

∞∑

k=−∞
max

(
0, 1 − |k|

n

)
C (k)
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Hint for the exercise

Now, specialize the Cov(...) expression for the setup of Exercise 34


