
●

●

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

xBounds

yB
ou
nd
s

●

●

1

2

3

4

2.0 2.5 3.0 3.5 4.0
log10(d)

lo
g1
0(
es
sP
er
Se
c)

Figure 3: Left: A BPS trajectory containing 200 segments/bounces and no refreshment (for clarity,
the first 15 segments are in black and the following ones are in light grey): the center of the space
is never explored. Right, solid line: ESS per CPU second as a function of d (log-log scale), along
with 95% confidence intervals based on 40 independent runs (the intervals are small and may be
difficult to see). Dashed line: linear regression curve. See Section 4.1 for details.

4 Numerical results

4.1 Gaussian distributions and the need for refreshment

We consider an isotropic multivariate Gaussian target distribution, U (x) = kxk2, to illustrate the
need for refreshment. Without refreshment, we obtain from Equation (7)

D

x(i), v(i)
E

=

(

�
p
� log V

i

if
⌦

x(i�1), v(i�1)

↵

 0,

�
q

⌦

x(i�1), v(i�1)

↵

2 � log V
i

otherwise,

and

�

�

�

x(i)

�

�

�

2

=

(

�

�x(i�1)

�

�

2 �
⌦

x(i�1), v(i�1)

↵

2 � log V
i

if
⌦

x(i�1), v(i�1)

↵

 0,
�

�x(i�1)

�

�

2 � log V
i

otherwise,

see Material for details. In particular, these calculations show if
⌦

x(i), v(i)
↵

 0 then
⌦

x(j), v(j)
↵

 0

for j > i so that kx(i)k2 =

�

�x(1)

�

�

2 �
⌦

x(1), v(1)
↵

2 � log V
i

for i � 2. In particular for x(0)

= e
1

and
v(0) = e

2

with e
i

being elements of standard basis of Rd, the norm of the position at all points
along the trajectory can never be smaller than 1 as illustrated in Figure 3.

In this scenario, we show that BPS without refreshment admits a countably infinite collection of
invariant distributions. Let us define r (t) = kx (t)k and m (t) = hx (t) , v (t)i / kx (t)k and denote
by �

k

the probability density of the chi distribution with k degrees of freedom.

Proposition 2. For any dimension d � 2, the process (r (t) ,m (t))
t�0

is Markov and its transition
kernel is invariant with respect to the probability densities

�

f
k

(r,m) / �
k

(

p
2r) · (1�m2

)

(k�3)/2

; k 2 {2, 3, . . .}
 

.

The proof is given in Appendix 2. By Theorem 1, we have a unique invariant measure as soon as
�ref > 0.
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Markov chain  
Monte Carlo,

continued



Motivation

• Methods we have seen so far (Simple MC, 
RS, IS)...

• do not scale well in d (except for a few 
special cases)

• often work poorly in combinatorial 
spaces



MCMC: main ideas

• We have LLNs and CLTs for Markov chains 

• Question: how to characterize the limits? (we 
cannot do it with the law of an arbitrary Xi as in 
iid case)

• Answer: use the stationary law instead

• We can design and simulate Markov chains with a 
prescribed stationary distribution π

• Even if we do not know the normalization of π



Towards MC 
LLN&CLT:

Finite MC review



Stationarity/invariance
Fixed points of the transition kernels



Invariant Distribution

Definition: A distribution π is said to be invariant or
stationary for a Markov kernel, K , if πK = π.
If there exists t such that Xt ∼ π where π is a stationary
distribution, then Xt+s ∼ πK s = π for all s ∈ N. (Note that
this tells us nothing about the correlation between the states
or their joint distribution.)
Example: For any θ ∈ [0, 1]

Kθ =
(

θ 1 − θ
1 − θ θ

)

admits
π =

(
1
2

1
2

)

as invariant distribution.
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Reversibility - Detailed Balance

Definition: A Markov kernel K is π-reversible if

∀x, y ∈ X : πxKxy = πyKyx .

Lemma: If K is π-reversible then K is π-invariant.
Proof. Indeed we have

∑

x∈X
πxKxy =

∑

x∈X
πyKyx = πy,

i.e . (πK )y = πy

Reversibility means that the statistics of the time-reversed
version of the process match those of the process in the
forward distribution, Kθ is π-reversible as
π1Kθ,12 = 1

2 (1 − θ) = π2Kθ,21.
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Def 29



Lack of Reversibility

Let P =

⎛

⎜⎝
1/3 1/3 1/3
1 0 0
0 1 0

⎞

⎟⎠.

We have πP = π for π = (1/2, 1/3, 1/6).
P cannot be π reversible as

1 → 3 → 2 → 1

is a possible sequence whereas

1 → 2 → 3 → 1

is not (as P2,3 = 0).
Detailed balance does not hold as π2P23 = 0 ̸= π3P32.

Pierre Jacob Advanced Simulation 21/ 25

Example 30 



Remarks

All finite Markov chains have at least one stationary
distribution but not all stationary distributions are also
limiting distributions.
Example

P =

⎛

⎜⎜⎜⎝

0.4 0.6 0 0
0.2 0.8 0 0
0 0 0.4 0.6
0 0 0.2 0.8

⎞

⎟⎟⎟⎠

Two left eigenvectors of eigenvalue 1:

π1 = (1/4, 3/4, 0, 0) ,

π2 = (0, 0, 1/4, 3/4)

depending on initial state we get a different stationary
distribution.

Pierre Jacob Advanced Simulation 22/ 25
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Intuition



Irreducibility and Aperiodicity

Definition: A Markov chain is said to be irreducible if all the
states communicate with each other, that is ∀x, y ∈ X
inf
{

t : K t
xy > 0

}
< ∞.

Definition: An irreducible Markov chain is aperiodic if there
exists x ∈ X such that

gcd {s ≥ 1 : K s
xx > 0} = 1

where gcd denotes the greatest common divisor.

Example: Kθ =
(

θ 1 − θ
1 − θ θ

)

is irreducible if θ ∈ [0, 1)

and aperiodic if θ ∈ (0, 1). If θ = 0, the gcd is 2.
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Def 32 



Some Asymptotic Results

Proposition: If a finite state-space Markov chain is irreducible
then it has a unique stationary distribution and

În := 1
n

n∑

t=1
φ (Xt) → I :=

∑

x∈X
φ (x) π(x).

Proposition: If a finite state-space Markov chain is irreducible
and aperiodic, then there exists 0 ≤ α < 1 such that

1
2 |P(Xt = x| X1) − π(x)| ≤ αt .

Remark: Aperiodicity is not required for the averages to
converge to the expectation; e.g. take K0.
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This result (convergence of marginals) 
is not as useful to us directly (but it is 
as an intermediate result in proofs)

Prop 33 

a.s.



A few more definitions

• Stationarity: marginal distributions are all 
equal

• I.e. chain is initialized at a stationary 
distribution

Def 34 



LLN for MC: intuition



Mixing
• How fast is the chain forgetting about its initalization.

• Many definitions. One of them is rho-mixing:  
 

• Following result from Roberts and Rosenthal 1997 
(Thm 2.1) is useful:

• Every reversible, geometrically ergodic, stationary 
Markov chain is rho-mixing

• We will define geometric ergodicity later, for now 
just use it holds for irreducible finite chains

• Also (Bradley, 1986, Thm 4.2): if the chain is stationary 
then convergence is at an exponential rate

that
R
f

2

d⇡ < 1. In this case the mixing coe�cients become

↵

n

= sup
A,B2A

����
Z

A

⇡(dx)Pn(x,B)� ⇡(A)⇡(B)

���� (31)

�

n

= sup
m2N

A1,...,AI2A
A1, . . . , AI partition ⌦

B1...BJ2A
B1, . . . , BJ partition ⌦

1

2

IX

i=1

JX

j=1

����
Z

Ai

⇡(dx)Pn(x,B
j

)� ⇡(A
i

)⇡(B
j

)

���� (32)

⇢

n

= sup
f,g2L2(⇡)

��cor
�
f(X

k

), g(X
k+n

)
��� (33)

�

n

= sup
A,B2A
⇡(B)>0

����

R
A

⇡(dx)Pn(x,B)

⇡(B)
� ⇡(A)

���� (34)

Moreover, we have the following (Bradley, 1986, Theorem 4.2)

Theorem 19. If a stationary Markov chain is rho-mixing, then it is rho-
mixing exponentially fast, meaning ⇢

n

 Ms

n for some s < 1 and M < 1.
If a stationary Markov chain is phi-mixing, then it is phi-mixing exponen-
tially fast.

Corollary 20. For every square-integrable functional of a stationary, posi-
tive Harris recurrent Markov chain that is rho-mixing or phi-mixing satisfies
the (19) with

�

2 = lim
n!1

var{f(X
1

) + · · ·+ f(X
n

)}. (35)

This is Theorem 19 combined with part (ii) of Theorem 6 in the handout
on stationary stochastic processes combined with phi-mixing implies rho-
mixing.

Theorem 21. Every positive Harris recurrent, aperiodic, stationary Markov
chain is beta-mixing, hence alpha-mixing. If such a chain is geometrically
ergodic, then it is beta-mixing exponentially fast, hence alpha-mixing expo-
nentially fast.

Proof. The first sentence is Theorem 4.3 in Bradley (1986). The alpha-
mixing part of the second sentence is in the proof of Theorem 2 in Chan and
Geyer (1994), and that method of proof easily extends to beta-mixing.

Corollary 22. A geometrically ergodic, stationary Markov chain has a cen-
tral limit theorem for all functionals having 2 + " moments for some " > 0,

33

! 0

Prop 35 



Variance of the Estimate
Consider an irreducible chain then

lim
n→∞

nVπ

(
În
)

= Vπ (φ (X1)) + 2
∞∑

k=1
Covπ (φ (X1) , φ (Xk+1))
︸ ︷︷ ︸

:=C(k)

Proof: We have Eπ

(
În
)

= I and

nVπ

(
În
)

= 1
n

n∑

i=1

n∑

j=1
Covπ (φ (Xi) , φ (Xj))︸ ︷︷ ︸

=C(i−j)

= 1
n

n−1∑

k=−n+1
C (k) × (# pairs : i − j = k)

︸ ︷︷ ︸
=n−|k|

=
n−1∑

k=−n+1

(
1 − |k|

n

)
C (k) =

∞∑

k=−∞
max

(
0, 1 − |k|

n

)
C (k)
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Consider a stationary chain:
Prop 36 



CLT for MC: intuition



Why we need a CLT

• As before with IS, we want:

• to determine when we have enough 
samples 

• to compare the running time of 
competing methods



Exercise

• Construct an irreducible discrete Markov chain

• Compute a Monte Carlo average with test 
function = indicator on one of the states

• Try to make an educated analytical guess for the 
numerical value of asymptotic variance

• Approximate numerically the asymptotic variance

Exercise 34 



CLT (discrete version)

• For irreducible Markov chains with 
stationary distribution π:

Central Limit Theorem
Theorem. Under regularity conditions, a CLT for the ergodic
averages of a Harris recurrent, π-invariant Markov chain

lim
√

t
[

1
t

t∑

i=1
φ (Xi) −

∫

X
φ (x) π (x) dx

]
D→ N

(
0, σ2 (φ)

)
,

σ2 (φ) = Vπ [φ (X1)] + 2
∞∑

k=2
Covπ [φ (X1) , φ (Xk)] .

Example. For the AR Gaussian model,
π (x) = N

(
x; 0, τ2/(1 − ρ2)

) for |ρ| < 1 and

Cov (X1, Xk) = ρk−1V [X1] = ρk−1 τ2

1 − ρ2 .

Therefore with φ (x) = x

σ2 = τ2

1 − ρ2

(

1 + 2
∞∑

k=1
ρk
)

= τ2

1 − ρ2
1 + ρ

1 − ρ
.
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Metropolis-Hastings



MCMC: main ideas

• We have LLNs and CLTs for Markov chains

• Question: how to characterize the limits? (we 
cannot do it with the law of an arbitrary Xi as in 
iid case)

• Answer: use the stationary law instead

• We can design and simulate Markov chains 
with a prescribed stationary distribution π 

• Even if we do not know the normalization of π



Metropolis-Hastings (MH)
• Idea: start with a transition probability q(x’|x) 

called the proposal

• This defines a Markov chain, but it is not  
π-invariant

• Transform it to get a new Markov chain with 
transition probability K which is π-invariant

• Surprisingly, all we have to do is move some 
mass towards self-transition!



MH: algorithmic 
description of the new 
kernel (denoted K or T)

Metropolis-Hastings algorithm

Target distribution on X = Rd of density π (x).
Proposal: for any x, x ′ ∈ X we have q (x ′| x) ≥ 0 and∫
X q (x ′| x) dx ′ = 1.

Starting with X (1), for t = 2, 3, ...

1 Sample X⋆ ∼ q
(

·| X (t−1)
)

.

2 Compute

α
(

X⋆| X (t−1)
)

= min

⎛

⎝1,
π (X⋆) q

(
X (t−1)

∣∣∣X⋆
)

π
(
X (t−1)) q

(
X⋆| X (t−1))

⎞

⎠

3 Sample U ∼ U[0,1]. If U ≤ α
(

X⋆| X (t−1)
)
, set X (t) = X⋆,

otherwise set X (t) = X (t−1).
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Do we need the 
normalization of π? q?

Def 38 



MCMC: a naive way to use 
MH (many alternatives exist!)

• Pick arbitrary initial X1

• Simulate a Markov chain X1, X2, X3, ...

• Use the samples to compute the MC 
average 

• Note: there will be duplicates in this sum 
(why?)

• By the LLN for Markov chains, this will get 
arbitrarily close to the integral of interest

Irreducibility and Recurrence

Proposition: Assume π satisfies the positivity condition, then
the Gibbs sampler yields a π−irreducible and recurrent
Markov chain.

Theorem. Assume the positivity condition is satisfied then we
have for any integrable function φ : X → R:

lim 1
t

t∑

i=1
φ
(
X (i)

)
=
∫

X
φ (x) π (x) dx

for π−almost all starting value X (1).
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Optional tweaks
• Remove a prefix of the sequence (burn-in)

• Not necessary by LLN

• Heuristic can be useful when initialization is poor 
(but there are ways to get good initialization. Hint: 
don’t use MAP!)

• Take one out of every k samples (thinning)

• Again, not necessary by LLN

• Only good reason to do it is for memory/storage 
reasons

• But often, used because of misunderstanding of 
theory



Examples
• Most frequent choice (simple but usually not best/most 

efficient!):  
pick q(x, x’) = normal density...

• centered at x: random walk metropolis

• What is the acceptance probability?

• biased by gradient: Langevin (later)

• Restriction to a neighborhood:  
q(x, x’) = π(x’) 1[x’ ∈ N(x)]

• If x’ ∈ N(x) ⇔ x ∈ N(x’) this is (generalized) Gibbs 

sampling.

• What is the acceptance probability?

Example 40 



Example, continued

• Let’s look at the details of a Gibbs sampler

• How to sample from Markov Random 
Field?

Example 41



Motivation

Task: given some images (a 2D array of pixels), segment it 
into clusters of pixels 

In general, there is an unknown number of clusters, so we will 
apply nonparametric priors, but for now, assume there are 
only ‘background’ and ‘people’ clusters



... ...

Model for image segmentation

... ...

... ...

... ...

...

...

... ...Is this pixel part of 
‘background’ (B) or 

‘people’ (P) ? 

RGB value of the 
pixel

Potentials to 
encourage adjacent 
cluster indicators to 

have the same 
value, i.e. if x≠x’  

f(x, x) > f(x, x�)

For each cluster, 
there will be a 

different distribution 
over pixel colors



Ef(X) � 1
S

S�

i=1

f(X(i))

Computing the posterior

B
B

B

B
P

P P

P
P B

B

B

B
B

P P

P
B B

B

B

P
B

P P

P
B

Samples:
X 1,1

Monte Carlo estimator:  for S samples

t
X 1,3

t
X 1,3

t+1

t
t



‘Naive’ Gibbs sampling

B
B

B

B

P P

P
B

P

Loop: pick one node (i,j)  at random, erase the contents of the 
guessed values in (i,j), freeze the value of the other nodes

B
B

B

B

P P

P
B

Then: resample a value for the node (i,j) conditioning on all the 
others, and write this to the current state at (i,j)

B
B

B

B

P P

P
B

Easy!
B

B
B

B

B

P

P
B

B

P



Starting with a simpler version

B
B

B

B

P P

P
B

P

Loop: pick one node (i,j)  at random, erase the contents of the 
guessed values in (i,j), freeze the value of the other nodes

B
B

B

B

P P

P
B

Then: resample a value for the node (i,j) conditioning on all the 
others, and write this to the current state at (i,j)

B
B

B

B

P P

P
B

Easy!
B

B
B

B

B

P

P
B

B

P

Fix sampling to 
node (2,2) 

Will relax this 
later



Transition matrix of the Gibbs sampler: 29 x 29 matrix

T  = 

B

P

B

B

P

P

B

P

P

0.1 0.01
0.01
...

...

Way too large to represent in 
memory but we will compute 

entries on the fly

B

P

B

B

P

P

B

P

P

B

P

B

B

P

P

B

P

P

B

P

B

B

P

P

B

P

P

...

...

First example: Gibbs construction



Tx,y =
�

x1

· · ·
�

x9

T (1)
x,x1

T (2)
x1,x2

· · · T (9)
x8,x�

Often need several kernels to get 
irreducibility (and hence a CLT)

T =
9�

k=1

�kT (k)

Solution 1: mixing kernels.  Suppose we have one Gibbs 
kernel for each variable T(1), ..., T(9).  Then the mixture of 
them is also reversible (by linearity)

Solution 2: alternating kernels deterministically (ie. using the 
first, then second, etc).  

Often works better: shuffle then alternate



Exercise
• Derive (theoretically, for now) a valid MCMC 

algorithm for one of the following problems:

• sampling uniformly from perfect bi-partite graph 
matchings

• sampling uniformly from unrooted bifurcating 
phylogenetic trees

• sampling uniformly from multiple sequence 
alignments

• sampling uniformly from another combinatorial 
structure of your choice

Exercise 42



Stopping criteria
• Many diagnostic exist

• All have limitations

• Some are dubious

• Best approach is CLT (with same caveats as IS):  
for a 95% confidence interval, use  
 

• The asymptotic variance is:  
 

In ± 1.96
q
�2
asympt/n

Central Limit Theorem
Theorem. Under regularity conditions, a CLT for the ergodic
averages of a Harris recurrent, π-invariant Markov chain

lim
√

t
[

1
t

t∑

i=1
φ (Xi) −

∫

X
φ (x) π (x) dx

]
D→ N

(
0, σ2 (φ)

)
,

σ2 (φ) = Vπ [φ (X1)] + 2
∞∑

k=2
Covπ [φ (X1) , φ (Xk)] .

Example. For the AR Gaussian model,
π (x) = N

(
x; 0, τ2/(1 − ρ2)

) for |ρ| < 1 and

Cov (X1, Xk) = ρk−1V [X1] = ρk−1 τ2

1 − ρ2 .

Therefore with φ (x) = x

σ2 = τ2

1 − ρ2

(

1 + 2
∞∑

k=1
ρk
)

= τ2

1 − ρ2
1 + ρ

1 − ρ
.

Pierre Jacob Advanced Simulation 11/ 35



Estimation of the 
asymptotic variance

• Direct method: estimate the auto-correlations 
(ACF)  
 

• Can be done quickly with FFT

• But estimator has infinite variance! Need to 
truncate (factoid: should be positive for 
reversible processes, so a heuristic is to truncate 
when negative-can still be unstable). 



ESS for MC

• Idea is similar as for IS, but still tied to a test function:  
 

• Can estimate using ACF as in last slide

• Better method: batch estimators.

• Segment the MCMC trace into chunks of length √n 

• Assume sampler is good enough so that behaviour 
across blocks is nearly iid

ESS(N)

N
!

�2

asymptotic

�2

iid

Def 43



Analysis of MH

• First, analyse one kernel at the time to 
show it is π-invariant 

• Then, show mixture/alternation is also  
π-invariant AND irreducible

• Conclude LLN holds

• In discrete case, also get CLT, in infinite 
space, need more (geometric ergodicity)



Invariance of a single 
kernelTransition Kernel and Reversibility

Lemma. The transition kernel of the Metropolis-Hastings
algorithm is given by

K (y | x) ≡ K (x, y) = α(y | x)q(y | x) + (1 − a(x))δx(y)

where δx denotes the Dirac mass at x.
Proof. We have

K (x, y) =
∫

q(x⋆ | x){α(x⋆ | x)δx⋆(y) + (1 − α(x⋆ | x))δx(y)}dx⋆

= q(y | x)α(y | x) +
{∫

q(x⋆ | x)(1 − α(x⋆ | x))dx⋆
}

δx(y)

= q(y | x)α(y | x) +
{

1 −
∫

q(x⋆ | x)α(x⋆ | x)dx⋆
}

δx(y)

= q(y | x)α(y | x) + {1 − a(x)} δx(y)
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Invariance of a single 
kernelReversibility

Proposition. The Metropolis-Hastings kernel K is
π−reversible and thus admit π as invariant distribution.

Proof. For any x, y ∈ X, with x ̸= y

π(x)K (x, y) = π(x)q(y | x)α(y | x)

= π(x)q(y | x)min
(

1,
π(y)q(x | y)
π(x)q(y | x)

)

= min (π(x)q(y | x), π(y)q(x | y))

= π(y)q(x | y)min
(

π(x)q(y | x)
π(y)q(x | y) , 1

)

= π(y)K (x, y)
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Prop 45



Exercise
• If we have a collections of π-invariant 

kernels..

• then their mixture is π-invariant as long 
as the mixture coefficients do not 
depend on the states

• similarly for deterministic alternations

• hence, mixtures of alternations are also 
π-invariant 

Exercise 46



Important, overlooked 
condition on proposal q
• Mutual absolute continuity condition:  
 

• For example, for discrete state space where  
the target is positive:  
 

• This can be tricky in combinatorial spaces 
(more on that soon)

Z

A
⇡(dx)q(x,B) > 0 ,

Z

B
⇡(dx)q(x,A) > 0

q(x, y) > 0 , q(y, x) > 0

Def 47


