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Markov chain
Monte Carlo,
continued



Motivation

® Methods we have seen so far (Simple MC,
RS, 1S)...

® do not scale well in d (except for a few
special cases)

® often work poorly in combinatorial
spaces



MCMC: main ideas

® We have LLNs and CLTs for Markov chains

® Question: how to characterize the limits? (we
cannot do it with the law of an arbitrary X; as in
iid case)

® Answer: use the stationary law instead

® We can design and simulate Markov chains with a
prescribed stationary distribution TT

® Even if we do not know the normalization of TT



Towards MC
LLN&CLT:

Finite MC review



Stationarity/invariance

Fixed points of the transition kernels

N




Def 28

m Definition: A distribution 7 is said to be invariant or
stationary for a Markov kernel, K, it tK = .

m If there exists ¢t such that X; ~ m where 7 is a stationary
distribution, then X; s ~ mK® = m for all s € N. (Note that
this tells us nothing about the correlation between the states

or their joint distribution.)

m Example: For any 0 € [0, 1]

admits

as invariant distribution.
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Definition: A Markov kernel K is w-reversible if
Ve, y € X Ky = 7y Kyy.

Lemma: If K is m-reversible then K is m-invariant.

Proof. Indeed we have

Z T Kpy = Z Ty Kyp = Ty,

reX reX
e . (TK), = my

Reversibility means that the statistics of the time-reversed
version of the process match those of the process in the
forward distribution, Ky is m-reversible as

m1Kp12 =5 (1 —0) = maKp 1.
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1/3 1/3 1/3
mlLet P = 1 0 0
0 1 0

We have P =7 for m = (1/2,1/3,1/6).

m P cannot be 7 reversible as
l—-3—=2—=1
IS a possible sequence whereas
l—-2—=3—=1

is not (as Py 3 = 0).
m Detailed balance does not hold as m9 Pog = 0 # w3 P3s.
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m All finite Markov chains have at least one stationary
distribution but not all stationary distributions are also
limiting distributions.

m Example

[ 04 06 0 0 )

0.2 08 0 0

0 0 0.4 0.6

\ 0 0 0.2 0.8 /

Two left eigenvectors of eigenvalue 1:

m = (1/4,3/4,0,0),
o = (0,0,1/4,3/4)

depending on initial state we get a different stationary
distribution.



Intuition
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m Definition: A Markov chain is said to be irreducible if all the
states communicate with each other, that is Vz,y € X

nﬁ{tzkgf>0}<:al

m Definition: An irreducible Markov chain is aperiodic if there
exists ¢ € X such that

ged{s>1: K >0}=1
where gcd denotes the greatest common divisor.

m Example: Kg = ( ?—«9 é_g

and aperiodic if # € (0,1). If # =0, the gcd is 2.

) is irreducible if 6 € [0, 1)
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m Proposition: If a finite state-space Markov chain is irreducible
then it has a unique stationary distribution and

I, := 1 En:¢(Xt) — I := Z ¢ (z)mw(z). a.s.

n t=1 reX

m Proposition: If a finite state-space Markov chain is irreducible
and aperiodic, then there exists 0 < o < 1 such that

1
5 P(X; =z| X;) —7(2)] < a.

m Remark: Aperiodicity is not required for the averages to
converge to the expectation; e.g. take Kj.

This result (convergence of marginals)
IS not as useful to us directly (but it is
as an intermediate result in proofs)
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A few more definitions

® Stationarity: marginal distributions are all
equal

® |.e.chain is initialized at a stationary
distribution



LLN for MC: intuition



M |X|ng Prop 35

® How fast is the chain forgetting about its initalization.

® Many definitions. One of them is rho-mixing:

pn=sup |cor(f(Xp),9(Xpsn))| — 0
f,g€La(m)

® Following result from Roberts and Rosenthal 1997
(Thm 2.1) is useful:

® Every reversible, geometrically ergodic, stationary
Markov chain is rho-mixing

® We will define geometric ergodicity later, for now
just use it holds for irreducible finite chains

® Also (Bradley, 1986, Thm 4.2): if the chain is stationary
then convergence is at an exponential rate
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Consider a stationary chain:
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CLT for MC: intuition



Why we need a CLT

® As before with IS, we want;

® to determine when we have enough
samples

® to compare the running time of
competing methods
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Exercise

Construct an irreducible discrete Markov chain

Compute a Monte Carlo average with test
function = indicator on one of the states

Try to make an educated analytical guess for the
numerical value of asymptotic variance

Approximate numerically the asymptotic variance
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CLT (discrete version)

® fFor irreducible Markov chains with
stationary distribution TT:

lim V|36 (X0) — [ 6 (2w (2) de| BN (0,07 (6)




Metropolis-Hastings



MCMC: main ideas

® Ve have LLNs and CLTs for Markov chains

® Question: how to characterize the limits? (we
cannot do it with the law of an arbitrary X; as in
iid case)

® Answer: use the stationary law instead

® We can design and simulate Markov chains
with a prescribed stationary distribution 1T

® Even if we do not know the normalization of TT



Metropolis-Hastings (MH)

® |dea: start with a transition probability q(x’[x)
called the proposal

® [his defines a Markov chain, but it is not
TT-invariant

® Transform it to get a new Markov chain with
transition probability K which is TT-invariant

® Surprisingly, all we have to do is move some
mass towards self-transition!
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MH: algorithmic
description of the new
kernel (denoted K or T)

Sample X* ~ ¢ (\ X(t_l)) . Do we need the

g C . normalization of m? g7
g Compute

7 (X*) g (X(D] X*)
x| yv(t=1)\ _ .. .-
o (X*| XD = min (1, (XD g (X0 XD

Sample U ~ U[o,u- It U < « (X*\ X(t_l)), set X(t) — X
otherwise set X() = x(t=1)
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MCMC: a naive way to use
MH (many alternatives exist!)

® Pick arbitrary initial X,
® Simulate a Markov chain X, X3, X3, ...

® Use the samples to compute the MC

average |
20 (x7)
® Note: there will be duplicates in this sum
(why?)

® By the LLN for Markov chains, this will get
arbitrarily close to the integral of interest



Optional tweaks

® Remove a prefix of the sequence (burn-in)

® Not necessary by LLN

® Heuristic can be useful when initialization is poor

(but there are ways to get good initialization. Hint:
don’t use MAP!)

® Take one out of every k samples (thinning)

® Again, not necessary by LLN

® Only good reason to do it is for memory/storage
reasons

® But often, used because of misunderstanding of
theory
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Examples

® Most frequent choice (simple but usually not best/most
efficient!):
pick q(x, x’) = normal density...

® centered at x: random walk metropolis
® What is the acceptance probability?
® biased by gradient: Langevin (later)

® Restriction to a neighborhood:
q(x, x) = T(X’) 1[x" € N(x)]

o [f X’ € N(x) & x € N(X') this is (generalized) Gibbs
sampling.

® What is the acceptance probability?
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Example, continued

® | et’s look at the details of a Gibbs sampler

® How to sample from Markov Random
Field?



Motivation

Task: given some images (a 2D array of pixels), segment it
Into clusters of pixels

In general, there is an unknown number of clusters, so we will
apply nonparametric priors, but for now, assume there are
only ‘background’ and ‘people’ clusters




Model for image segmentation
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Computing the posterior

Samples:

Monte Carlo estimator: for .S samples

;S
ﬂf(X)%§Zf(Xt )
=1



L

Naive' Gibbs sampling

Loop: pick one node (7,;) at random, erase the contents of the
guessed values in (7,/), freeze the value of the other nodes

Then: resamp
others, and wr

e a value for the node (7,/) conditioning on all the
ite this to the current state at (7,/)




Starting with a simpler version

Loop: pick one node (7,/) at ranrdem, erase the contents of the
guessed values in (7,/), freeze the value of the other nodes

Fix sampling to
node (2,2)
Will relax this
ater

Then: resample a value for the node (7,7) conditioning on all the
others, and write this to the current state at (7,/)




First example: Gibbs construction

Transition matrix of the Gibbs sampler: 2° x 2° matrix

@
@
)

0.1 0.01 s
0.01 0-0-9
(T

T: OaGaG

) / -
Way too large to rgpresent in ggggg 33?33
memory but we will compute

®&C® ®&E®
entries on the fly
- J




Often need several kernels to get
iIrreducibility (and hence a CLT)

Solution 1: mixing kernels. Suppose we have one Gibbs
kernel for each variable 701, ..., T®. Then the mixture of

them is also reversible (by linearity)
9

T = Z o, TF)
k=1

Solution 2: alternating kernels deterministically (ie. using the
first, then second, etc).

_ 1 2 (9)
Toy =) ) Tod T, Ty
9

L]

Often works better: shuffle then alternate



Exercise 42

Exercise

® Derive (theoretically, for now) a valid MCMC
algorithm for one of the following problems:

sampling uniformly from perfect bi-partite graph
matchings

sampling uniformly from unrooted bifurcating
phylogenetic trees

sampling uniformly from multiple sequence
alighments

sampling uniformly from another combinatorial
structure of your choice



Stopping criteria

® Many diagnostic exist
® All have limitations
® Some are dubious

® Best approach is CLT (with same caveats as |S):
for a 95% confidence interval, use

In T 1°96\/O§sympt/n

® T[he asymptotic variance is:

0 () = Vi [0 (X1)]+2> Couvr [p(X1), 0 (Xy)].

k=2



Estimation of the
asymptotic variance

® Direct method: estimate the auto-correlations

(ACF)

® Can be done qwckly with FFT
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® But estimator has infinite variance! Need to
truncate (factoid: should be positive for
reversible processes, so a heuristic is to truncate
when negative-can still be unstable).
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ESS for MC

® |dea is similar as for IS, but still tied to a test function:

ESS(N)  Tisymptotic
N / o

® Can estimate using ACF as in last slide

® Better method: batch estimators.

® Segment the MCMC trace into chunks of length v/n

® Assume sampler is good enough so that behaviour
across blocks is nearly iid



Analysis of MH

First, analyse one kernel at the time to
show it is TT-invariant

Then, show mixture/alternation is also
TT-invariant AND irreducible

Conclude LLN holds

In discrete case, also get CLT, in infinite
space, need more (geometric ergodicity)
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Invariance of a single
kernel

m Lemma. The transition kernel of the Metropolis-Hastings
algorithm is given by

K(y|lz)=K(z,y)=aly|z)q(y | z)+ (1 — a(z))d(y)

where 0, denotes the Dirac mass at z.
m Proof. We have

K@y = [ @ | 9){ala" | 062 (5) + (1 = alo” | 2)(p)}do*
[ o190 - ata” | 2)ds L 8,0
—a(y | aly| 2)+ {1 [ aa” | 2)ala” | 2)ds* | 5,(0)

= q(y | r)a(y | z) + {1 — a(z)} 6.(y)

=q(y | »)aly | z) +

/\
/ \




Invariance of a single
kernel

m Proposition. The Metropolis-Hastings kernel K is
m—reversible and thus admit 7 as invariant distribution.

m Proof. For any z,y € X, with z # y
m(z)K(z,y) = m(2)q(y | z)aly | z)

— n(a)a(y | aymin (1,

= min (m(z)q(y | z), 7(y

= m(y)q(z | y)min (

=7(y)K(z,y)

ek

m(x

— |~ ~—r —~ | —
NN AN | N

Prop 45
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Exercise

® |f we have a collections of TT-invariant
kernels..

® then their mixture is TT-invariant as long
as the mixture coefficients do not
depend on the states

® similarly for deterministic alternations

® hence, mixtures of alternations are also
TT-invariant
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Important, overlooked
condition on proposal g

® Mutual absolute continuity condition:
/ m(dx)q(x, B) >0 @/ m(dx)q(x, A) > 0
A B

® For example, for discrete state space where
the target is positive:

q(z,y) >0 q(y,z) >0

® This can be tricky in combinatorial spaces
(more on that soon)



