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Figure 3: Left: A BPS trajectory containing 200 segments/bounces and no refreshment (for clarity,
the first 15 segments are in black and the following ones are in light grey): the center of the space
is never explored. Right, solid line: ESS per CPU second as a function of d (log-log scale), along
with 95% confidence intervals based on 40 independent runs (the intervals are small and may be
difficult to see). Dashed line: linear regression curve. See Section 4.1 for details.

4 Numerical results

4.1 Gaussian distributions and the need for refreshment

We consider an isotropic multivariate Gaussian target distribution, U (x) = kxk2, to illustrate the
need for refreshment. Without refreshment, we obtain from Equation (7)

D

x(i), v(i)
E

=

(

�
p
� log V

i

if
⌦

x(i�1), v(i�1)

↵

 0,

�
q

⌦

x(i�1), v(i�1)

↵

2 � log V
i

otherwise,

and

�

�

�

x(i)

�

�

�

2

=

(

�

�x(i�1)

�

�

2 �
⌦

x(i�1), v(i�1)

↵

2 � log V
i

if
⌦

x(i�1), v(i�1)

↵

 0,
�

�x(i�1)

�

�

2 � log V
i

otherwise,

see Material for details. In particular, these calculations show if
⌦

x(i), v(i)
↵

 0 then
⌦

x(j), v(j)
↵

 0

for j > i so that kx(i)k2 =

�

�x(1)

�

�

2 �
⌦

x(1), v(1)
↵

2 � log V
i

for i � 2. In particular for x(0)

= e
1

and
v(0) = e

2

with e
i

being elements of standard basis of Rd, the norm of the position at all points
along the trajectory can never be smaller than 1 as illustrated in Figure 3.

In this scenario, we show that BPS without refreshment admits a countably infinite collection of
invariant distributions. Let us define r (t) = kx (t)k and m (t) = hx (t) , v (t)i / kx (t)k and denote
by �

k

the probability density of the chi distribution with k degrees of freedom.

Proposition 2. For any dimension d � 2, the process (r (t) ,m (t))
t�0

is Markov and its transition
kernel is invariant with respect to the probability densities

�

f
k

(r,m) / �
k

(

p
2r) · (1�m2

)

(k�3)/2

; k 2 {2, 3, . . .}
 

.

The proof is given in Appendix 2. By Theorem 1, we have a unique invariant measure as soon as
�ref > 0.
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Monte Carlo methods
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Project

• Due: April 26 (send code + pdf by email)

• By next Monday (March 26): send informal plan for 
project by email (extension possible)

• See Syllabus page on website for more info

• Encouraged to combine with your research and/or 
other classes



Typical projects
• methodology: e.g. develop a sampler for a new 

datatype; or, extend an existing one to work around 
a practical issue

• analysis: using a mix of theory and experiments, 
benchmark a new samper (e.g. ask me about new 
work on discrete state space); or, compare the 
scalability popular methods that have not been 
compared before

• application: e.g. using Monte Carlo on a novel type 
of data while demonstrating state-of-the-art 
practices (no just running MCMC with defaults)



Exercise

• Construct an irreducible discrete Markov chain

• Compute a Monte Carlo average with test 
function = indicator on one of the states

• Try to make an educated analytical guess for the 
numerical value of asymptotic variance

• Approximate numerically the asymptotic variance

Exercise 34 



Metropolis-Hastings,
continued



MCMC: main ideas

• We have LLNs and CLTs for Markov chains

• Question: how to characterize the limits? (we 
cannot do it with the law of an arbitrary Xi as in 
iid case)

• Answer: use the stationary law instead

• We can design and simulate Markov chains 
with a prescribed stationary distribution π 

• Even if we do not know the normalization of π



MH: algorithmic 
description of the new 
kernel (denoted K or T)

Metropolis-Hastings algorithm

Target distribution on X = Rd of density π (x).
Proposal: for any x, x ′ ∈ X we have q (x ′| x) ≥ 0 and∫
X q (x ′| x) dx ′ = 1.

Starting with X (1), for t = 2, 3, ...

1 Sample X⋆ ∼ q
(

·| X (t−1)
)

.

2 Compute

α
(

X⋆| X (t−1)
)

= min

⎛

⎝1,
π (X⋆) q

(
X (t−1)

∣∣∣X⋆
)

π
(
X (t−1)) q

(
X⋆| X (t−1))

⎞

⎠

3 Sample U ∼ U[0,1]. If U ≤ α
(

X⋆| X (t−1)
)
, set X (t) = X⋆,

otherwise set X (t) = X (t−1).

Pierre Jacob Advanced Simulation 3/ 30

Do we need the 
normalization of π? q?

Def 38 



MCMC: a naive way to use 
MH (many alternatives exist!)

• Pick arbitrary initial X1

• Simulate a Markov chain X1, X2, X3, ...

• Use the samples to compute the MC 
average 

• Note: there will be duplicates in this sum 
(why?)

• By the LLN for Markov chains, this will get 
arbitrarily close to the integral of interest

Irreducibility and Recurrence

Proposition: Assume π satisfies the positivity condition, then
the Gibbs sampler yields a π−irreducible and recurrent
Markov chain.

Theorem. Assume the positivity condition is satisfied then we
have for any integrable function φ : X → R:

lim 1
t

t∑

i=1
φ
(
X (i)

)
=
∫

X
φ (x) π (x) dx

for π−almost all starting value X (1).

Pierre Jacob Advanced Simulation 9/ 24

Def 39 



Examples
• Most frequent choice (simple but usually not best/most efficient!):  

pick q(x, x’) = normal density...

• centered at x: random walk metropolis

• What is the acceptance probability?

• biased by gradient: Langevin (later)

• Restriction to a neighborhood:  
q(x, x’) = π(x’) 1[x’ ∈ N(x)] / Z(x)

• If x’ ∈ N(x) ⇔ x ∈ N(x’) this is (generalized) Gibbs sampling.

• What is the acceptance probability?

• Why ‘generalized’? For Gibbs Z(x) = Z(x’); but this is not 
always true in general (why?)

Example 40 



Biometrika (1996), 83, 3, pp. 681-682
Printed in Great Britain

Miscellanea

Peskun's theorem and a modified discrete-state Gibbs sampler
BY JUN S. LIU

Department of Statistics, Stanford University, Stanford, California 94305, U.S.A.

SUMMARY

Attention is drawn to the use of Peskun's theorem in improving statistical efficiency of discrete-
state Gibbs sampling.

Some key words: Ising model; Metropolis-Hastings algorithm; Markov chain Monte Carlo.

1. PESKUN'S THEOREM

Let X be a discrete random variable following distribution n, and let P be the transition matrix
of a Markov chain with n as its invariant distribution. We call P reversible if

n(x)P(x,y) = n(y)P(y,x).
Following Peskun (1973), we define P2^Pi for any two transition matrices if each of the off-
diagonal elements of P2 is greater than or equal to the corresponding off-diagonal elements of P t .
The following lemma is Theorem 2.1.1 of Peskun (1973).

LEMMA 1-1. Suppose each of the irreducible transition matrices Pt and P2 is reversible for the same
invariant probability distribution n. If P2 ^ P1 then, for any f

v(fn, P1)>i>(/,7t,P2), (1)
where

v(f n, P) = lim N var(fN),

and TN = Jl^if{Xm}/N is an estimator of7 = £„(/) using N consecutive samples from the Markov
chains. Kemeny & Snell (1969, p. 84) gave an expression for v(f, n, P) in terms off, P and n.

Whenever (1) holds, we say that P2 is statistically more efficient than P t .

2. A MODIFIED GIBBS SAMPLER

Suppose that X = (Xu . . . , Xd), where Xt takes m, possible values, and that n(x) is the distribution
of interest. In the random scan Gibbs sampler (Geman & Geman, 1984), each successive step
chooses a coordinate i independently, according to a probability distribution a = (ccl,...,0Ld), and
then the current value x, of Xt is replaced by a value yt, drawn from the corresponding full
conditional distribution. Thus, the nonzero elements of the transition matrix f\ are P^x, y) =
a,rt(3',|x_,), where y = x, except that yt replaces x,; and x_, = x, except that x, is omitted.

Here we consider a modification of the above procedure in which a value yh different from x,,
is drawn with probability

Downloaded from https://academic.oup.com/biomet/article-abstract/83/3/681/241540
by guest
on 21 March 2018



Example, continued

• Let’s look at the details of a Gibbs sampler

• How to sample from Markov Random 
Field?

Example 41



Motivation
Task: given some images (a 2D array of pixels), segment it 
into clusters of pixels 

In general, there is an unknown number of clusters, so we will 
apply nonparametric priors, but for now, assume there are 
only ‘background’ and ‘people’ clusters



... ...

Model for image segmentation

... ...

... ...

... ...

...

...

... ...Is this pixel part of 
‘background’ (B) or 

‘people’ (P) ? 

RGB value of the 
pixel

Potentials to 
encourage adjacent 
cluster indicators to 

have the same 
value, i.e. if x≠x’  

f(x, x) > f(x, x�)

For each cluster, 
there will be a 

different distribution 
over pixel colors



Ef(X) � 1
S

S�

i=1

f(X(i))

Computing the posterior

B
B

B

B
P

P P

P
P B

B

B

B
B

P P

P
B B

B

B

P
B

P P

P
B

Samples:
X 1,1

Monte Carlo estimator:  for S samples

t
X 1,3

t
X 1,3

t+1

t
t



‘Naive’ Gibbs sampling

B
B

B

B

P P

P
B

P

Loop: pick one node (i,j)  at random, erase the contents of the 
guessed values in (i,j), freeze the value of the other nodes

B
B

B

B

P P

P
B

Then: resample a value for the node (i,j) conditioning on all the 
others, and write this to the current state at (i,j)

B
B

B

B

P P

P
B

Easy!
B

B
B

B

B

P

P
B

B

P



Starting with a simpler version

B
B

B

B

P P

P
B

P

Loop: pick one node (i,j)  at random, erase the contents of the 
guessed values in (i,j), freeze the value of the other nodes

B
B

B

B

P P

P
B

Then: resample a value for the node (i,j) conditioning on all the 
others, and write this to the current state at (i,j)

B
B

B

B

P P

P
B

Easy!
B

B
B

B

B

P

P
B

B

P

Fix sampling to 
node (2,2) 

Will relax this 
later



Transition matrix of the Gibbs sampler: 29 x 29 matrix

T  = 

B

P

B

B

P

P

B

P

P

0.1 0.01
0.01
...

...

Way too large to represent in 
memory but we will compute 

entries on the fly

B

P

B

B

P

P

B

P

P

B

P

B

B

P

P

B

P

P

B

P

B

B

P

P

B

P

P

...

...



Neighborhood 
example, continued

• Interesting point: we not need x ∈ N(x) 

• In fact, for discrete space removing x from N(x) provably 
decrease the asymptotic variance (Peskun, 1973)

• Example: an MCMC sampler with asymptotic variance lower 
than iid sampling

• Trade-off

• computation can go from O(d) per sample to O(1)

• asymptotic variance typically increases-most serious in highly 
correlated situations

Example 40 



Tx,y =
�

x1

· · ·
�

x9

T (1)
x,x1

T (2)
x1,x2

· · · T (9)
x8,x�

Often need several kernels to get 
irreducibility (and hence a CLT)

T =
9�

k=1

�kT (k)

Solution 1: mixing kernels.  Suppose we have one Gibbs 
kernel for each variable T(1), ..., T(9).  Then the mixture of 
them is also reversible (by linearity)

Solution 2: alternating kernels deterministically (ie. using the 
first, then second, etc).  

Often works better: shuffle then alternate



Stopping criteria
• Many diagnostic exist

• All have limitations

• Some are dubious

• Best approach is CLT (with same caveats as IS):  
for a 95% confidence interval, use  
 

• The asymptotic variance is:  
 

In ± 1.96
q
�2
asympt/n

Central Limit Theorem
Theorem. Under regularity conditions, a CLT for the ergodic
averages of a Harris recurrent, π-invariant Markov chain

lim
√

t
[

1
t

t∑

i=1
φ (Xi) −

∫

X
φ (x) π (x) dx

]
D→ N

(
0, σ2 (φ)

)
,

σ2 (φ) = Vπ [φ (X1)] + 2
∞∑

k=2
Covπ [φ (X1) , φ (Xk)] .

Example. For the AR Gaussian model,
π (x) = N

(
x; 0, τ2/(1 − ρ2)

) for |ρ| < 1 and

Cov (X1, Xk) = ρk−1V [X1] = ρk−1 τ2

1 − ρ2 .

Therefore with φ (x) = x

σ2 = τ2

1 − ρ2

(

1 + 2
∞∑

k=1
ρk
)

= τ2

1 − ρ2
1 + ρ

1 − ρ
.

Pierre Jacob Advanced Simulation 11/ 35



Estimation of the 
asymptotic variance

• Direct method: estimate the auto-correlations 
(ACF)  
 

• Can be done quickly with FFT

• But estimator has infinite variance! Need to 
truncate. Still unstable in many practical 
scenarios.



ESS for MC
• Idea is similar as for IS, but still tied to a test function:  
 

• Can estimate using ACF as in last slide

• Better method: batch estimators.

• Segment the MCMC trace into chunks of length √n 

• Assume sampler is good enough so that behaviour 
across blocks is nearly iid

• Standard metric in MCMC literature to compare 
samplers: ESS per second or ESS per operation

ESS(N)

N
!

�2

asymptotic

�2

iid

Def 43



Analysis of MH



Plan

• First, analyse one kernel at the time to 
show it is π-invariant 

• Then, show mixture/alternation is also  
π-invariant AND irreducible

• Conclude LLN holds

• In discrete case, also get CLT, in infinite 
space, need more (geometric ergodicity)



Important, overlooked 
condition on proposal q
• Mutual absolute continuity condition:  
 

• For example, in a discrete state space where  
the target has full support, this means:  
 

• This can be tricky in combinatorial spaces 
(more on that soon)

Z

A
⇡(dx)q(x,B) > 0 ,

Z

B
⇡(dx)q(x,A) > 0

q(x, y) > 0 , q(y, x) > 0

Def 47



Invariance of a single 
kernelTransition Kernel and Reversibility

Lemma. The transition kernel of the Metropolis-Hastings
algorithm is given by

K (y | x) ≡ K (x, y) = α(y | x)q(y | x) + (1 − a(x))δx(y)

where δx denotes the Dirac mass at x.
Proof. We have

K (x, y) =
∫

q(x⋆ | x){α(x⋆ | x)δx⋆(y) + (1 − α(x⋆ | x))δx(y)}dx⋆

= q(y | x)α(y | x) +
{∫

q(x⋆ | x)(1 − α(x⋆ | x))dx⋆
}

δx(y)

= q(y | x)α(y | x) +
{

1 −
∫

q(x⋆ | x)α(x⋆ | x)dx⋆
}

δx(y)

= q(y | x)α(y | x) + {1 − a(x)} δx(y)

Pierre Jacob Advanced Simulation 15/ 30
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Invariance of a single 
kernelReversibility

Proposition. The Metropolis-Hastings kernel K is
π−reversible and thus admit π as invariant distribution.

Proof. For any x, y ∈ X, with x ̸= y

π(x)K (x, y) = π(x)q(y | x)α(y | x)

= π(x)q(y | x)min
(

1,
π(y)q(x | y)
π(x)q(y | x)

)

= min (π(x)q(y | x), π(y)q(x | y))

= π(y)q(x | y)min
(

π(x)q(y | x)
π(y)q(x | y) , 1

)

= π(y)K (x, y)

Pierre Jacob Advanced Simulation 16/ 30
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Exercise
• If we have a collections of π-invariant 

kernels..

• then their mixture is π-invariant as long 
as the mixture coefficients do not depend 
on the states

• similarly for deterministic alternations

• hence, mixtures of alternations are also 
π-invariant 

Exercise 46



Exercise
• Derive (theoretically, for now) a valid MCMC 

algorithm for one of the following problems:

• sampling uniformly from perfect bi-partite graph 
matchings

• sampling uniformly from unrooted bifurcating 
phylogenetic trees

• sampling uniformly from multiple sequence 
alignments

• sampling uniformly from another combinatorial 
structure of your choice

Exercise 42



Ingenious MCMC 
constructions



Terminology
Collapsed sampler: analytically marginalize some of 
the variables, and run MCMC on the reduced state 
space 

Example: HMM global parameter inference while 
summing over latent dynamic states 

Auxiliary variable: augment the state space to 
facilitate sampling 

Example: slice sampling



Another collapsed example: 
Collapsed Gibbs samplers

B
B

B

B

P P

P
B

P

Loop: pick a subset of nodes N  at random, erase the contents of 
the guessed values in N, freeze the value of the nodes not in N

B

B

B

P P

B

Then: resample a value for the nodes in N conditioning on all the 
others, and write this to the current state at N

B

B

B

P P

B

Easy?

B
P

B

B

P

P
B

P

P

P P P



Slice sampling
Goal: sampling from a r.v. X with density f(x)/Z, where Z 
is difficult to compute 

Intuition: use a MCMC defined on the 2D space defined 
as the graph of the density 

Moves: sample uniformly vertically or horizontally

1.4. SLICE SAMPLING 27

1.4 Slice Sampling

We have seen that one of the difficulties with the Metropolis algorithm is the sensitivity to step
size. If this is too small the result is slow decorrelation due to random walk behaviour while if
it is too large the result is inefficiency due to a high rejection rate. The technique of slice sampling
provides an adaptive step size which is automatically adjusted to match the characteristics of the
distribution. Again it requires that we be able to evaluate the unnormalized distribution .

Slice sampling involves augmenting with an additional variable and then drawing samples
from the joint space. We shall see another example of this approach when we discuss hybrid
Monte Carlo in Section ??. As with rejection sampling, the goal is to sample uniformly from the
volume under the surface defined by , in other words to sample from the distribution given
by

if

otherwise

where . The marginal distribution over is given by

and so we can sample from by sampling from and then ignoring the values. This
can be achieved by alternately sampling and . Given the value of we evaluate and then
sample uniformly in the range , which is straightforward. Then we fix and sample

uniformly from the ‘slice’ through the distribution defined by . This is illustrated
in Figure ??(a).

x
(a)

u

x
( )!

p x( )~

x

xmin xmax

(b)

u

x
( )!

p x( )~

Figure 1.17: Illustration of slice sampling. (a) For a given value , a value of is chosen uniformly
in the region , which defines a ‘slice’ through the distribution, shown by the solid
horizontal lines. (b) Since sampling directly from a slice is infeasible, a new sample of is drawn
from a region which contains the previous value .

In practice it can be difficult to sample directly from a slice through the distribution and so
instead we define a sampling scheme which leaves the uniform distribution under invariant,
which can be achieved by ensuring that detailed balance is satisfied. Here we consider the case of
a univariate .

Suppose the current value of is denoted and that we have obtained a corresponding
sample . The next value of is sampled uniformly from a region which contains

Current state



Slice sampling
Goal: sampling from a r.v. X with density f(x)/Z, where Z 
is difficult to compute 

General auxiliary variable construction: adding a new 
random variable U with the following graphical model 
does not change the marginal distribution of X, no matter 
what is the conditional density g of U | X

X

U

X ~ f(x)/Z

U | X ~ g(u | X)



Slice sampler

X

U

X ~ f(x)/Z

U | X ~ Uni[0, f(X)]

1.4. SLICE SAMPLING 27

1.4 Slice Sampling

We have seen that one of the difficulties with the Metropolis algorithm is the sensitivity to step
size. If this is too small the result is slow decorrelation due to random walk behaviour while if
it is too large the result is inefficiency due to a high rejection rate. The technique of slice sampling
provides an adaptive step size which is automatically adjusted to match the characteristics of the
distribution. Again it requires that we be able to evaluate the unnormalized distribution .

Slice sampling involves augmenting with an additional variable and then drawing samples
from the joint space. We shall see another example of this approach when we discuss hybrid
Monte Carlo in Section ??. As with rejection sampling, the goal is to sample uniformly from the
volume under the surface defined by , in other words to sample from the distribution given
by

if

otherwise

where . The marginal distribution over is given by

and so we can sample from by sampling from and then ignoring the values. This
can be achieved by alternately sampling and . Given the value of we evaluate and then
sample uniformly in the range , which is straightforward. Then we fix and sample

uniformly from the ‘slice’ through the distribution defined by . This is illustrated
in Figure ??(a).

x
(a)

u

x
( )!

p x( )~

x

xmin xmax

(b)

u

x
( )!

p x( )~

Figure 1.17: Illustration of slice sampling. (a) For a given value , a value of is chosen uniformly
in the region , which defines a ‘slice’ through the distribution, shown by the solid
horizontal lines. (b) Since sampling directly from a slice is infeasible, a new sample of is drawn
from a region which contains the previous value .

In practice it can be difficult to sample directly from a slice through the distribution and so
instead we define a sampling scheme which leaves the uniform distribution under invariant,
which can be achieved by ensuring that detailed balance is satisfied. Here we consider the case of
a univariate .

Suppose the current value of is denoted and that we have obtained a corresponding
sample . The next value of is sampled uniformly from a region which contains

Vertical move:  U | X ~ Uni[0, f(X)] 

Horizontal move:  X | U ~ Uni{x : f(x) ≥ U} 

Note: Efficient alternatives to the horizontal move exist  
(state-of-the-art: doubling+shrinking procedure, Neal, 2003) 
See https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/mcmc/RealSliceSampler.java

https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/mcmc/RealSliceSampler.java


Annealing and tempering

• Key idea: using sequences of distributions

• Denoted, for t = 0 .. 1,  πt  

• The case t = 0 should be easy

• ideally, such that we can get exact sample 
in poly-time

• The case t = 1 should coincide with the 
target of interest



Sequences of π
• Examples

• Naive: exponentiate the whole target

• Problem: we don’t want non-normalizable targets

• Solution: Exponentiate only likelihood

• Other issues

• restrictions in the likelihood

• computation: interpolate number of datapoints [Project]

• Automatic creation of sequences of distributions in Blang:  
https://www.stat.ubc.ca/~bouchard/blang/
Inference_and_runtime.html

• Sparsity considerations (changing t should be O(1))



Annealing

• Make temperature random

• Extract samples when t = 1

• Problem?


