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Project

Due: April 26 (send code + pdf by email)

By next Monday (March 26): send informal plan for
project by email (extension possible)

See Syllabus page on website for more info

Encouraged to combine with your research and/or
other classes



Typical projects

® methodology: e.g. develop a sampler for a new
datatype; or, extend an existing one to work around
a practical issue

® analysis: using a mix of theory and experiments,
benchmark a new samper (e.g. ask me about new
work on discrete state space); or, compare the
scalability popular methods that have not been
compared before

® application: e.g. using Monte Carlo on a novel type
of data while demonstrating state-of-the-art
practices (no just running MCMC with defaults)
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Exercise

Construct an irreducible discrete Markov chain

Compute a Monte Carlo average with test
function = indicator on one of the states

Try to make an educated analytical guess for the
numerical value of asymptotic variance

Approximate numerically the asymptotic variance



Metropolis-Hastings,
continued



MCMC: main ideas

® Ve have LLNs and CLTs for Markov chains

® Question: how to characterize the limits? (we
cannot do it with the law of an arbitrary X; as in
iid case)

® Answer: use the stationary law instead

® We can design and simulate Markov chains
with a prescribed stationary distribution 1T

® Even if we do not know the normalization of TT
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MH: algorithmic
description of the new
kernel (denoted K or T)

Sample X* ~ ¢ (\ X(t_l)) . Do we need the

g C . normalization of m? g7
g Compute

7 (X*) g (X(D] X*)
x| yv(t=1)\ _ .. .-
o (X*| XD = min (1, (XD g (X0 XD

Sample U ~ U[o,u- It U < « (X*\ X(t_l)), set X(t) — X
otherwise set X() = x(t=1)
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MCMC: a naive way to use
MH (many alternatives exist!)

® Pick arbitrary initial X,
® Simulate a Markov chain X, X3, X3, ...

® Use the samples to compute the MC

average |
20 (x7)
® Note: there will be duplicates in this sum
(why?)

® By the LLN for Markov chains, this will get
arbitrarily close to the integral of interest
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Examples

® Most frequent choice (simple but usually not best/most efficient!):
pick q(x, x’) = normal density...

® centered at x: random walk metropolis
® What is the acceptance probability?
® biased by gradient: Langevin (later)

® Restriction to a neighborhood:
q(x, x’) = 1T1(X’) 1[x’ € N(x)] / Z(x)

® [fx’ € N(x) & x € N(X)) this is (generalized) Gibbs sampling.

® What is the acceptance probability?

® Why ‘generalized’? For Gibbs Z(x) = Z(x’); but this is not
always true in general (why?)



1. PESKUN’S THEOREM

Let X be a discrete random variable following distribution n, and let P be the transition matrix
of a Markov chain with = as its invariant distribution. We call P reversible if

n(x)P(x, y) = n(y)P(y, x).

Following Peskun (1973), we define P, > P, for any two transition matrices if each of the ofi-
diagonal elements of P, is greater than or equal to the corresponding off-diagonal elements of P,.
The following lemma is Theorem 2.1.1 of Peskun (1973).

LEMMA 1-1. Suppose each of the irreducible transition matrices P, and P, is reversible for the same
invariant probability distribution n. If P, > P, then, for any f,

U(f,ﬂ.',Pl);U(f, naP2): (1)
where

v(f, n, P)= lim N var(fy),

N—ao

and Ty=Y% ., f{XP}/N is an estimator of I = E_(f) using N consecutive samples from the Markov
chains. Kemeny & Snell (1969, p. 84) gave an expression for v(f, n, P) in terms of f, P and .
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Example, continued

® | et’s look at the details of a Gibbs sampler

® How to sample from Markov Random
Field?



Motivation

Task: given some images (a 2D array of pixels), segment it
Into clusters of pixels

In general, there is an unknown number of clusters, so we will
apply nonparametric priors, but for now, assume there are
only ‘background’ and ‘people’ clusters




Model for image segmentation
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Computing the posterior

Samples:

Monte Carlo estimator: for .S samples

;S
*lf(X)%ng(Xt )
=1



‘Naive’ Gibbs sampling

Loop: pick one node (7,;) at random, erase the contents of the
guessed values in (7,/), freeze the value of the other nodes

Then: resamp
others, and wr

e a value for the node (7,/) conditioning on all the
ite this to the current state at (7,/)




Starting with a simpler version

Loop: pick one node (7,/) at ranrdem, erase the contents of the
guessed values in (7,/), freeze the value of the other nodes

Fix sampling to
node (2,2)
Will relax this
ater

Then: resample a value for the node (7,7) conditioning on all the
others, and write this to the current state at (7,/)




Transition matrix of the Gibbs sampler: 2° x 2° matrix

@
@
)

0.1 0.01 s
0.01 >-0-4
..

T = Oata0

; d _

Way too large to rgpresent in gzgzg gzg:g
memory but we will compute [ e0¢ ®0<¢

entries on the fly
- J




Neighborhood "
example, continued

® |[nteresting point: we not need x € N(x)

® |n fact, for discrete space removing x from N(x) provably
decrease the asymptotic variance (Peskun, 1973)

® Example:an MCMC sampler with asymptotic variance lower
than iid sampling

® Trade-off
® computation can go from O(d) per sample to O(1)

® asymptotic variance typically increases-most serious in highly
correlated situations



Often need several kernels to get
irreducibility (and hence a CLT)

Solution 1: mixing kernels. Suppose we have one Gibbs
kernel for each variable 701, ..., T®. Then the mixture of

them is also reversible (by linearity)
9

T = Z o, TF)
k=1

Solution 2: alternating kernels deterministically (ie. using the
first, then second, etc).

_ 1 2 (9)
Toy =) ) Tod T, Ty
9

L]

Often works better: shuffle then alternate



Stopping criteria

® Many diagnostic exist
® All have limitations
® Some are dubious

® Best approach is CLT (with same caveats as |S):
for a 95% confidence interval, use

In T 1°96\/O§sympt/n

® T[he asymptotic variance is:

0 () = Vi [0 (X1)]+2> Couvr [p(X1), 0 (Xy)].

k=2



Estimation of the
asymptotic variance

® Direct method: estimate the auto-correlations
(ACF)

b1) | | bf2) | - b[3] -] b4] |
o ! -4 = J « J
O L= o o
ol
5 Q Q B
2z <3 <z <z
o | o c o
o ““lttﬂ““nmn.",..un..i =4 lh...",...u.,,..x.-.,,..-_..,,.; o4 hl ....................... ol uﬂlhmuum...,._.,,...s;
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Lag Lag Lag

® Can be done quickly with FFT

® But estimator has infinite variance! Need to
truncate. Still unstable in many practical
scenarios.



ESS for MC e

® |dea is similar as for IS, but still tied to a test function:
ESS(N)  Tisymptotic

4

5
N Jiid

® Can estimate using ACF as in last slide

® Better method: batch estimators.

® Segment the MCMC trace into chunks of length v/n

® Assume sampler is good enough so that behaviour
across blocks is nearly iid

® Standard metric in MCMC literature to compare
samplers: ESS per second or ESS per operation



Analysis of MH



Plan

First, analyse one kernel at the time to
show it is TT-invariant

Then, show mixture/alternation is also
TT-invariant AND irreducible

Conclude LLN holds

In discrete case, also get CLT, in infinite
space, need more (geometric ergodicity)
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Important, overlooked
condition on proposal g

® Mutual absolute continuity condition:
/ m(dx)q(x, B) >0 @/ m(dx)q(x, A) > 0
A B

® For example, in a discrete state space where
the target has full support, this means:

q(z,y) >0 q(y,z) >0

® This can be tricky in combinatorial spaces
(more on that soon)
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Invariance of a single
kernel

m Lemma. The transition kernel of the Metropolis-Hastings
algorithm is given by

K(y|lz)=K(z,y)=aly|z)q(y | z)+ (1 — a(z))d(y)

where 0, denotes the Dirac mass at z.
m Proof. We have

K(o,9) = [ " | 9){a(@* | 2)d: () + (1~ a(” | 2)d(y)}da*
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Invariance of a single
kernel

m Lemma. The transition kernel of the Metropolis-Hastings
algorithm is given by

K(y|lz)=K(z,y)=aly|z)q(y | z)+ (1 — a(z))d(y)

where 0, denotes the Dirac mass at z.
m Proof. We have

K(o,9) = [ " | 9){a(@* | 2)d: () + (1~ a(” | 2)d(y)}da*

—a(y [ 9)aly | o)+ { [ ala* | (1= a(e" | 9)ds* b 6ol



Prop 44

Invariance of a single
kernel

m Lemma. The transition kernel of the Metropolis-Hastings
algorithm is given by

K(y|lz)=K(z,y)=aly|z)q(y | z)+ (1 — a(z))d(y)

where 0, denotes the Dirac mass at z.
m Proof. We have

K@y = [ @ | 9){ala" | 062 (5) + (1 = alo” | 2)(p)}do*
[ o190 - ata” | 2)ds L 8,0
—a(y | aly| 2)+ {1 [ aa” | 2)ala” | 2)ds* | 5,(0)

= q(y | r)a(y | z) + {1 — a(z)} 6.(y)

=q(y | »)aly | z) +

/\
/ \
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Invariance of a single
kernel

m Proposition. The Metropolis-Hastings kernel K is
m—reversible and thus admit 7 as invariant distribution.

m Proof. For any z,y € X, with z # y

m(z)K(z,y)

=7(y)K(z,y)
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Invariance of a single
kernel

m Proposition. The Metropolis-Hastings kernel K is
m—reversible and thus admit 7 as invariant distribution.

m Proof. For any z,y € X, with z # y

m(z)K(z,y) = 7(z)q(y | z)a(y | z)

=7(y)K(z,y)



Invariance of a single
kernel

m Proposition. The Metropolis-Hastings kernel K is
m—reversible and thus admit 7 as invariant distribution.

m Proof. For any z,y € X, with z # y

m(z)K(z,y) = 7(z)q(y | z)a(y | z)

. (17 7T(y)q(f; | y))

=7(y)K(z,y)

Prop 45



Invariance of a single
kernel

m Proposition. The Metropolis-Hastings kernel K is
m—reversible and thus admit 7 as invariant distribution.

m Proof. For any z,y € X, with z # y

m(z)K(z,y) = 7(z)q(y | z)a(y | z)

|
— 7(x )min m(y)a(z | y)
= n(aly | oymin (1, T
= min (m(z)q(y | z),7(y)q(z | y))

=7(y)K(z,y)

Prop 45



Invariance of a single
kernel

m Proposition. The Metropolis-Hastings kernel K is
m—reversible and thus admit 7 as invariant distribution.

m Proof. For any z,y € X, with z # y
m(z)K(z,y) = m(2)q(y | z)aly | z)

— n(a)a(y | aymin (1,

= min (m(z)q(y | z), 7(y

= m(y)q(z | y)min (

=7(y)K(z,y)

ek
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Prop 45
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Exercise

® |f we have a collections of TT-invariant
kernels..

® then their mixture is TT-invariant as long

as the mixture coefficients do not depend
on the states

® similarly for deterministic alternations

® hence, mixtures of alternations are also
TT-invariant
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Exercise

® Derive (theoretically, for now) a valid MCMC
algorithm for one of the following problems:

sampling uniformly from perfect bi-partite graph
matchings

sampling uniformly from unrooted bifurcating
phylogenetic trees

sampling uniformly from multiple sequence
alighments

sampling uniformly from another combinatorial
structure of your choice



Ingenious MCMC
constructions



Terminology

Collapsed sampler: analytically marginalize some of
the variables, and run MCMC on the reduced state
space
Example: HMM global parameter inference while
summing over latent dynamic states

Auxiliary variable: augment the state space to
facilitate sampling
Example: slice sampling



Another collapsed example:
Collapsed Gibbs samplers

Loop: pick a subset of nodes V' at random, erase the contents of
the guessed values in N, freeze the value of the nodes notin N

Then: resamp
others, and wr

e a value for the nodes in N conditioning on all the
ite this to the current state at N




Slice sampling

Goal: sampling from a r.v. X with density f{x)/Z, where Z
s difficult to compute

Intuition: use a MCMC defined on the 2D space defined
as the graph of the density

Moves: sample uniformly vertically or horizontally

Current state




Slice sampling

Goal: sampling from a r.v. X with density f{x)/Z, where Z
s difficult to compute

General auxiliary variable construction: adding a new
random variable U with the following graphical model

does not change the marginal distribution of X, no matter
what is the conditional density gof U | X

X X~ f(x)/Z

U Ul X~gu|X)




Slice sampler

X X~fx)/Z f

U U|X~Uni[0, /0] / VQ\

Vertical move: U | X ~ Uni[0, /(X)]
Horizontal move: X | U ~ Uni{x : f(x) > U}

Note: Efficient alternatives to the horizontal move exist
(state-of-the-art: doubling+shrinking procedure, Neal, 2003)

See https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/mcmc/RealSliceSampler.java



https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/mcmc/RealSliceSampler.java

Annealing and tempering

® Key idea: using sequences of distributions
® Denoted,fort=0.1, 1T
® The case t = 0 should be easy

® ideally, such that we can get exact sample
in poly-time

® The case t = | should coincide with the
target of interest



Sequences of T [

® Examples

® Naive: exponentiate the whole target
® Problem: we don’t want non-normalizable targets
® Solution: Exponentiate only likelihood
® Other issues
® restrictions in the likelihood
® computation: interpolate number of datapoints [Project]

® Automatic creation of sequences of distributions in Blang:
https://www.stat.ubc.ca/~bouchard/blang/
Inference_and runtime.html

® Sparsity considerations (changing t should be O(1))



Annealing

® Make temperature random
® Extract samples whent = |

® Problem!?



