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Project

Due: April 26 (send code + pdf by email)
By Monday{Mareh-26} Tuesday April 3 send informal

plan for project by email

See Syllabus page on website for more info

Encouraged to combine with your research and/or
other classes



Stopping criteria

® Many diagnostic exist
® All have limitations
® Some are dubious

® Best approach is CLT (with same caveats as |S):
for a 95% confidence interval, use

In T 1°96\/O§sympt/n

® T[he asymptotic variance is:

0 () = Vi [0 (X1)]+2> Couvr [p(X1), 0 (Xy)].

k=2



Estimation of the
asymptotic variance

® Direct method: estimate the auto-correlations
(ACF)
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® Can be done quickly with FFT

® But estimator has infinite variance! Need to
truncate. Still unstable in many practical
scenarios.



ESS for MC e

® |dea is similar as for IS, but still tied to a test function:
ESS(N) O'izid

\
/4

N o2

asymptotic

® Can estimate using ACF as in last slide

® Better method: batch estimators.

® Segment the MCMC trace into chunks of length v/n

® Assume sampler is good enough so that behaviour
across blocks is nearly iid

® Standard metric in MCMC literature to compare
samplers: ESS per second or ESS per operation
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Asymptotic variance
and ESS for MC

® References:

® Honest exploration of intractable probability
distributions (2001). Jones and Hobert.

® Monte Carlo standard errors for MCMC (2008).
Flegal.

® Multivariate confidence version:

® Multivariate output analysis for Markov chain Monte
Carlo (2015).Vats et al.



Ingenious MCMC
constructions



Terminology

Collapsed sampler: analytically marginalize some of
the variables, and run MCMC on the reduced state
space
Example: HMM global parameter inference while
summing over latent dynamic states

Auxiliary variable: augment the state space to
facilitate sampling
Example: slice sampling



Another collapsed example:
Collapsed Gibbs samplers

Loop: pick a subset of nodes V' at random, erase the contents of
the guessed values in N, freeze the value of the nodes notin N

Then: resamp
others, and wr

e a value for the nodes in N conditioning on all the
ite this to the current state at N




Slice sampling

Goal: sampling from a r.v. X with density f{x)/Z, where Z
s difficult to compute

Intuition: use a MCMC defined on the 2D space defined
as the graph of the density

Moves: sample uniformly vertically or horizontally

Current state




Slice sampling

Goal: sampling from a r.v. X with density f{x)/Z, where Z
s difficult to compute

General auxiliary variable construction: adding a new
random variable U with the following graphical model

does not change the marginal distribution of X, no matter
what is the conditional density gof U | X

X X~ f(x)/Z

U Ul X~gu|X)




Slice sampler

X X~fx)/Z f

U U|X~Uni[0, /0] / VQ\

Vertical move: U | X ~ Uni[0, /(X)]
Horizontal move: X | U ~ Uni{x : f(x) > U}

Note: Efficient alternatives to the horizontal move exist
(state-of-the-art: doubling+shrinking procedure, Neal, 2003)

See https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/mcmc/RealSliceSampler.java



https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/mcmc/RealSliceSampler.java

Annealing and tempering

® Key idea: using sequences of distributions

® Denoted,fort=0 .1, 1T
® The case t = 0 should be easy (‘heated’)

® ideally, such that we can get exact idd
samples in poly-time for that
temperature

® The case t = | should coincide with the
target of interest (‘room temperature’)



Sequences of T [

® Examples

® Naive: exponentiate the whole target
® Problem: we don’t want non-normalizable targets
® Solution: Exponentiate only likelihood
® Other issues
® hard constraints/restrictions in the likelihood
® computation: interpolate number of datapoints [Project]

® Automatic creation of sequences of distributions in Blang:
https://www.stat.ubc.ca/~bouchard/blang/
Inference_and runtime.html

® Sparsity considerations (changing t should be O(1))



Annealing

® Make temperature random
® Extract subset of samples where t = |
® Exact simulation version exists:

® Moller and Nicholls 1999

® Problem?



Parallel tempering

® Have all the temperature exist at same time

® |.e.state space is product instead of
union

® Swap temperatures

................

Monte Carlo Step

® Normalization constants cancel out now!

® Parallel implementation attractive

. S e e https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/engines/Parallel Tempering.java



Gradient-based
methods



Hamiltonian Monte
Carlo: intuition

® Physical ball rolling on
the energy

® E(x) = -log(p(x))

® Motion described by
the Hamiltonian flow

® Phase space ona momentum

Gaussian target:
| .
\/ position




HMC: auxiliary variables

® Physics’ notation:z = (q, p)
® position g

® Augment the state with a momentum random
variable p

® Put an auxiliary distribution on p, with

f(p) = exp(-K(p)) and s.t.
K(p) = K(-p), e.g. normal.

H(q,p) = U(q) + K(p), Ulq) =4¢*/2, K(p)=p/2

® Can think of p as a velocity (when the mass matrix,
i.e. covariance of f(x) is identity).

® Statistical notation would be then z = (x, v)



Exact HMC

MCMC kernel is a non-reversible
Given by a Dirac delta: k(z, dz’) = 0¢()(dz’)

d is the Hamiltonian flow, i.e. solutions of the
differential equations

b !
dt B 8qz- dt an

Exact HMC: Analytic solution only in special
cases, e.g. for (truncated) normal target we get:

q(t) = rcos(a+1t), p(t)= —rsin(a+t)



Application: truncated
normal distributions

® See Pakman and Paninski (2014) :
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® Truncated normal arise in many
practical contexts:

® Probit and tobit models

® Bayesian splines for positive
functions

® Bayesian lasso

yi = sign(w;)
w; = —Z; - B+ &
g ~N(QO,1)




Exact HMC: invariance

¢ MCMC kernel is a non-reversible
® Given by a Dirac delta: k(z, dz’) = 0o()(dz’)
® |nvariance equivalent to:

® given Z ~ extended target TU
TT(X, v) = TT(X) X normal(v)

® DefineY = O(2)

® Do we haveY ~ 117 ?



Exact HMC: invariance

® By change of variable formula, break into two
factors:

fy(y) = f2(® ' (y)) | det Jp-1(y)|

hence ingredient to show Y ~ 1T’ are:

e O invertible (yes, set v «— -v)

® (Conservation of Hamiltonian: first factor is
constant

® Volume preservation: second factor is constant



Conservation of Hamiltonian
® Want f(z) = f(®(z))

® Enough: no infinitesimal Hamiltonian changes,
H =0

® Use total derivative identity
d

atr | dpzé?H_
dt

dt dq;  dt Op;

1=1

® [hen substitute our choice of the differential

equation:
dt— Op " [dg; 0H  dp; OH “\[0HOH OHOH
) ) _ ool odoid -
dp; OH ; [dt og; " di 5’19@] ; [@pz- dqi  Oq; Op;




Volume preservation

The preservation of volume by Hamiltonian dynamics can be proved in several ways. One
is to note that the divergence of the vector field defined by equations (2.1) and (2.2) is zero,
which can be seen as follows:

d d J
S 0 dg; 0 dp 0 OH 0 OH RH  92H
B - = - =0 (2.1
[aq’i @ opi dt] 2 [3% Opi Op; 5’%] 2 laqz@pi 01?7;0%] 0 213

A vector field with zero divergence can be shown to preserve volume (Arnold, 1989).
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® See Neal (2012). MCMC using Hamiltonian
dynamics for another, more direct argument



Exact HMC: irreducibility

® FEasy to see non irreducible in phase space

momentum

position

® Solution: refresh momentum



Leap-frog HMC

® \We can’t simulate the exact Hamiltonian flow for
most targets of interest.

® |dea:

® solve the differential equation using numerical
methods and initial condition given by current
point

® can be done so that volume still preserved
(e.g. with leap-frog integrator)

® Hamiltonian no longer exactly preserved, so use
MH to accept-reject



Leap-frog HMC

® Numerical solution example: o

momentum (p)

® Algorithm:

plt+e/2) = pl) — D5 @) I
alt+e) = gl + PUEE
plt+e) = nlt+e/2) = (/25 (alt+2)

® Properties:
® reversibility

® symplecticness



