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Figure 3: Left: A BPS trajectory containing 200 segments/bounces and no refreshment (for clarity,
the first 15 segments are in black and the following ones are in light grey): the center of the space
is never explored. Right, solid line: ESS per CPU second as a function of d (log-log scale), along
with 95% confidence intervals based on 40 independent runs (the intervals are small and may be
difficult to see). Dashed line: linear regression curve. See Section 4.1 for details.

4 Numerical results

4.1 Gaussian distributions and the need for refreshment

We consider an isotropic multivariate Gaussian target distribution, U (x) = kxk2, to illustrate the
need for refreshment. Without refreshment, we obtain from Equation (7)

D

x(i), v(i)
E

=

(

�
p
� log V

i

if
⌦

x(i�1), v(i�1)

↵

 0,

�
q

⌦

x(i�1), v(i�1)

↵

2 � log V
i

otherwise,

and

�

�

�

x(i)

�

�

�

2

=

(

�

�x(i�1)

�

�

2 �
⌦

x(i�1), v(i�1)

↵

2 � log V
i

if
⌦

x(i�1), v(i�1)

↵

 0,
�

�x(i�1)

�

�

2 � log V
i

otherwise,

see Material for details. In particular, these calculations show if
⌦

x(i), v(i)
↵

 0 then
⌦

x(j), v(j)
↵

 0

for j > i so that kx(i)k2 =

�

�x(1)

�

�

2 �
⌦

x(1), v(1)
↵

2 � log V
i

for i � 2. In particular for x(0)

= e
1

and
v(0) = e

2

with e
i

being elements of standard basis of Rd, the norm of the position at all points
along the trajectory can never be smaller than 1 as illustrated in Figure 3.

In this scenario, we show that BPS without refreshment admits a countably infinite collection of
invariant distributions. Let us define r (t) = kx (t)k and m (t) = hx (t) , v (t)i / kx (t)k and denote
by �

k

the probability density of the chi distribution with k degrees of freedom.

Proposition 2. For any dimension d � 2, the process (r (t) ,m (t))
t�0

is Markov and its transition
kernel is invariant with respect to the probability densities

�

f
k

(r,m) / �
k

(

p
2r) · (1�m2

)

(k�3)/2

; k 2 {2, 3, . . .}
 

.

The proof is given in Appendix 2. By Theorem 1, we have a unique invariant measure as soon as
�ref > 0.
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Project

• Due: April 26 (send code + pdf by email)

• By Monday (March 26) Tuesday April 3 send informal 
plan for project by email

• See Syllabus page on website for more info

• Encouraged to combine with your research and/or 
other classes



Stopping criteria
• Many diagnostic exist

• All have limitations

• Some are dubious

• Best approach is CLT (with same caveats as IS):  
for a 95% confidence interval, use  
 

• The asymptotic variance is:  
 

In ± 1.96
q
�2
asympt/n

Central Limit Theorem
Theorem. Under regularity conditions, a CLT for the ergodic
averages of a Harris recurrent, π-invariant Markov chain

lim
√

t
[

1
t

t∑

i=1
φ (Xi) −

∫

X
φ (x) π (x) dx

]
D→ N

(
0, σ2 (φ)

)
,

σ2 (φ) = Vπ [φ (X1)] + 2
∞∑

k=2
Covπ [φ (X1) , φ (Xk)] .

Example. For the AR Gaussian model,
π (x) = N

(
x; 0, τ2/(1 − ρ2)

) for |ρ| < 1 and

Cov (X1, Xk) = ρk−1V [X1] = ρk−1 τ2

1 − ρ2 .

Therefore with φ (x) = x

σ2 = τ2

1 − ρ2

(

1 + 2
∞∑

k=1
ρk
)

= τ2

1 − ρ2
1 + ρ

1 − ρ
.
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Estimation of the 
asymptotic variance

• Direct method: estimate the auto-correlations 
(ACF)  
 

• Can be done quickly with FFT

• But estimator has infinite variance! Need to 
truncate. Still unstable in many practical 
scenarios.



ESS for MC
• Idea is similar as for IS, but still tied to a test function:  
 

• Can estimate using ACF as in last slide

• Better method: batch estimators.

• Segment the MCMC trace into chunks of length √n 

• Assume sampler is good enough so that behaviour 
across blocks is nearly iid

• Standard metric in MCMC literature to compare 
samplers: ESS per second or ESS per operation

Def 43

ESS(N)

N
! �2

iid

�2

asymptotic



Asymptotic variance 
and ESS for MC

• References:

• Honest exploration of intractable probability 
distributions (2001). Jones and Hobert.

• Monte Carlo standard errors for MCMC (2008). 
Flegal.

• Multivariate confidence version:

• Multivariate output analysis for Markov chain Monte 
Carlo (2015). Vats et al.

Def 43



Ingenious MCMC 
constructions



Terminology
Collapsed sampler: analytically marginalize some of 
the variables, and run MCMC on the reduced state 
space 

Example: HMM global parameter inference while 
summing over latent dynamic states 

Auxiliary variable: augment the state space to 
facilitate sampling 

Example: slice sampling



Another collapsed example: 
Collapsed Gibbs samplers

B
B

B

B

P P

P
B

P

Loop: pick a subset of nodes N  at random, erase the contents of 
the guessed values in N, freeze the value of the nodes not in N

B

B

B

P P

B

Then: resample a value for the nodes in N conditioning on all the 
others, and write this to the current state at N

B

B

B

P P

B

Easy?

B
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Slice sampling
Goal: sampling from a r.v. X with density f(x)/Z, where Z 
is difficult to compute 

Intuition: use a MCMC defined on the 2D space defined 
as the graph of the density 

Moves: sample uniformly vertically or horizontally

1.4. SLICE SAMPLING 27

1.4 Slice Sampling

We have seen that one of the difficulties with the Metropolis algorithm is the sensitivity to step
size. If this is too small the result is slow decorrelation due to random walk behaviour while if
it is too large the result is inefficiency due to a high rejection rate. The technique of slice sampling
provides an adaptive step size which is automatically adjusted to match the characteristics of the
distribution. Again it requires that we be able to evaluate the unnormalized distribution .

Slice sampling involves augmenting with an additional variable and then drawing samples
from the joint space. We shall see another example of this approach when we discuss hybrid
Monte Carlo in Section ??. As with rejection sampling, the goal is to sample uniformly from the
volume under the surface defined by , in other words to sample from the distribution given
by

if

otherwise

where . The marginal distribution over is given by

and so we can sample from by sampling from and then ignoring the values. This
can be achieved by alternately sampling and . Given the value of we evaluate and then
sample uniformly in the range , which is straightforward. Then we fix and sample

uniformly from the ‘slice’ through the distribution defined by . This is illustrated
in Figure ??(a).

x
(a)

u

x
( )!

p x( )~

x

xmin xmax

(b)

u

x
( )!

p x( )~

Figure 1.17: Illustration of slice sampling. (a) For a given value , a value of is chosen uniformly
in the region , which defines a ‘slice’ through the distribution, shown by the solid
horizontal lines. (b) Since sampling directly from a slice is infeasible, a new sample of is drawn
from a region which contains the previous value .

In practice it can be difficult to sample directly from a slice through the distribution and so
instead we define a sampling scheme which leaves the uniform distribution under invariant,
which can be achieved by ensuring that detailed balance is satisfied. Here we consider the case of
a univariate .

Suppose the current value of is denoted and that we have obtained a corresponding
sample . The next value of is sampled uniformly from a region which contains

Current state



Slice sampling
Goal: sampling from a r.v. X with density f(x)/Z, where Z 
is difficult to compute 

General auxiliary variable construction: adding a new 
random variable U with the following graphical model 
does not change the marginal distribution of X, no matter 
what is the conditional density g of U | X

X

U

X ~ f(x)/Z

U | X ~ g(u | X)



Slice sampler

X

U

X ~ f(x)/Z

U | X ~ Uni[0, f(X)]

1.4. SLICE SAMPLING 27

1.4 Slice Sampling

We have seen that one of the difficulties with the Metropolis algorithm is the sensitivity to step
size. If this is too small the result is slow decorrelation due to random walk behaviour while if
it is too large the result is inefficiency due to a high rejection rate. The technique of slice sampling
provides an adaptive step size which is automatically adjusted to match the characteristics of the
distribution. Again it requires that we be able to evaluate the unnormalized distribution .

Slice sampling involves augmenting with an additional variable and then drawing samples
from the joint space. We shall see another example of this approach when we discuss hybrid
Monte Carlo in Section ??. As with rejection sampling, the goal is to sample uniformly from the
volume under the surface defined by , in other words to sample from the distribution given
by

if

otherwise

where . The marginal distribution over is given by

and so we can sample from by sampling from and then ignoring the values. This
can be achieved by alternately sampling and . Given the value of we evaluate and then
sample uniformly in the range , which is straightforward. Then we fix and sample

uniformly from the ‘slice’ through the distribution defined by . This is illustrated
in Figure ??(a).

x
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p x( )~

Figure 1.17: Illustration of slice sampling. (a) For a given value , a value of is chosen uniformly
in the region , which defines a ‘slice’ through the distribution, shown by the solid
horizontal lines. (b) Since sampling directly from a slice is infeasible, a new sample of is drawn
from a region which contains the previous value .

In practice it can be difficult to sample directly from a slice through the distribution and so
instead we define a sampling scheme which leaves the uniform distribution under invariant,
which can be achieved by ensuring that detailed balance is satisfied. Here we consider the case of
a univariate .

Suppose the current value of is denoted and that we have obtained a corresponding
sample . The next value of is sampled uniformly from a region which contains

Vertical move:  U | X ~ Uni[0, f(X)] 

Horizontal move:  X | U ~ Uni{x : f(x) ≥ U} 

Note: Efficient alternatives to the horizontal move exist  
(state-of-the-art: doubling+shrinking procedure, Neal, 2003) 
See https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/mcmc/RealSliceSampler.java

https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/mcmc/RealSliceSampler.java


Annealing and tempering

• Key idea: using sequences of distributions

• Denoted, for t = 0 .. 1,  πt  

• The case t = 0 should be easy (‘heated’)

• ideally, such that we can get exact idd 
samples in poly-time for that 
temperature

• The case t = 1 should coincide with the 
target of interest (‘room temperature’)



Sequences of π
• Examples

• Naive: exponentiate the whole target

• Problem: we don’t want non-normalizable targets

• Solution: Exponentiate only likelihood

• Other issues

• hard constraints/restrictions in the likelihood

• computation: interpolate number of datapoints [Project]

• Automatic creation of sequences of distributions in Blang:  
https://www.stat.ubc.ca/~bouchard/blang/
Inference_and_runtime.html

• Sparsity considerations (changing t should be O(1))



Annealing

• Make temperature random

• Extract subset of samples where t = 1

• Exact simulation version exists:

• Moller and Nicholls 1999 

• Problem?



Parallel tempering
• Have all the temperature exist at same time

• I.e. state space is product instead of 
union

• Swap temperatures 
 
 

• Normalization constants cancel out now!

• Parallel implementation attractive

• See https://github.com/UBC-Stat-ML/blangSDK/blob/master/src/main/java/blang/engines/ParallelTempering.java



Gradient-based 
methods



Hamiltonian Monte 
Carlo: intuition

• Physical ball rolling on 
the energy

• E(x) = -log(p(x))

• Motion described by 
the Hamiltonian flow

• Phase space on a 
Gaussian target:

position

momentum



HMC: auxiliary variables
• Physics’ notation: z = (q, p)

• position q

• Augment the state with a momentum random 
variable p

• Put an auxiliary distribution on p, with  
f(p) = exp(-K(p)) and s.t.  
K(p) = K(-p), e.g. normal.  
 

• Can think of p as a velocity (when the mass matrix, 
i.e. covariance of f(x) is identity).

• Statistical notation would be then z = (x, v)

4 MCMC USING HAMILTONIAN DYNAMICS

Here, M is a symmetric, positive-definite “mass matrix”, which is typically diagonal, and
is often a scalar multiple of the identity matrix. This form for K(p) corresponds to minus
the log probability density (plus a constant) of the zero-mean Gaussian distribution with
covariance matrix M .

With these forms for H and K, Hamilton’s equations, (2.1) and (2.2), can be written as
follows, for i = 1, . . . , d:

dqi
dt

= [M−1p]i (2.7)

dpi
dt

= −
∂U

∂qi
(2.8)

A one-dimensional example. Consider a simple example in one dimension (for which
q and p are scalars and will be written without subscripts), in which the Hamiltonian is
defined as follows:

H(q, p) = U(q) +K(p), U(q) = q2/2, K(p) = p2/2 (2.9)

As we’ll see later in Section 3.1, this corresponds to a Gaussian distribution for q with
mean zero and variance one. The dynamics resulting from this Hamiltonian (following equa-
tions (2.7) and (2.8)) is

dq

dt
= p,

dp

dt
= −q, (2.10)

Solutions have the following form, for some constants r and a:

q(t) = r cos(a+ t), p(t) = −r sin(a+ t) (2.11)

Hence the mapping Ts is a rotation by s radians clockwise around the origin in the (q, p)
plane. In higher dimensions, Hamiltonian dynamics generally does not have such a simple
periodic form, but this example does illustrate some important properties that we will look
at next.

2.2 Properties of Hamiltonian dynamics

Several properties of Hamiltonian dynamics are crucial to its use in constructing Markov
chain Monte Carlo updates.

Reversibility. First, Hamiltonian dynamics is reversible — the mapping Ts from the state
at time t, (q(t), p(t)), to the state at time t+s, (q(t+s), p(t+s)), is one-to-one, and hence has
an inverse, T−s. This inverse mapping is obtained by simply negating the time derivatives
in equations (2.1) and (2.2). When the Hamiltonian has the form in equation (2.5), and
K(p) = K(−p), as in the quadratic form for the kinetic energy of equation (2.6), the inverse
mapping can also be obtained by negating p, applying Ts, and then negating p again.

In the simple 1D example of equation (2.9), T−s is just a counter-clockwise rotation by s
radians, undoing the clockwise rotation of Ts.

The reversibility of Hamiltonian dynamics is important for showing that MCMC updates
that use the dynamics leave the desired distribution invariant, since this is most easily proved
by showing reversibility of the Markov chain transitions, which requires reversibility of the
dynamics used to propose a state.



Exact HMC
• MCMC kernel is a non-reversible

• Given by a Dirac delta: k(z, dz’) = δΦ(z)(dz’)

• Φ is the Hamiltonian flow, i.e. solutions of the 
differential equations 
 
 
 

• Exact HMC: Analytic solution only in special 
cases, e.g. for  (truncated) normal target we get:

4 MCMC USING HAMILTONIAN DYNAMICS
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Hence the mapping Ts is a rotation by s radians clockwise around the origin in the (q, p)
plane. In higher dimensions, Hamiltonian dynamics generally does not have such a simple
periodic form, but this example does illustrate some important properties that we will look
at next.

2.2 Properties of Hamiltonian dynamics

Several properties of Hamiltonian dynamics are crucial to its use in constructing Markov
chain Monte Carlo updates.

Reversibility. First, Hamiltonian dynamics is reversible — the mapping Ts from the state
at time t, (q(t), p(t)), to the state at time t+s, (q(t+s), p(t+s)), is one-to-one, and hence has
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The reversibility of Hamiltonian dynamics is important for showing that MCMC updates
that use the dynamics leave the desired distribution invariant, since this is most easily proved
by showing reversibility of the Markov chain transitions, which requires reversibility of the
dynamics used to propose a state.
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q and p are scalars and will be written without subscripts), in which the Hamiltonian is
defined as follows:
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As we’ll see later in Section 3.1, this corresponds to a Gaussian distribution for q with
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2. Hamiltonian dynamics 3

hence p) is zero, at which point it will slide back down (with kinetic energy increasing and
potential energy decreasing).

In non-physical MCMC applications of Hamiltonian dynamics, the position will corre-
spond to the variables of interest. The potential energy will be minus the log of the proba-
bility density for these variables. Momentum variables, one for each position variable, will
be introduced artificially.

These interpretations may help motivate the exposition below, but if you find otherwise,
the dynamics can also be understood as simply resulting from a certain set of differential
equations.

2.1 Hamilton’s equations

Hamiltonian dynamics operates on a d-dimensional position vector, q, and a d-dimensional
momentum vector, p, so that the full state space has 2d dimensions. The system is described
by a function of q and p known as the Hamiltonian, H(q, p).

Equations of motion. The partial derivatives of the Hamiltonian determine how q and
p change over time, t, according to Hamilton’s equations:

dqi
dt

=
∂H

∂pi
(2.1)

dpi
dt

= −
∂H

∂qi
(2.2)

for i = 1, . . . , d. For any time interval of duration s, these equations define a mapping, Ts,
from the state at any time t to the state at time t+ s. (Here, H , and hence Ts, are assumed
to not depend on t.)

Alternatively, we can combine the vectors q and p into the vector z = (q, p) with 2d
dimensions, and write Hamilton’s equations as

dz

dt
= J ∇H(z) (2.3)

where ∇H is the gradient of H (ie, [∇H ]k = ∂H/∂zk), and

J =

[

0d×d Id×d

−Id×d 0d×d

]

(2.4)

is a 2d× 2d matrix whose quadrants are defined above in terms identity and zero matrices.

Potential and kinetic energy. For Hamiltonian Monte Carlo, we usually use Hamilto-
nian functions that can be written as follows:

H(q, p) = U(q) + K(p) (2.5)

Here, U(q) is called the potential energy, and will be defined to be minus the log probability
density of the distribution for q that we wish to sample, plus any constant that is convenient.
K(p) is called the kinetic energy, and is usually defined as

K(p) = pTM−1p / 2 (2.6)

⟹



Application: truncated 
normal distributions

• See Pakman and Paninski (2014)

• Truncated normal arise in many 
practical contexts:

• Probit and tobit models 

• Bayesian splines for positive 
functions

• Bayesian lasso

526 A. PAKMAN AND L. PANINSKI
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Figure 2. Truncation by quadratic inequalities. Above: 6000 samples of a two-dimensional canonical normal
distribution, constrained by the quadratic inequalities (2.54) and (2.55). The piecewise elliptic curve shows the
trajectory of the particle in the first iterations, with starting point (x, y) = (2, 0). Below: first 800 iterations of
the vertical coordinate. For the algebraic solution of (2.48), we used the C++ code from the DynamO package
(Bannerman, Sargant, and Lue 2011).

the sampling efficient at least for those trajectories with no wall hits. The efficiency can
be quantified via the effective sample factor (ESF) and effective sample size (ESS) (Liu
2008). Let us call the samples X(p). The variance in the estimation of the expected value of
a function h(X) using m samples is

var
(

h(X(1)) + · · · + h(X(m))
m

)
= var(h(X))

m

⎡

⎣1 +
m−1∑

j=1

(
1 − j

m

)
ρj

⎤

⎦ (2.57)
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3. EXAMPLES

In this section, we present four example applications of our algorithm. In the first
example, we present a detailed efficiency comparison between the HMC and the Gibbs
samplers. As mentioned in Section 2.2, in both frames (2.6) and (2.31), for each sample
of the HMC, we must act with a matrix R−1, where M = RT R, or multiply by ZT , where
M−1 = ! = ZT Z. In all our examples, we show how some special structure of M or
! allows us to accelerate these operations.

3.1 PROBIT AND TOBIT MODELS

The probit model is a popular discriminative probabilistic model for binary classification
with continuous inputs (Albert and Chib 1993). The conditional probabilities for the binary
labels y = ±1 are given by

p(y = −1|z,β) = "(z · β) = 1√
2π

∫ z·β

−∞
dw e− w2

2 (3.1)

= 1√
2π

∫ 0

−∞
dw e− (w+z·β)2

2 (3.2)

p(y = +1|z,β) = 1 − "(z · β) (3.3)

= 1√
2π

∫ +∞

0
dw e− (w+z·β)2

2 , (3.4)

where z ∈ Rp is a vector of regressors and β ∈ Rp are the parameters of the model. Given
N pairs of labels and regressors

Y = (y1, . . . , yN ), (3.5)

Z = (z1, . . . , zN ), (3.6)

the posterior distribution of the parameters β is

p(β|Y, Z) ∝ p(β)
N∏

i=1

p(yi |zi ,β) (3.7)

∝ p(β)
∫

yiwi≥0
dw1, . . . , dwN e− 1

2

∑N
i=1(wi+zi ·β)2

i = 1, . . . , N, (3.8)

where p(β) is the prior distribution. The likelihood p(yi |zi ,β) corresponds to a model

yi = sign(wi) (3.9)

wi = −zi · β + εi (3.10)

εi ∼ N (0, 1) (3.11)

in which only the sign of wi is observed but not its value. Assuming a Gaussian prior
with zero mean and covariance σ 2Ip, expression (3.8) is the marginal distribution of a
multivariate Gaussian on (β, w1, . . . , wN ), truncated to yiwi ≥ 0 for i = 1, . . . , N . The



Exact HMC: invariance
• MCMC kernel is a non-reversible

• Given by a Dirac delta: k(z, dz’) = δΦ(z)(dz’)

• Invariance equivalent to:

• given Z ~ extended target π’  
π’(x, v) = π(x) x normal(v)

• Define Y = Φ(Z)

• Do we have Y ~ π’ ? 



Exact HMC: invariance
• By change of variable formula, break into two 

factors:  
 
 
 
hence ingredient to show Y ~ π’ are:

• Φ invertible (yes, set v ⟵ -v)

• Conservation of Hamiltonian: first factor is 
constant

• Volume preservation: second factor is constant

fY (y) = fZ(�
�1(y)) | det J��1(y)|



Conservation of Hamiltonian
• Want f(z) = f(Φ(z))

• Enough: no infinitesimal Hamiltonian changes,  
H’ = 0

• Use total derivative identity  
 

• Then substitute our choice of the differential 
equation:

2. Hamiltonian dynamics 5

Conservation of the Hamiltonian. A second property of the dynamics is that it keeps
the Hamiltonian invariant (ie, conserved). This is easily seen from equations (2.1) and (2.2)
as follows:

dH

dt
=

d
∑

i=1

[

dqi
dt

∂H

∂qi
+

dpi
dt

∂H

∂pi

]

=
d

∑

i=1

[

∂H

∂pi

∂H

∂qi
−

∂H

∂qi

∂H

∂pi

]

= 0 (2.12)

With the Hamiltonian of equation (2.9), the value of the Hamiltonian is half the squared
distance from the origin, and the solutions (equation (2.11)) stay at a constant distance from
the origin, keeping H constant.

For Metropolis updates using a proposal found by Hamiltonian dynamics, which form
part of the HMC method, the acceptance probability is one if H is kept invariant. We will
see later, however, that in practice we can only make H approximately invariant, and hence
we will not quite be able to achieve this.

Volume preservation. A third fundamental property of Hamiltonian dynamics is that it
preserves volume in (q, p) space (a result known as Liouville’s Theorem). If we apply the
mapping Ts to the points in some region R of (q, p) space, with volume V , the image of R
under Ts will also have volume V .

With the Hamiltonian of equation (2.9), the solutions (equation (2.11)) are rotations,
which obviously do not change the volume. Such rotations also do not change the shape of a
region, but this is not so in general — Hamiltonian dynamics might stretch a region in one
direction, as long as the region is squashed in some other direction so as to preserve volume.

The significance of volume preservation for MCMC is that we needn’t account for any
change in volume in the acceptance probability for Metropolis updates. If we proposed new
states using some arbitrary, non-Hamiltonian, dynamics, we would need to compute the
determinant of the Jacobian matrix for the mapping the dynamics defines, which might well
be infeasible.

The preservation of volume by Hamiltonian dynamics can be proved in several ways. One
is to note that the divergence of the vector field defined by equations (2.1) and (2.2) is zero,
which can be seen as follows:

d
∑

i=1

[

∂

∂qi

dqi
dt

+
∂

∂pi

dpi
dt

]

=
d

∑

i=1

[

∂

∂qi

∂H

∂pi
−

∂

∂pi

∂H

∂qi

]

=
d

∑

i=1

[

∂2H

∂qi∂pi
−

∂2H

∂pi∂qi

]

= 0 (2.13)

A vector field with zero divergence can be shown to preserve volume (Arnold, 1989).

Here, I will show informally that Hamiltonian dynamics preserves volume more directly,
without presuming this property of the divergence. I will, however, take as given that volume
preservation is equivalent to the determinant of the Jacobian matrix of Ts having absolute
value one, which is related to the well-known role of this determinant in regard to the effect
of transformations on definite integrals and on probability density functions.

The 2d × 2d Jacobian matrix of Ts, seen as a mapping of z = (q, p), will be written as
Bs. In general, Bs will depend on the values of q and p before the mapping. When Bs is
diagonal, it is easy to see that the absolute values of its diagonal elements are the factors by
which Ts stretches or compresses a region in each dimension, so that the product of these
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hence p) is zero, at which point it will slide back down (with kinetic energy increasing and
potential energy decreasing).

In non-physical MCMC applications of Hamiltonian dynamics, the position will corre-
spond to the variables of interest. The potential energy will be minus the log of the proba-
bility density for these variables. Momentum variables, one for each position variable, will
be introduced artificially.

These interpretations may help motivate the exposition below, but if you find otherwise,
the dynamics can also be understood as simply resulting from a certain set of differential
equations.

2.1 Hamilton’s equations

Hamiltonian dynamics operates on a d-dimensional position vector, q, and a d-dimensional
momentum vector, p, so that the full state space has 2d dimensions. The system is described
by a function of q and p known as the Hamiltonian, H(q, p).

Equations of motion. The partial derivatives of the Hamiltonian determine how q and
p change over time, t, according to Hamilton’s equations:

dqi
dt

=
∂H

∂pi
(2.1)

dpi
dt

= −
∂H

∂qi
(2.2)

for i = 1, . . . , d. For any time interval of duration s, these equations define a mapping, Ts,
from the state at any time t to the state at time t+ s. (Here, H , and hence Ts, are assumed
to not depend on t.)

Alternatively, we can combine the vectors q and p into the vector z = (q, p) with 2d
dimensions, and write Hamilton’s equations as

dz

dt
= J ∇H(z) (2.3)

where ∇H is the gradient of H (ie, [∇H ]k = ∂H/∂zk), and

J =

[

0d×d Id×d

−Id×d 0d×d

]

(2.4)

is a 2d× 2d matrix whose quadrants are defined above in terms identity and zero matrices.

Potential and kinetic energy. For Hamiltonian Monte Carlo, we usually use Hamilto-
nian functions that can be written as follows:

H(q, p) = U(q) + K(p) (2.5)

Here, U(q) is called the potential energy, and will be defined to be minus the log probability
density of the distribution for q that we wish to sample, plus any constant that is convenient.
K(p) is called the kinetic energy, and is usually defined as

K(p) = pTM−1p / 2 (2.6)

⟹

2. Hamiltonian dynamics 5

Conservation of the Hamiltonian. A second property of the dynamics is that it keeps
the Hamiltonian invariant (ie, conserved). This is easily seen from equations (2.1) and (2.2)
as follows:

dH

dt
=

d
∑

i=1

[

dqi
dt

∂H

∂qi
+

dpi
dt

∂H

∂pi

]

=
d

∑

i=1

[

∂H

∂pi

∂H

∂qi
−

∂H

∂qi

∂H

∂pi

]

= 0 (2.12)

With the Hamiltonian of equation (2.9), the value of the Hamiltonian is half the squared
distance from the origin, and the solutions (equation (2.11)) stay at a constant distance from
the origin, keeping H constant.

For Metropolis updates using a proposal found by Hamiltonian dynamics, which form
part of the HMC method, the acceptance probability is one if H is kept invariant. We will
see later, however, that in practice we can only make H approximately invariant, and hence
we will not quite be able to achieve this.

Volume preservation. A third fundamental property of Hamiltonian dynamics is that it
preserves volume in (q, p) space (a result known as Liouville’s Theorem). If we apply the
mapping Ts to the points in some region R of (q, p) space, with volume V , the image of R
under Ts will also have volume V .

With the Hamiltonian of equation (2.9), the solutions (equation (2.11)) are rotations,
which obviously do not change the volume. Such rotations also do not change the shape of a
region, but this is not so in general — Hamiltonian dynamics might stretch a region in one
direction, as long as the region is squashed in some other direction so as to preserve volume.

The significance of volume preservation for MCMC is that we needn’t account for any
change in volume in the acceptance probability for Metropolis updates. If we proposed new
states using some arbitrary, non-Hamiltonian, dynamics, we would need to compute the
determinant of the Jacobian matrix for the mapping the dynamics defines, which might well
be infeasible.

The preservation of volume by Hamiltonian dynamics can be proved in several ways. One
is to note that the divergence of the vector field defined by equations (2.1) and (2.2) is zero,
which can be seen as follows:

d
∑

i=1

[

∂

∂qi

dqi
dt

+
∂

∂pi

dpi
dt

]

=
d

∑

i=1

[

∂

∂qi

∂H

∂pi
−

∂

∂pi

∂H

∂qi

]

=
d

∑

i=1

[

∂2H

∂qi∂pi
−

∂2H

∂pi∂qi

]

= 0 (2.13)

A vector field with zero divergence can be shown to preserve volume (Arnold, 1989).

Here, I will show informally that Hamiltonian dynamics preserves volume more directly,
without presuming this property of the divergence. I will, however, take as given that volume
preservation is equivalent to the determinant of the Jacobian matrix of Ts having absolute
value one, which is related to the well-known role of this determinant in regard to the effect
of transformations on definite integrals and on probability density functions.

The 2d × 2d Jacobian matrix of Ts, seen as a mapping of z = (q, p), will be written as
Bs. In general, Bs will depend on the values of q and p before the mapping. When Bs is
diagonal, it is easy to see that the absolute values of its diagonal elements are the factors by
which Ts stretches or compresses a region in each dimension, so that the product of these



Volume preservation

• See Neal (2012). MCMC using Hamiltonian 
dynamics for another, more direct argument
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Exact HMC: irreducibility

• Easy to see non irreducible in phase space  
 
 
 
 
 

• Solution: refresh momentum

position

momentum



Leap-frog HMC
• We can’t simulate the exact Hamiltonian flow for 

most targets of interest.

• Idea: 

• solve the differential equation using numerical 
methods and initial condition given by current 
point

• can be done so that volume still preserved 
(e.g. with leap-frog integrator)

• Hamiltonian no longer exactly preserved, so use 
MH to accept-reject



Leap-frog HMC
• Numerical solution example:  

• Algorithm:  
 
 
 

• Properties:

• reversibility

• symplecticness

8 MCMC USING HAMILTONIAN DYNAMICS

The time derivatives above are from the form of Hamilton’s equations given by (2.7) and (2.8).
If we start at t = 0 with given values for qi(0) and pi(0), we can iterate the steps above to
get a trajectory of position and momentum values at times ε, 2ε, 3ε, . . ., and hence find
(approximate) values for q(τ) and p(τ) after τ/ε steps (assuming τ/ε is an integer).

Figure 1(a) shows the result of using Euler’s method to approximate the dynamics defined
by the Hamiltonian of (2.9), starting from q(0) = 0 and p(0) = 1, and using a stepsize of
ε = 0.3 for 20 steps (ie, to τ = 0.3 × 20 = 6). The results aren’t good — Euler’s method
produces a trajectory that diverges to infinity, but the true trajectory is a circle. Using a
smaller value of ε, and correspondingly more steps, produces a more accurate result at τ = 6,
but although the divergence to infinity is slower, it is not eliminated.

A modification of Euler’s method. Much better results can be obtained by slightly
modifying Euler’s method, as follows:

pi(t+ ε) = pi(t) − ε
∂U

∂qi
(q(t)) (2.26)

qi(t+ ε) = qi(t) + ε
pi(t+ ε)

mi
(2.27)

We simply use the new value for the momentum variables, pi, when computing the new
value for the position variables, qi. A method with similar performance can be obtained by
instead updating the qi first and using their new values to update the pi.

Figure 1(b) shows the results using this modification of Euler’s method with ε = 0.3.
Though not perfect, the trajectory it produces is much closer to the true trajectory than
that obtained using Euler’s method, with no tendency to diverge to infinity. This better
performance is related to the modified method’s exact preservation of volume, which helps
avoid divergence to infinity or spiraling into the origin, since these would typically involve
the volume expanding to infinity or contracting to zero.

To see that this modification of Euler’s method preserves volume exactly despite the finite
discretization of time, note that both the transformation from (q(t), p(t)) to (q(t), p(t + ε))
via equation (2.26) and the transformation from (q(t), p(t+ε)) to (q(t+ε), p(t+ε)) via equa-
tion (2.27) are “shear” transformations, in which only some of the variables change (either
the pi or the qi), by amounts that depend only on the variables that do not change. Any
shear transformation will preserve volume, since its Jacobian matrix will have determinant
one (as the only non-zero term in the determinant will be the product of diagonal elements,
which will all be one).

The leapfrog method. Even better results can be obtained with the leapfrog method,
which works as follows:

pi(t+ ε/2) = pi(t) − (ε/2)
∂U

∂qi
(q(t)) (2.28)

qi(t + ε) = qi(t) + ε
pi(t+ ε/2)

mi
(2.29)

pi(t + ε) = pi(t + ε/2) − (ε/2)
∂U

∂qi
(q(t+ ε)) (2.30)
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(a) Euler’s Method, stepsize 0.3
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(b) Modified Euler’s Method, stepsize 0.3
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(c) Leapfrog Method, stepsize 0.3
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(d) Leapfrog Method, stepsize 1.2

Figure 1: Results using three methods for approximating Hamiltonian dynamics, when
H(q, p) = q2/2 + p2/2. The initial state was q = 0, p = 1. The stepsize was ε = 0.3
for (a), (b), and (c), and ε = 1.2 for (d). Twenty steps of the simulated trajectory are shown
for each method, along with the true trajectory (in gray).


