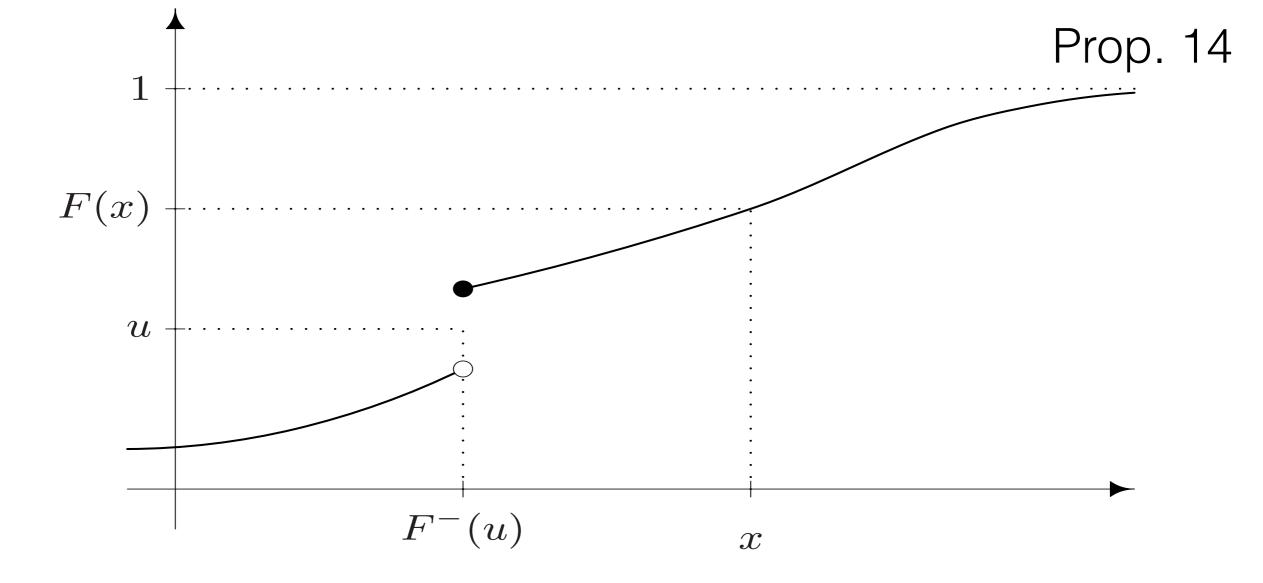


Review / Q&A / Exercise solutions



• **Proposition**. Let *F* be a cdf and $U \sim U_{[0,1]}$. Then $X = F^{-}(U)$ has cdf *F*.

Proof. $F^{-}(u) \leq x \Leftrightarrow u \leq F(x)$ so $U \sim \mathcal{U}_{[0,1]}$, we have

$$\mathbb{P}\left(F^{-}\left(U\right) \leq x\right) = \mathbb{P}\left(U \leq F\left(x\right)\right) = F\left(x\right).$$

Exercise: construct a RNG for exponential random variables of a given rate

Transformation method

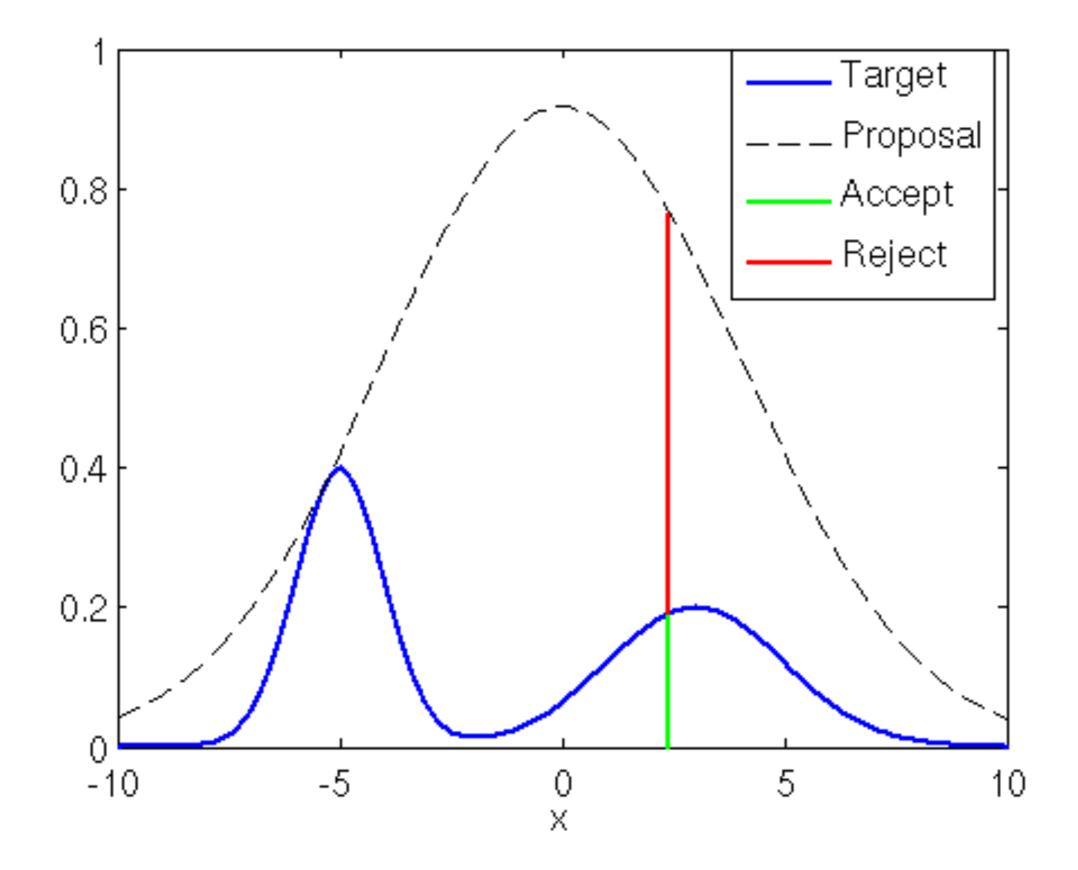
- Let $Y \sim q$ be a \mathbb{Y} -valued random variable (rv) of, which we can simulate (eg, by inversion)
- Let $X \sim \pi$ be a X-valued rv, which we wish to simulate.
- It may be that we can find a function φ : Y → X with the property that if we simulate Y ~ q and then set X = φ(Y) then we get X ~ π.
- Inversion is a special case of this idea.

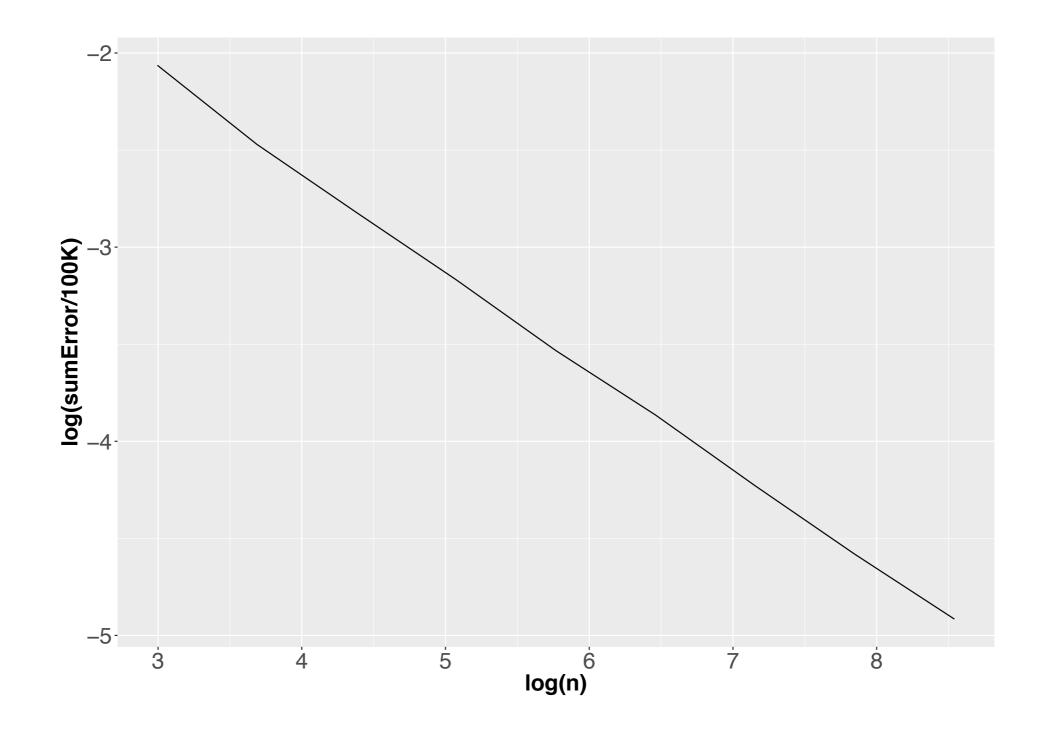
Augmentation / auxiliary variables Def. 16

- Example: how to simulate from a mixture model?
- Key idea: marginalization is easy with Monte Carlo methods
 - Contrast with analytical marginalization
- Build (X,Y) such that distribution of interest is a marginal (or a conditional on a discrete variable)

• Exercises:

- write pseudo-code to simulate from a mixture distribution with 2 normal components,
- show that rejection sampling is an augmentation sampling scheme





1. Use this plot to empirically derive the running time of Simple Monte Carlo for a given tolerance *tol*. Create the plot for Example 7 [c.f. lecture slides].

4. Compute the running time in tol and d for Example 7 [c.f. lecture slides] but with non-diagonal covariance normal vectors.

Fundamental equation to analyze Monte Carlo methods

Х

running time =

number of samples needed to get a tolerance (with probability 95%)

compute cost per sample

- Exercise:
 - Compute the running time in tol and d for Example 7 but with non-diagonal covariance normal vectors

Using CLT in practice

- Let X be a random tree
- We are looking at a clade indicator f(X) as in Example 2.
- After 500 iid trees your MC estimate for the clade support is roughly 10%
- Should you extract more samples?
 - Say we want a scheme with relative error of less than 10% for approximately 95% of the random seeds

Importance sampling (IS)

IS: when proposal and target have known normalizations

If:
$$\pi(x) > 0 \Rightarrow q(x) > 0$$

Then:

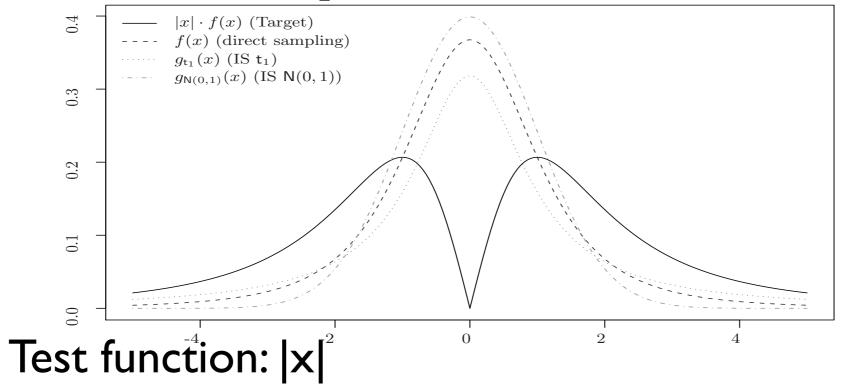
$$\pi (A) := \int_{A} \pi (x) dx$$
$$= \int_{A} \frac{\pi (x)}{q (x)} q (x) dx$$
$$= \int_{A} w (x) q (x) dx$$

 $X_1, ..., X_n$ be a sample of independent random variables distributed according to q

$$\widehat{I}_n^{\text{IS}} = \frac{1}{n} \sum_{i=1}^n \phi(X_i) w(X_i)$$

Example/exercise

Ex 19



- Target density: t-distribution, 3 degrees of freedom
- Compare (x-axis, I-1500, y axis, partial sum, range of 100 replicates)
 - Simple MC
 - IS with t proposal, I degree of freedom
 - IS with normal proposal

Normalization: important issue in large scale Bayesian or random effects models

• We are given a density known up to a normalization constant

$$\pi(x) = \frac{\gamma(x)}{Z}$$

- Example: $\pi(x) = \frac{\text{joint}(x, y)}{\text{evidence}(y)}$ x : unknowny : data
- We want a law of large number $\frac{1}{N} \sum_{i=1}^{N} \varphi(X^{(i)}) \to \int \varphi(x) \pi(\mathrm{d}x) \text{ a.s.}$ 'test function'

Note: We almost never care about the samples themselves!

Def. 4

IS: when proposal and target do not have known normalizations

If:
$$\pi(x) > 0 \Rightarrow q(x) > 0$$

Then:
$$I = \mathbb{E}_{\pi}(\phi(X)) = \int_{\mathbb{X}} \phi(x) \pi(x) dx$$

$$= \frac{\int_{\mathbb{X}} \phi(x) w(x) q(x) dx}{\int_{\mathbb{X}} w(x) q(x) dx}$$
$$= \frac{\mathbb{E}_{q}(\phi(X)w(X))}{\mathbb{E}_{q}(w(X))}.$$

 $X_1, ..., X_n$ be a sample of independent random variables distributed according to q

$$\widehat{I}_n^{\text{NIS}} = \frac{\sum_{i=1}^n \phi(X_i) w(X_i)}{\sum_{i=1}^n w(X_i)}$$

Analysis of the asymptotic variance

Assume that $\mathbb{V}_{q}(\phi(X)w(X)) < \infty$ and $\mathbb{V}_{q}(w(X)) < \infty$ then

$$\sqrt{n}\left(\widehat{I}_{n}^{\mathrm{NIS}}-I\right) \xrightarrow{\mathrm{D}} \mathcal{N}\left(0,\sigma_{\mathrm{NIS}}^{2}\right)$$

Prop 21

Exercise: compute asymptotic variance

Tool: delta method

If: $\sqrt{n} (Z_n - \mu) \xrightarrow{D} \mathcal{N} (0, \Sigma).$

Then: $\sqrt{n} \left(g\left(Z_n \right) - g\left(\mu \right) \right) \rightarrow \mathcal{N} \left(0, \nabla^T g\left(\mu \right) \ \Sigma \ \nabla g\left(\mu \right) \right).$