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Figure 3: Left: A BPS trajectory containing 200 segments/bounces and no refreshment (for clarity,
the first 15 segments are in black and the following ones are in light grey): the center of the space
is never explored. Right, solid line: ESS per CPU second as a function of d (log-log scale), along
with 95% confidence intervals based on 40 independent runs (the intervals are small and may be
difficult to see). Dashed line: linear regression curve. See Section 4.1 for details.

4 Numerical results

4.1 Gaussian distributions and the need for refreshment

We consider an isotropic multivariate Gaussian target distribution, U (x) = kxk2, to illustrate the
need for refreshment. Without refreshment, we obtain from Equation (7)

D
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=

(

�
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otherwise,
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�
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�

�

2 �
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if
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x(i�1), v(i�1)

↵
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�

�x(i�1)

�

�

2 � log V
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otherwise,

see Material for details. In particular, these calculations show if
⌦

x(i), v(i)
↵

 0 then
⌦

x(j), v(j)
↵

 0

for j > i so that kx(i)k2 =

�

�x(1)

�

�

2 �
⌦

x(1), v(1)
↵

2 � log V
i

for i � 2. In particular for x(0)

= e
1

and
v(0) = e

2

with e
i

being elements of standard basis of Rd, the norm of the position at all points
along the trajectory can never be smaller than 1 as illustrated in Figure 3.

In this scenario, we show that BPS without refreshment admits a countably infinite collection of
invariant distributions. Let us define r (t) = kx (t)k and m (t) = hx (t) , v (t)i / kx (t)k and denote
by �

k

the probability density of the chi distribution with k degrees of freedom.

Proposition 2. For any dimension d � 2, the process (r (t) ,m (t))
t�0

is Markov and its transition
kernel is invariant with respect to the probability densities

�

f
k

(r,m) / �
k

(

p
2r) · (1�m2

)

(k�3)/2

; k 2 {2, 3, . . .}
 

.

The proof is given in Appendix 2. By Theorem 1, we have a unique invariant measure as soon as
�ref > 0.
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Answer to extra exercise
• Running time to sample m times from a categorical 

over n items: [ i.e. a multinomial; naively: O( mn ) ]

• binary tree-based: O( n log n + m log n )

• also supports O( log n ) updates

• alias method (Walker 1974): 

• idealized: O( n + m )

• in practice (numerical issues): O( n log n + m )

• Poisson process trick (need m in advance) 

• O( n + m ) but output is sorted



IS: when proposal and target 
have known normalizations

Advanced Simulation Methods

Chapter 3 - Importance Sampling and Variance Reduction Methods

1 Importance Sampling

In the rejection sampling algorithm, we simulate from a distribution ⇡ by sampling from a proposal distri-
bution q and rejecting some of the proposed values. Importance sampling uses another correction scheme
based on reweighting. In this context the proposal q is also known as an importance distribution.

1.1 Standard Importance Sampling

Let q,⇡ be two pdfs on X such that ⇡ (x) > 0 ) q (x) > 0. Then, for any1 set A such that ⇡ (A) > 0
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where w : X ! R+ is the so-called importance weight function. This identity can be obviously generalised
to the expectation of any function. Assume ⇡ (x)� (x) > 0 ) q(x) > 0, then
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is consistent through the strong law of large numbers if E
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Example/exercise

• Test function: |x|

• Target density: t-distribution, 3 degrees of freedom

• Compare (x-axis, 1-1500, y axis, partial sum, range 
of 100 replicates)

• Simple MC

• IS with t proposal, 1 degree of freedom

• IS with normal proposal

Proposition 2 The optimal proposal minimising V
q

⇣

bIIS
n

⌘

is given by

q
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(x) =
|�(x)|⇡ (x)

R

X |�(x)|⇡ (x) dx
.

Proof. We have indeed
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We also have by Jensen’s inequality
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so we can conclude. ⌅

This optimal variance estimator cannot typically be implemented; e.g for � (x) > 0 we have q
opt

(x) =

�(x)⇡ (x) /I and V
q

opt

⇣

bIIS
n

⌘

= 0 but this cannot be implemented as this required knowing I! This can be

however use as a guideline to select q; i.e. select q (x) such that it approaches q
opt

(x) in some respect.

Example 1 Importance sampling for t-distribution. Assume we are interested in computing

I = E
⇡

(|X|)

where ⇡ (x) = f (x) a t

3

-distribution, that is a t-distribution with 3 degrees of freedom using Monte Carlo.

We propose 3 sampling schemes to compute I where (a) we directly sample from q (x) = f (x) , (b) we use

importance sampling with q (x) = g
t

1

(x) being a t

1

-distribution (that is a Cauchy) (c) we use importance

sampling with q (x) = g
N(0,1)

(x) being a standard normal distribution; see Figure 1 for an illustration.

The performance of the estimates are displayed in Figure 2 and the associated sample weights in Figure

3. We see that q (x) = g
N(0,1)

(x) yields a poor estimate as the variance of the weights is infinite whereas it

can be shown that g
t

1

yields a smaller variance estimate that f (x) .
22 2. Fundamental Concepts: Transformation, Rejection, and Reweighting
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Fig. 2.4. Illustration of the di↵erent instrumental distributions in example 2.5.

Sampling directly from the t

3

distribution can be seen as importance sampling with all weights w
i

⌘ 1,

this choice clearly minimises the variance of the weights. This however does not imply that this yields

an estimate of the integral
R

|x|f(x) dx of minimal variance. Indeed, after 1500 iterations the empirical

standard deviation (over 100 realisations) of the direct estimate is 0.0345, which is larger than the empirical

standard deviation of µ̃ when using a t

1

distribution as instrumental distribution, which is 0.0182. So using

a t

1

distribution as instrumental distribution is super-e�cient (see figure 2.5).

Figure 2.6 somewhat explains why the t
1

distribution is a far better choice than the N(0, 1) distributon. As

the N(0, 1) distribution does not have heavy enough tails, the weight tends to infinity as |x| ! +1. Thus

large |x| get large weights, causing the jumps of the estimate µ̃ shown in figure 2.5. The t

1

distribution

has heavy enough tails, so the weights are small for large values of |x|, explaining the small variance of

the estimate µ̃ when using a t

1

distribution as instrumental distribution. /

Figure 1: Di↵erent proposal distributions
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Figure 3: Sample weights obtained for 20 realisations of X
i

from the di↵erent proposal distributions

1.2 Normalised Importance Sampling

Practically standard importance sampling has limited applications as it requires knowing ⇡ (x) exactly con-
trary to rejection sampling where ⇡ (x) and q (x) can be known only up to some normalising constants.
However there is an alternative version of importance sampling known as normalised importance sampling
which bypasses this problem. It relies on the following identity which holds whenever ⇡ (x) > 0 ) q(x) > 0

I = E
⇡

(�(X)) =

Z

X
� (x)⇡ (x) dx

=
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X � (x)w (x) q (x) dx
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X w (x) q (x) dx

=
E
q

(�(X)w (X))

E
q

(w (X))
.

Now let X
1

, ..., X
n

be a sample of independent random variables distributed according to q then the
estimator
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n
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)w(X
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)
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w(X
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)

is consistent through the strong law of large numbers as long as E
q

(|�(X)|w (X)) < 1.

The normalised importance sampling estimator bINIS

n

is a ratio of two estimators so we do not have simple
expressions for its finite bias and variance but we can obtain their asymptotic (i.e. as n ! 1) expression
by relying on the delta method.

Proposition 3 (The multivariate Delta method). Suppose Z
n

= (Z
n1

, ..., Z
nk

) is a sequence of random

vectors such that p
n (Z

n

� µ)
D! N (0,⌃) .
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Figure 3: Sample weights obtained for 20 realisations of X
i

from the di↵erent proposal distributions

1.2 Normalised Importance Sampling

Practically standard importance sampling has limited applications as it requires knowing ⇡ (x) exactly con-
trary to rejection sampling where ⇡ (x) and q (x) can be known only up to some normalising constants.
However there is an alternative version of importance sampling known as normalised importance sampling
which bypasses this problem. It relies on the following identity which holds whenever ⇡ (x) > 0 ) q(x) > 0

I = E
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(�(X)) =

Z

X
� (x)⇡ (x) dx
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Now let X
1

, ..., X
n

be a sample of independent random variables distributed according to q then the
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)

is consistent through the strong law of large numbers as long as E
q

(|�(X)|w (X)) < 1.

The normalised importance sampling estimator bINIS

n

is a ratio of two estimators so we do not have simple
expressions for its finite bias and variance but we can obtain their asymptotic (i.e. as n ! 1) expression
by relying on the delta method.

Proposition 3 (The multivariate Delta method). Suppose Z
n

= (Z
n1

, ..., Z
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) is a sequence of random

vectors such that p
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� µ)
D! N (0,⌃) .
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Chapter 3 - Importance Sampling and Variance Reduction Methods

1 Importance Sampling

In the rejection sampling algorithm, we simulate from a distribution ⇡ by sampling from a proposal distri-
bution q and rejecting some of the proposed values. Importance sampling uses another correction scheme
based on reweighting. In this context the proposal q is also known as an importance distribution.

1.1 Standard Importance Sampling

Let q,⇡ be two pdfs on X such that ⇡ (x) > 0 ) q (x) > 0. Then, for any1 set A such that ⇡ (A) > 0

⇡ (A) :=
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q (x)
| {z }
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where w : X ! R+ is the so-called importance weight function. This identity can be obviously generalised
to the expectation of any function. Assume ⇡ (x)� (x) > 0 ) q(x) > 0, then
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is consistent through the strong law of large numbers if E
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(|�(X)|w (X)) < 1. We also obtain easily the
following result.

Proposition 1 (Bias and Variance of Standard Importance Sampling)
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, we consider the Borel sigma algebra F = B
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, A 2 F and the density is with respect to the Lebesgue
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More intuition and 
motivation for IS



• Random measure interpretation 
 
 
 
 
 

• Example: directed graphical model
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1.2 Normalised Importance Sampling

Practically standard importance sampling has limited applications as it requires knowing ⇡ (x) exactly con-
trary to rejection sampling where ⇡ (x) and q (x) can be known only up to some normalising constants.
However there is an alternative version of importance sampling known as normalised importance sampling
which bypasses this problem. It relies on the following identity which holds whenever ⇡ (x) > 0 ) q(x) > 0
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is a ratio of two estimators so we do not have simple
expressions for its finite bias and variance but we can obtain their asymptotic (i.e. as n ! 1) expression
by relying on the delta method.
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Chapter 3 - Importance Sampling and Variance Reduction Methods

1 Importance Sampling

In the rejection sampling algorithm, we simulate from a distribution ⇡ by sampling from a proposal distri-
bution q and rejecting some of the proposed values. Importance sampling uses another correction scheme
based on reweighting. In this context the proposal q is also known as an importance distribution.

1.1 Standard Importance Sampling

Let q,⇡ be two pdfs on X such that ⇡ (x) > 0 ) q (x) > 0. Then, for any1 set A such that ⇡ (A) > 0
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where w : X ! R+ is the so-called importance weight function. This identity can be obviously generalised
to the expectation of any function. Assume ⇡ (x)� (x) > 0 ) q(x) > 0, then
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is consistent through the strong law of large numbers if E
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NIS: Analysis of the 
asymptotic variance 

Let g : Rk ! R and let
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Proposition 4 (CLT for Normalised Importance Sampling)
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Rearranging the terms, we obtain the desired expression. ⌅
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Exercise: compute asymptotic variance
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1.2 Normalised Importance Sampling

Practically standard importance sampling has limited applications as it requires knowing ⇡ (x) exactly con-
trary to rejection sampling where ⇡ (x) and q (x) can be known only up to some normalising constants.
However there is an alternative version of importance sampling known as normalised importance sampling
which bypasses this problem. It relies on the following identity which holds whenever ⇡ (x) > 0 ) q(x) > 0
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is consistent through the strong law of large numbers as long as E
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The normalised importance sampling estimator bINIS
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is a ratio of two estimators so we do not have simple
expressions for its finite bias and variance but we can obtain their asymptotic (i.e. as n ! 1) expression
by relying on the delta method.

Proposition 3 (The multivariate Delta method). Suppose Z
n

= (Z
n1

, ..., Z
nk

) is a sequence of random

vectors such that p
n (Z

n

� µ)
D! N (0,⌃) .

3

If:

Then:

Let g : Rk ! R and let

rg =

✓

@g

@z
1

· · · @g

@z
k

◆

T

.

Let rg (µ) be rg evaluated z = µ and assume the elements of rg (µ) are non-zero then

p
n (g (Z

n

)� g (µ)) ! N
�

0,rTg (µ) ⌃ rg (µ)
�

.

Proposition 4 (CLT for Normalised Importance Sampling)

Assume that V
q

(�(X)w (X)) < 1 and V
q

(w (X)) < 1 then

p
n
⇣

bINIS

n

� I
⌘

D! N
�

0,�2

NIS

�

where

�2

NIS

= V
q

(�(X)w (X)) + I2V
q

(w (X))� 2Icov
q

(�(X)w (X) , w (X))

=

Z

(� (x)� I)2
⇡2 (x)

q (x)
dx

Proof. We apply the delta method to Z
n

= (Z
n1

, Z
n2

) where

Z
n1

=
1

n

n

X

i=1

�(X
i

)w(X
i

), Z
n2

=
1

n

n

X

i=1

w(X
i

)

and
bINIS

n

=
Z
n1

Z
n2

= g (Z
n

) .

By the CLT, we have

p
n

✓

Z
n1

� E
q

(�(X)w (X))
Z
n2

� E
q

(w (X))

◆

! N
✓

0,

✓

V
q

(�(X)w (X)) cov
q

(�(X)w (X) , w (X))
cov

q

(�(X)w (X) , w (X)) V
q

(w (X))

◆◆

(1)
and

rg =

 

@g

@z

1

@g

@z

2

!

=

✓

1/z
2

�z
1

/z2
2

◆

so

rg (µ) =

✓

1/E
q

(w (X)
�E

q

(�(X)w (X)) /E2

q

(w (X)

◆

=

✓

1
�E

q

(�(X)w (X))

◆

.

Hence we have

rTg (µ) ⌃ rg (µ) = V
q

(�(X)w (X)) + E2

q

(�(X)w (X))V
q

(w (X))� 2E
q

(�(X)w (X)) cov
q

(�(X)w (X) , w (X))

= V
q

(�(X)w (X)) + I2V
q

(w (X))� 2Icov
q

(�(X)w (X) , w (X))

Rearranging the terms, we obtain the desired expression. ⌅
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Tool: delta method
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NIS: Analysis of  
asymptotic bias

• Consequence: asymptotically, the bias is 
negligible compared to the variance
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For �2 2 (1/2,1) , we have 1 � 2 (�0)2 < 0. Hence if we vary m, the di↵erence can be either positive or
negative.
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IS and RS in high 
dimensions



Rejection and Importance Sampling in High Dimensions

Toy example: Let X = Rd and

π (x) = 1
(2π)d/2 exp

(

−
∑d

i=1 x2
i

2

)

and
q (x) = 1

(2πσ2)d/2 exp
(

−
∑d

i=1 x2
i

2σ2

)

.

How do Rejection sampling and Importance sampling scale in
this context?

Pierre Jacob Advanced Simulation 12/ 25



Rejection sampling (RS)Performance of Rejection Sampling

We have

w (x) = π (x)
q (x) = σd exp

(

−
∑d

i=1 x2
i

2

(
1 − 1

σ2

))

≤ σd

for σ > 1.
Acceptance probability is

P (X accepted) = 1
σd → 0 as d → ∞,

i.e. exponential degradation of performance.
For d = 100, σ = 1.2, we have

P (X accepted) ≈ 1.2 × 10−8

Pierre Jacob Advanced Simulation 13/ 25



Importance samplingPerformance of Importance Sampling

We have

w (x) = σd exp
(

−
∑d

i=1 x2
i

2

(
1 − 1

σ2

))

.

For the variance of the weights

Vq [w (X)] =
(

σ4

2σ2 − 1

)d/2
− 1

where σ4/
(
2σ2 − 1

)
> 1 for any σ2 > 1/2 ⇒ Exponential

variance increase.
For d = 100, σ = 1.2, we have

Vq [w (X)] ≈ 1.8 × 104.

Pierre Jacob Advanced Simulation 14/ 25



Wait a minute..Wait a minute. . .

Lecture 1:
Simpson’s rule for approximating integrals: error in O(n−1/d).

Lecture 2:
Monte Carlo for approximating integrals: error in O(n−1/2)
with rate independent of d.

And now:
Importance Sampling standard deviation in the Gaussian
example in exp(d)n−1/2.

⇒ The rate is indeed independent of d but the constant explodes.

Pierre Jacob Advanced Simulation 15/ 25



Fundamental equation to 
analyze Monte Carlo 

methods

running time =
number of samples 

needed to get a 
tolerance (with 

probability 95%)

x compute cost per 
sample

• Exercise:

• Compute the running time in tol and d 
for Example 7 but with non-diagonal 
covariance normal vectors

Def 17



Diagnostic for IS



Building Monte Carlo 
confidence interval for IS

• Bias asymptotically negligible, use asymptotic 
variance

• As in first exercise: for a 95% confidence interval, 
use  

• The asymptotic variance is...

• for BIS:

• for NIS:

• In both cases, replace unknowns by estimators...

In ± 1.96
q
�2
asympt/n

Advanced Simulation Methods

Chapter 3 - Importance Sampling and Variance Reduction Methods

1 Importance Sampling

In the rejection sampling algorithm, we simulate from a distribution ⇡ by sampling from a proposal distri-
bution q and rejecting some of the proposed values. Importance sampling uses another correction scheme
based on reweighting. In this context the proposal q is also known as an importance distribution.

1.1 Standard Importance Sampling

Let q,⇡ be two pdfs on X such that ⇡ (x) > 0 ) q (x) > 0. Then, for any1 set A such that ⇡ (A) > 0

⇡ (A) :=

Z

A

⇡ (x) dx

=

Z

A

⇡ (x)

q (x)
| {z }

q

:=w(x)

(x) dx

=

Z

A

w (x) q (x) dx

where w : X ! R+ is the so-called importance weight function. This identity can be obviously generalised
to the expectation of any function. Assume ⇡ (x)� (x) > 0 ) q(x) > 0, then

I = E
⇡

(�(X)) =

Z

X
� (x)⇡ (x) dx

=

Z

X
� (x)w (x) q (x) dx

= E
q

(�(X)w (X)).

Now let X
1

, ..., X
n

be a sample of independent random variables distributed according to q then the
estimator

bIIS
n

=
1

n

n

X

i=1

�(X
i

)w(X
i

)

is consistent through the strong law of large numbers if E
q

(|�(X)|w (X)) < 1. We also obtain easily the
following result.

Proposition 1 (Bias and Variance of Standard Importance Sampling)

(a) E
q

⇣

bIIS
n

⌘

= I,

(b) V
q

⇣

bIIS
n

⌘

= 1

n

V
q

(�(X)w (X)) and if �2

IS

:= V
q

(�(X)w (X)) < 1

p
n
⇣

bIIS
n

� I
⌘

D! N
�

0,�2

IS

�

Remark. A su�cient condition for V
q

⇣

bIIS
n

⌘

to be finite is to have V
⇡

(�(X)) finite and ⇡ (x) /Mq (x) 
M < 1 for any x 2 X.

A natural question consists of choosing what is the best proposal distribution to minimize V
q

⇣

bIIS
n

⌘

.

1

For X = Rd

, we consider the Borel sigma algebra F = B
�
Rd

�
, A 2 F and the density is with respect to the Lebesgue

measure dx.

1

Let g : Rk ! R and let

rg =

✓

@g

@z
1

· · · @g

@z
k

◆

T

.

Let rg (µ) be rg evaluated z = µ and assume the elements of rg (µ) are non-zero then

p
n (g (Z

n

)� g (µ)) ! N
�

0,rTg (µ) ⌃ rg (µ)
�

.

Proposition 4 (CLT for Normalised Importance Sampling)

Assume that V
q

(�(X)w (X)) < 1 and V
q

(w (X)) < 1 then

p
n
⇣

bINIS

n

� I
⌘

D! N
�

0,�2

NIS

�

where

�2

NIS

= V
q

(�(X)w (X)) + I2V
q

(w (X))� 2Icov
q

(�(X)w (X) , w (X))

=

Z

(� (x)� I)2
⇡2 (x)

q (x)
dx

Proof. We apply the delta method to Z
n

= (Z
n1

, Z
n2

) where

Z
n1

=
1

n

n

X

i=1

�(X
i

)w(X
i

), Z
n2

=
1

n

n

X

i=1

w(X
i

)

and
bINIS

n

=
Z
n1

Z
n2

= g (Z
n

) .

By the CLT, we have

p
n
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Z
n1

� E
q

(�(X)w (X))
Z
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� E
q

(w (X))

◆

! N
✓
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and
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q
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(�(X)w (X) , w (X))

Rearranging the terms, we obtain the desired expression. ⌅

Remark. We can have either �2

IS

< �2

NIS

or �2

IS

> �2

NIS

as it is demonstrated here on a toy example.
Indeed, we have

�2
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� �2
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q (x)
dx�
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�2 (x)
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dx
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For ⇡ (x) = N (x; 0, 1), q (x) = N
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=
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