Monte Carlo methods

Alexandre Bouchard-Côté

Review / Q\&A / Exercise solutions

Answer to extra exercise

- Running time to sample m times from a categorical over n items: [i.e. a multinomial; naively: $\mathrm{O}(\mathrm{mn})$]
- binary tree-based: $O(n \log n+m \log n)$
- also supports $O(\log n)$ updates
- alias method (Walker I974):
- idealized: $O(n+m)$
- in practice (numerical issues): $O(n \log n+m)$
- Poisson process trick (need m in advance)
- $O(n+m)$ but output is sorted

IS: when proposal and target have known normalizations

If: $\quad \pi(x)>0 \Rightarrow q(x)>0$

Then:

$$
\begin{aligned}
\pi(A) & :=\int_{A} \pi(x) d x \\
& =\int_{A} \underbrace{\frac{\pi(x)}{q(x)}}_{:=w(x)} q(x) d x \\
& =\int_{A} w(x) q(x) d x
\end{aligned}
$$

X_{1}, \ldots, X_{n} be a sample of independent random variables distributed according to q
BIS (Basic IS)

$$
\bar{I}_{n}^{\text {s. }}=\frac{1}{n} \sum_{i=1}^{n} \phi\left(X_{i}\right) w\left(X_{i}\right)
$$

Example/exercise

- Target density: t-distribution, 3 degrees of freedom
- Compare (x-axis, l-I500, y axis, partial sum, range of 100 replicates)
- Simple MC
- IS with t proposal, I degree of freedom
- IS with normal proposal

IS: when proposal and target

 do not have known normalizationsIf: $\quad \pi(x)>0 \Rightarrow q(x)>0$

Then: $\quad I=\mathbb{E}_{\pi}(\phi(X))=\int_{\mathbb{X}} \phi(x) \pi(x) d x$

$$
\begin{aligned}
& =\frac{\int_{\mathbb{X}} \phi(x) w(x) q(x) d x}{\int_{\mathbb{X}} w(x) q(x) d x} \\
& =\frac{\mathbb{E}_{q}(\phi(X) w(X))}{\mathbb{E}_{q}(w(X))}
\end{aligned}
$$

X_{1}, \ldots, X_{n} be a sample of independent random variables distributed according to q
NIS

$$
\widehat{I}_{n}^{\mathrm{NIS}}=\frac{\sum_{i=1}^{n} \phi\left(X_{i}\right) w\left(X_{i}\right)}{\sum_{i=1}^{n} w\left(X_{i}\right)}
$$

More intuition and motivation for IS

- Random measure interpretation

- Example: directed graphical model

Asymptotics wrap-up

BIS first

(a) $\mathbb{E}_{q}\left(\widehat{I}_{n}^{\mathrm{IS}}\right)=I$,
(b) $\mathbb{V}_{q}\left(\widehat{I}_{n}^{\text {IS }}\right)=\frac{1}{n} \mathbb{V}_{q}(\phi(X) w(X))$ and if $\sigma_{\text {IS }}^{2}:=\mathbb{V}_{q}(\phi(X) w(X))<\infty$

$$
\sqrt{n}\left(\widehat{I}_{n}^{\mathrm{IS}}-I\right) \xrightarrow{\mathrm{D}} \mathcal{N}\left(0, \sigma_{\mathrm{IS}}^{2}\right)
$$

NIS:Analysis of the asymptotic variance

Prop 21

Assume that $\mathbb{V}_{q}(\phi(X) w(X))<\infty$ and $\mathbb{V}_{q}(w(X))<\infty$ then

$$
\sqrt{n}\left(\widehat{I}_{n}^{\mathrm{NIS}}-I\right) \xrightarrow{\mathrm{D}} \mathcal{N}\left(0, \sigma_{\mathrm{NIS}}^{2}\right)
$$

Exercise: compute asymptotic variance
Tool: delta method

$$
\text { If: } \quad \sqrt{n}\left(Z_{n}-\mu\right) \xrightarrow{D} \mathcal{N}(0, \Sigma) .
$$

Then: $\sqrt{n}\left(g\left(Z_{n}\right)-g(\mu)\right) \rightarrow \mathcal{N}\left(0, \nabla^{T} g(\mu) \Sigma \nabla g(\mu)\right)$.

NIS:Analysis of asymptotic bias

Assume that $\mathbb{V}_{q}(\phi(X) w(X))<\infty$ and $\mathbb{V}_{q}(w(X))<\infty$ then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n \mathbb{E}_{q}\left(\hat{I}_{n}^{N I S}-I\right) & =-\operatorname{cov}_{q}(\phi(X) w(X), w(X))+\mathbb{V}_{q}(w(X)) I \\
& =-\int(\phi(x)-I) \frac{\pi^{2}(x)}{q(x)} d x .
\end{aligned}
$$

- Consequence: asymptotically, the bias is negligible compared to the variance

IS and RS in high dimensions

■ Toy example: Let $\mathbb{X}=\mathbb{R}^{d}$ and

$$
\pi(x)=\frac{1}{(2 \pi)^{d / 2}} \exp \left(-\frac{\sum_{i=1}^{d} x_{i}^{2}}{2}\right)
$$

and

$$
q(x)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{d / 2}} \exp \left(-\frac{\sum_{i=1}^{d} x_{i}^{2}}{2 \sigma^{2}}\right)
$$

■ How do Rejection sampling and Importance sampling scale in this context?

Rejection sampling (RS)

- We have

$$
w(x)=\frac{\pi(x)}{q(x)}=\sigma^{d} \exp \left(-\frac{\sum_{i=1}^{d} x_{i}^{2}}{2}\left(1-\frac{1}{\sigma^{2}}\right)\right) \leq \sigma^{d}
$$

for $\sigma>1$.

- Acceptance probability is

$$
\mathbb{P}(X \text { accepted })=\frac{1}{\sigma^{d}} \rightarrow 0 \text { as } d \rightarrow \infty
$$

i.e. exponential degradation of performance.

■ For $d=100, \sigma=1.2$, we have

$$
\mathbb{P}(X \text { accepted }) \approx 1.2 \times 10^{-8}
$$

Importance sampling

- We have

$$
w(x)=\sigma^{d} \exp \left(-\frac{\sum_{i=1}^{d} x_{i}^{2}}{2}\left(1-\frac{1}{\sigma^{2}}\right)\right) .
$$

- For the variance of the weights

$$
\mathbb{V}_{q}[w(X)]=\left(\frac{\sigma^{4}}{2 \sigma^{2}-1}\right)^{d / 2}-1
$$

where $\sigma^{4} /\left(2 \sigma^{2}-1\right)>1$ for any $\sigma^{2}>1 / 2 \Rightarrow$ Exponential variance increase.

- For $d=100, \sigma=1.2$, we have

$$
\mathbb{V}_{q}[w(X)] \approx 1.8 \times 10^{4}
$$

Lecture 1:

- Simpson's rule for approximating integrals: error in $\mathcal{O}\left(n^{-1 / d}\right)$.

Lecture 2:

- Monte Carlo for approximating integrals: error in $\mathcal{O}\left(n^{-1 / 2}\right)$ with rate independent of d.

And now:
■ Importance Sampling standard deviation in the Gaussian example in $\exp (d) n^{-1 / 2}$.
\Rightarrow The rate is indeed independent of d but the constant explodes.

Fundamental equation to

analyze Monte Carlo methods
number of samples needed to get a tolerance (with probability 95\%)
compute cost per sample

- Exercise:
- Compute the running time in tol and d for Example 7 but with non-diagonal covariance normal vectors

Diagnostic for IS

Building Monte Carlo

confidence interval for IS

- Bias asymptotically negligible, use asymptotic variance
- As in first exercise: for a 95\% confidence interval, use

$$
I_{n} \pm 1.96 \sqrt{\sigma_{\text {asympt }}^{2} / n}
$$

- The asymptotic variance is...
- for BIS: $\sigma_{\mathrm{IS}}^{2}:=\mathbb{V}_{q}(\phi(X) w(X))$
- for NIS: $\sigma_{\mathrm{NIS}}^{2}=\int(\phi(x)-I)^{2} \frac{\pi^{2}(x)}{q(x)} d x$
- In both cases, replace unknowns by estimators...

Intro to control variates

