
Advanced Simulation Methods

Chapter 1 - Introduction

1 Introduction

In many scientific problems of interest including finance, operations research, statistical physics and statistics,
it is required to numerically compute integrals, i.e.,

I =

∫
X
f (x) dx

where f : X→ R.
When X = [0, 1], then we can simply approximate I through

În =
1

n

n−1∑
i=0

f ((i+ 1/2) /n) .

When f is differentiable and sup
x∈[0,1]

|f ′ (x)| < M <∞ then the approximation error is O
(
n−1

)
; see Figure 1.

1.3 A Brief History of Monte Carlo Methods 9

Recall that, for out Monte Carlo method the confidence interval was shrinking “only” at rate n−1/2.

However, it is easy to see that its speed of convergence is of the same order, regardless of the dimension

of the support of f . This is not the case for other (deterministic) numerical integration methods. For a

two-dimensional function f the error made by the Riemann approximation using n function evaluations

is O(n−1/2). 5
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Fig. 1.4. Illustration of numerical integration by Riemann sums

This makes the Monte Carlo methods especially suited for high-dimensional problems. Furthermore

the Monte Carlo method offers the advantage of being relatively simple and thus easy to implement on a

computer.

1.3 A Brief History of Monte Carlo Methods

Experimental Mathematics is an old discipline: the Old Testament (1 Kings vii. 23 and 2 Chronicles iv.

2) contains a rough estimate of π (using the columns of King Solomon’s temple). Monte Carlo methods

are a somewhat more recent discipline. One of the first documented Monte Carlo experiments is Buffon’s

needle experiment (see example 1.3 below). Laplace (1812) suggested that this experiment can be used to

approximate π.

Example 1.3 (Buffon’s needle). In 1733, the Comte de Buffon, George Louis Leclerc, asked the following

question (Buffon, 1733): Consider a floor with equally spaced lines, a distance δ apart. What is the

probability that a needle of length l < δ dropped on the floor will intersect one of the lines?

Buffon answered the question himself in 1777 (Buffon, 1777).

Assume the needle landed such that its angle is θ (see figure 1.5). Then the question whether the needle

intersects a line is equivalent to the question whether a box of width l sin θ intersects a line. The probability

of this happening is

P(intersect|θ) =
l sin θ

δ
.

5 Assume we partition both axes into m segments, i.e. we have to evaluate the function n = m2 times. The error

made for each “bar” is O(m−3) (each of the two sides of the base area of the “bar” is proportional to m−1, so

is the upper bound on |f(x)− f(ξmid)|, yielding O(m−3)). There are in total m2 bars, so the total error is only

O(m−1), or equivalently O(n−1/2).

Figure 1: Numerical Integration by Riemman sums

However, for X = [0, 1]× [0, 1] assuming

În =
1

n

m−1∑
i=0

m−1∑
j=0

f ((i+ 1/2) /n, (j + 1/2) /n)

and n = m2 then the approximation error isO
(
n−1/2

)
and generally for X = [0, 1]

d
we have an approximation

error in O
(
n−1/d

)
. This suggests that this type of deterministic approximations is inappropriate to compute

high dimensional integrals.
The aim of this course is to introduce stochastic simulation methods, which are the most common tools

used to perform numerical integration in high-dimensional scenarios. These methods, also known as Monte
Carlo methods, were introduced in the 1940s and have become extremely popular in statistics over the past
20 years, as they allow to perform inference for complex statistical models. This course will be primarily
focused on applications of Monte Carlo methods to Bayesian statistics, although we will also discuss a few
other applications, as examplified below.
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Figure 2: Sample from an Ising model

2 Examples of Applications

2.1 Volume of a Convex Body

Let S ⊂ [0, 1]
d

be a convex body. In numerous applications, we are interested in computing the volume of
this body which is simply given by

vol (S) =

∫
[0,1]d

IS (x) dx

where IS (x) = 1 if x ∈ S and 0 otherwise.

2.2 Statistical Mechanics

The Ising model serves to model the behavior of a magnet and is the best known/most researched model in
statistical physics. The magnetism of a material is modelled by the collective contribution of dipole moments
of many atomic spins.

Consider a simple 2D-Ising model on a finite lattice G = {1, 2, ...,m} × {1, 2, ...,m} where each site σ =
(i, j) hosts a particle with a +1 or -1 spin modeled as a r.v. Xσ. For physical reasons, the probability

distribution of X = {Xσ}σ∈G on {−1, 1}m
2

is given by the so-called Gibbs distribution

πβ (x) =
exp (−βU (x))

Zβ

where β > 0 is the inverse temperature and the potential energy is

U (x) = J
∑
σ∼σ′

xσxσ′

If xσ = xσ′ and σ ∼ σ′ where ‘∼’ denotes a pre-defined neighbourhood structure then the probability
π (x) includes a term exp (−J) and exp (J) otherwise. Hence the sign of J tells us whether there is a
preference for equal or opposite spins at sites σ and σ′.

Physicists are often interested in computing Eπβ [U (X)] and Zβ . However, analytical results for the Ising
model are very difficult to obtain and physicists often use simulation methods in order to perform these
calculations.
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2.3 Financial Mathematics

Let S (t) denote the price of a stock at time t. We consider a call option granting the holder the right to
buy the stock at a fixed price K at a fixed time T in the future; the current time being t = 0. This is a
so-called European option. If at time T the stock price S (T ) exceeds the strike price K, the holder exercises
the option for a profit of S (T )−K. If S (T ) ≤ K, the option expires worthless. The payoff to the holder at
time T is thus

max (0, S (T )−K)

and to get the present value of this payoff we need to multiply it by a discount factor exp (−rT ) where r is
a compounded interest rate. The expected present value is thus

exp (−rT )E [max (0, S (T )−K)]

where the expectation is with respect to the distribution of the random variable S (T ) .
If we knew explicitly the distribution of S (T ), then computing E [max (0, S (T )−K)] would be a low-

dimensional integration problem. However, this distribution is typically not available and we only have
access to a stochastic model for {S (t)}t∈N

S (t+ 1) = g (S (t) ,W (t+ 1))

= g (g (S (t− 1) ,W (t)) ,W (t+ 1)) := g2 (S (t− 1) ,W (t) ,W (t+ 1))

:= gn (S (0) ,W (1) , ...,W (t+ 1))

where {W (t)}t∈N is a sequence of i.i.d. random variables of probability density functions {pW }t∈N and g is
a known nonlinear mapping. We can thus rewrite

E [max (0, S (T )−K)] =

∫
max [0, gn (s (0) , w (1) , ..., w (T ))−K]

{
T∏
t=1

pW (w (t))

}
dw (1) · · · dw (T )

which is a high dimensional integral whenever T is large.

2.4 Bayesian Statistics

Let us consider a random variable Y taking values in a (measurable) space Y. Given θ ∈ Θ, we assume that
Y follows a probability density function pY (y; θ) (w.r.t. to a dominating measure, say Lebesgue if Y =Rp).
Having observed Y = y, we are interested in performing inference about θ.

In the frequentist approach, θ is an unknown but fixed value and inference is performed based on the log-
likelihood function `(θ) = log pY (y; θ). On the contrary, in the Bayesian approach, the unknown parameter
is regarded as a random variable ϑ and we assign a prior probability distribution to it, of density pϑ (θ) (w.r.t.
to a dominating measure denoted dθ, say Lebesgue if Θ= Rd). Bayesian inference relies on the posterior
density

pϑ|Y (θ| y) =
pY (y; θ) pϑ (θ)

pY (y)
(1)

where

pY (y) =

∫
Θ

pY (y; θ) pϑ (θ) dθ (2)

is the so-called marginal likelihood or evidence.
Based on this posterior distribution, we can compute various point estimates such as the posterior mean

of ϑ

E (ϑ|y) =

∫
Θ

θpϑ|Y (θ| y) dθ (3)

or the posterior variance. We can also compute credible intervals, that is any interval I (y) such that

P (ϑ ∈ I (y)| y) = 1− α. (4)

Another use of the posterior is for prediction of new observations. Assume that Z is independent of Y given
ϑ = θ, but admits the same distribution pY (z; θ). Then the predictive density of Z having observed Y = y
is

pZ|Y (z| y) =

∫
Θ

pY (z; θ) pϑ|Y (θ| y) dθ (5)
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In contrast to a simple plug-in rule pY

(
z; θ̂
)

where θ̂ is a point estimate of θ (e.g. the MLE), the above

predictive density takes into account the uncertainty about the parameter θ.
Important Notational Remark: The above expressions are notationally precise but heavy. It is

standard in the Bayesian literature not to use subscripts to index the densities of interest and to use a
simpler notation; i.e. (1)-(2)-(3)-(5) will be written in most of the literature as

p (θ| y) =
p (y| θ) p (θ)

p (y)
,

p (y) =

∫
Θ

p (y| θ) p (θ) dθ.

E (ϑ|y) =

∫
Θ

θ p (θ| y) dθ,

p (z| y) =

∫
Θ

p (z| θ) p (θ| y) dθ.

This is imprecise as arguments of the densities should only be dummy variables whereas in this notation they
define the densities we consider; i.e. p (θ) means pϑ (θ) and p (y) means pY (y), p (θ| y) means pϑ|Y (θ| y) and
p (z| y) means pZ|Y (z| y). However this is standard and will be used here whenever it does not lead to any
confusion.

Note that another way to improve this imprecise notation consists of using different letter for the densities,
i.e., µ (θ) = pϑ (θ), g (y| θ) = pY (y; θ), p (θ| y) = pϑ|Y (θ| y) and f (z| y) = pZ|Y (z| y) .

Example 1 (Gaussian data). Let Y = (Y1, ..., Yn) be i.i.d. random variables with Yi ∼ N
(
θ, σ2

)
with

σ2 known and θ unknown. To perform Bayesian inference, we assign a prior on ϑ, ϑ ∼ N
(
µ, κ2

)
, then one

can check that
p (θ| y) = N

(
θ; ν, ω2

)
where

ω2 =
κ2σ2

nκ2 + σ2

and

ν =
ω2

κ2
µ+

nω2

σ2
y

=
σ2

nκ2 + σ2
µ+

nκ2

nκ2 + σ2
y

so that directly E (ϑ|y) = ν and V (ϑ|y) = E
(
ϑ2|y

)
− E2 (ϑ|y) = ω2.

If we set I (y) =
(
ν − Φ−1 (1− α/2)ω, ν + Φ−1 (1− α/2)ω

)
, then P (ϑ ∈ I (y)| y) = 1− α.

If we are interested in p (yn+1| y) where Yn+1 ∼ N
(
θ, σ2

)
then

p (yn+1| y) =

∫
Θ

p (yn+1| θ) p (θ| y) dθ

= N
(
yn+1; ν, ω2 + σ2

)
.

In this simple example, we can do all the calculations analytically. However for general Bayesian models,
this is not the case and numerical integration is necessary. In most cases, ϑ is an high dimensional parameter
and so Monte Carlo methods are necessary.

Example 2 (Logistic Regression). Let (xi, Yi) ∈ Rd × {0, 1} where xi ∈ Rd is a given covariate and we
assume that the data are independent with

P (Yi = yi| θ) =
exp

(
−yixTi θ

)
1 + exp

(
−xTi θ

) .
To perform Bayesian inference, we assign a prior say p (θ) on ϑ and Bayesian inference relies on

p (θ| y1, ..., yn) =

p (θ)

n∏
i=1

P (Yi = yi| θ)

P (y1, ..., yn)

which is not a standard distribution. The denominator cannot be computed analytically.
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3 Basics of Monte Carlo Methods

Consider for the time being the following generic problem. We are interested in computing

I =

∫
X
φ (x)π (x) dx

where π (x) is a probability density (w.r.t. to a dominating measure dx) on X and φ : X → R. The basic
Monte Carlo method proceeds as follows.

Monte Carlo method

• Simulate independent X1, ..., Xn from π.

• Return În = 1
n

∑n
i=1 φ (Xi) .

It is trivial to check that În is unbiased. More importantly, this estimate is consistent.

Proposition 1 (Strong Law of large numbers): Assume E [|φ (X)|] <∞ then În is a strongly consistent
estimator of I.

Proof. This follows from a direct application of the strong law of large numbers

lim
n→∞

În = E [φ (X1)] = I almost surely

Proposition 2 (Central Limit Theorem): Assume I and σ2 = V (φ (X)) =
∫
X [φ (x)− I]

2
π (x) dx are

finite then

E
((

În − I
)2
)

= V
(
În

)
=
σ2

n

and √
n

σ

(
În − I

)
D→ N (0, 1) .

Moreover, if

S2
n =

1

n

n∑
i=1

(
φ (Xi)− În

)2

denotes the sample variance, then the probability that the interval

În ± Φ−1
(

1− α

2

) Sn√
n

contains I converges to 1− α as n→∞.

Proof. We have E
((

În − I
)2
)

= V
(
În

)
as E

(
În

)
= I and

V
(
În

)
=

1

n2

n∑
i=1

V (φ (Xi)) =
σ2

n
.

Asymptotic normality follows from the standard central limit theorem.

Now introduce En =
√
n
∣∣∣În − I∣∣∣ and let z = Φ−1

(
1− α

2

)
. Then we have for any δ∣∣∣∣P (En ≤ zSn)− P

(
En ≤ zSn,

∣∣∣∣Snσ − 1

∣∣∣∣ < δ

)∣∣∣∣ ≤ P
(∣∣∣∣Snσ − 1

∣∣∣∣ ≥ δ)
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Figure 3: A 2× 2 square S with inscribed disk D of radius 1 and Monte Carlo samples

where lim
n→∞

P
(∣∣Sn

σ − 1
∣∣ ≥ δ) = 0 by the law of large numbers. Now

∣∣Sn
σ − 1

∣∣ < δ ⇔ σ (1− δ) < Sn < σ (1 + δ)

so En ≤ zSn ⇒ En ≤ zσ (1 + δ) and En ≤ zσ (1− δ)⇒ En ≤ zSn so

2Φ (zσ (1− δ))− 1 ≤ lim inf P (En ≤ zSn) ≤ lim supP (En ≤ zSn) ≤ 2Φ (zσ (1 + δ))− 1

As δ → 0, the two bounds converge to 1− α.

Whatever being X; e.g. X = R or X = R1000, the error is still in σ/
√
n. This is in contrast with

deterministic methods where the rate of convergence of the approximation error towards zero is dimension
dependent; e.g. O

(
n−1/d

)
for Riemannian sums. It is sometimes said that Monte Carlo beats the curse of

dimensionality but this is not quite true as σ2 typically depends of dim (X). The main advantage of Monte
Carlo methods lies in the fact that they are extremely flexible and are in some applications the only viable
option.

We conclude this section by a simple toy example.

Example 3 (Computing π). Consider the case where we have a square say S ⊆R2, the sides being of
length 2, with inscribed disk D of radius 1; see Figure 3. We are interesting in computing through Monte
Carlo the area I of D. We have

I = π =

∫ ∫
D
dx1dx2

=

∫ ∫
S
ID (x1, x2) dx1dx2 as D ⊂ S

= 4

∫ ∫
R2

ID (x1, x2)π (x1, x2) dx1dx2

where S := [−1, 1]× [−1, 1] and

π (x1, x2) =
1

4
IS (x1, x2)

is the uniform density on the square S. In this case, we have

În = 4
nD
n

where nD is the number of samples which fell within the disk; see Figure 3.

Remark. Practically we are not interested in obtaining Monte Carlo estimates which admits a small
variance but in estimates admitting a small relative variance which is given by

V

(
În
I

)
=

V
(
În

)
I2

.
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Example 4 (Computing the probability of an event). Assume you are interested in estimating π (A) =∫
IA (x)π (x) dx then IA (Xi) where Xi ∼ π is a Bernoulli random variable of success probability I = π (A)

and variance σ2 = π (A) (1− π (A)). Hence the relative variance of the estimate is

V

(
În
I

)
=

(1− π (A))

n π (A)

For this relative variance to be small if π (A) � 1, we need n � 1; i.e. if you want the error to be with
probability 0.95 at most 0.1π (A) then

1.96×
√
π (A) (1− π (A))

n
≤ 0.1× π (A)

which is equivalent to

n ≥ 385× (1− π (A))

π (A)
.

We will discuss more sophisticated methods to address this problem later.

Monte Carlo methods require being able to sample from the distribution π. Whenever π is a standard
distribution, e.g. normal or exponential, we will see that they are simple methods to achieve this. We
will then discuss how Markov chain Monte Carlo and Sequential Monte Carlo methods can be used to
sample approximately from any distribution π. All these simulations methods theoretically rely on the
availability of a sequence of independent random variables (Ui, i ≥ 1) that are uniformly distributed on
[0, 1] ; i.e. Ui ∼ U[0,1]. Practically we do not have access to such a sequence and rely on pseudo-random
numbers.

4 Pseudo-Random Numbers

A pseudo-random (deterministic) number generator is an algorithm is an algorithm that generates numbers
which “look” like independent random variables. In R, the command u←runif(100) return 100 realizations
of (pseudo-random) uniform r.v. in [0, 1].

The behaviour of modern random number generators (basic ones are constructed on number theory
Ni+1 = (aNi + c) mod m for suitable a, c,m and Ui+1 = Ni+1/ (m+ 1)) resembles random numbers in
many respects. Standard tests for uniformity, independence, etc. do not show significant deviations. Any
reasonable programming language provide the user with a large collection of powerful random number
generators.

The point worth remembering though is that computer generated random numbers are not random at
all but that hopefully they look random enough for that not to matter.
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