Advanced Simulation Methods

Chapter 2 - Inversion Method, Transformation Methods and Rejection Sampling

We consider here the following generic problem. Given a "target" distribution of probability density or probability mass function π , we want to find an algorithm which produces random samples from this distribution. We discuss here the standard techniques which are used in most software packages.

1 Inversion Method

Consider a real-valued random variable X and its associated cumulative distribution function (cdf)

$$F(x) = \mathbb{P}\left(X \le x\right) = F(x)$$

The cdf $F : \mathbb{R} \to [0, 1]$ is

- increasing; i.e. if $x \le y$ then $F(x) \le F(y)$ - right continuous; i.e. $F(x + \epsilon) \to F(x)$ as $\epsilon \to 0$ ($\epsilon > 0$)
- fight continuous, i.e. $\Gamma(x + e) \rightarrow \Gamma(x)$ as $e \rightarrow 0$ (e > 0
- $F(x) \to 0$ as $x \to -\infty$ and $F(x) \to 1$ as $x \to +\infty$.

We define the generalised inverse

$$F^{-}(u) = \inf \left\{ x \in \mathbb{R}; F(x) \ge u \right\}$$

also known as the quantile function. Its definition is illustrated by Figure 1. Note that $F^{-}(u) = F^{-1}(u)$ if F is continuous.

Figure 1: Illustration of the definition of the generalised inverse F^-

Proposition 1 (Inversion method). Let F be a cdf and $U \sim \mathcal{U}_{[0,1]}$. Then $X = F^{-}(U)$ has cdf F.

Proof. It is easy to see (e.g. Figure 1) that $F^{-}(u) \leq x$ is equivalent to $u \leq F(x)$. Thus for $U \sim \mathcal{U}_{[0,1]}$, we have

$$\mathbb{P}\left(F^{-}\left(U\right) \leq x\right) = \mathbb{P}\left(U \leq F\left(x\right)\right) = F\left(x\right);$$

i.e. F is the cdf of $F^{-}(U)$.

Example 1 (Exponential distribution). If $F(x) = 1 - e^{-\lambda x}$, then $F^{-}(u) = F^{-1}(u) = -\log(1-u)/\lambda$. Hence $-\log(1-U)/\lambda$ and $-\log(U)/\lambda$ where $U \sim \mathcal{U}_{[0,1]}$ are distributed according to an exponential distribution $\mathcal{E}xp(\lambda)$. **Example 2** (Cauchy distribution). The Cauchy distribution has density $\pi(x)$ and cdf F(x) given by

$$\pi(x) = \frac{1}{\pi(1+x^2)}, F(x) = \frac{1}{2} + \frac{arc\tan x}{\pi}$$

Hence we have $F^{-}(u) = F^{-1}(u) = \tan(\pi(u - \frac{1}{2})).$

Example 3 (Discrete distribution). Assume X takes the values $x_1 < x_2 < \cdots$ with probability p_1, p_2, \ldots . In this case, both F and F⁻ are step functions

$$F\left(x\right) = \sum_{x_k \le x} p_k$$

and

$$F^{-}(u) = x_k \text{ for } p_1 + \dots + p_{k-1} < u \le p_1 + \dots + p_k.$$

For example, if 0 and <math>q = 1 - p and we want to simulate $X \sim Geo(p)$ then

$$\pi(x) = pq^{x-1}, \ F(x) = 1 - q^x \quad x = 1, 2, 3...$$

The smallest $x \in \mathbb{N}$ giving $F(x) \ge u$ is the smallest $x \ge 1$ satisfying $x \ge \log(1-u) / \log(q)$ and this is given by

$$x = F^{-}(u) = \left\lceil \frac{\log\left(1 - u\right)}{\log\left(q\right)} \right\rceil$$

where $\lceil x \rceil$ rounds up and we could replace 1 - u with u.

This algorithm can also be used to generate random variables with values in any countable set.

2 Transformation Methods

Suppose we have a \mathbb{Y} -valued random variable (rv) $Y \sim q$ which we can simulate (eg, by inversion) and some other \mathbb{X} -valued rv $X \sim \pi$ which we wish to simulate. It may be that we can find a function $\varphi : \mathbb{Y} \to \mathbb{X}$ with the property that if we simulate $Y \sim q$ and then set $X = \varphi(Y)$ then we get $X \sim \pi$. Inversion is a special case of this idea.

We may generalize this idea to take functions of collections of rv with different distributions.

Example 4 (Gamma distribution). Let Y_i , $i = 1, 2, ..., \alpha$, be iid rv with $Y_i \sim \mathcal{E}xp(1)$ (we can simulate these as above) and $X = \beta^{-1} \sum_{i=1}^{\alpha} Y_i$ then $X \sim \mathcal{G}a(\alpha, \beta)$. Indeed the moment generating function of X is

$$\mathbb{E}\left(e^{tX}\right) = \prod_{i=1}^{\alpha} \mathbb{E}\left(e^{\beta^{-1}tY_i}\right) = \left(1 - t/\beta\right)^{-\alpha}$$

which is the moment generating function of the gamma density $\pi(x) \propto x^{\alpha-1} \exp(-\beta x)$ of parameters α, β .

For continuous random variables, a useful tool is the transformation/change of variables formula for probability density function.

Example 5 (*Beta distribution*). Let $X_1 \sim \mathcal{G}a(\alpha, 1)$ and $X_2 \sim \mathcal{G}a(\beta, 1)$ then

$$\frac{X_1}{X_1 + X_2} \sim \mathcal{B}eta\left(\alpha, \beta\right)$$

where \mathcal{B} eta (α, β) is the Beta distribution of parameter α, β of density $\pi(x) \propto x^{\alpha-1} (1-x)^{\beta-1}$.

Example 6 (Gaussian distribution, Box-Muller Algorithm). Let $U_1 \sim U_{[0,1]}$ and $U_2 \sim U_{[0,1]}$ be independent and set

$$R = \sqrt{-2\log\left(U_1\right)}$$
$$\vartheta = 2\pi U_2.$$

We have

$$X = R \cos \vartheta \sim \mathcal{N}(0, 1),$$

$$Y = R \sin \vartheta \sim \mathcal{N}(0, 1).$$

Indeed $R^2 \sim \mathcal{E}xp\left(\frac{1}{2}\right)$ and $\vartheta \sim \mathcal{U}_{[0,2\pi]}$ and their joint density is $q\left(r^2,\theta\right) = \frac{1}{2}\exp\left(-r^2/2\right)\frac{1}{2\pi}$. By the change of variables formula,

$$\pi(x,y) = q(r^2,\theta) \left| \det \frac{\partial(r^2,\theta)}{\partial(x,y)} \right|$$

where

$$\left|\det\frac{\partial\left(r^{2},\theta\right)}{\partial\left(x,y\right)}\right|^{-1} = \left|\det\left(\begin{array}{c}\frac{\partial x}{\partial r^{2}} & \frac{\partial x}{\partial \theta}\\ \frac{\partial y}{\partial r^{2}} & \frac{\partial y}{\partial \theta}\end{array}\right)\right| = \left|\det\left(\begin{array}{c}\frac{\cos\theta}{2r} & -r\sin\theta\\ \frac{\sin\theta}{2r} & r\cos\theta\end{array}\right)\right| = \frac{1}{2}.$$

that is

$$\pi(x,y) = \frac{1}{2\pi} \exp\left(-\frac{x^2 + y^2}{2}\right)$$

Example 7 (Multivariate Gaussian distribution). Let $Z = (Z_1, ..., Z_d)$ be a collection of d independent standard normal rv. Let L be a real invertible $d \times d$ matrix satisfying L $L^T = \Sigma$, and $X = LZ + \mu$. Then $X \sim \mathcal{N}(\mu, \Sigma)$. We have indeed $q(z) = (2\pi)^{-d/2} \exp\left(-\frac{1}{2}z^Tz\right)$ and

$$\pi(x) = q(z) \left| \det \partial z / \partial x \right|$$

where $\partial z/\partial x = L^{-1}$ and det $(L) = \det(L^T)$ so det $(L^2) = \det(\Sigma)$, and det $(L^{-1}) = 1/\det(L)$ so det $(L^{-1}) = \det(\Sigma)^{-1/2}$ and

$$z^{T} z = (x - \mu)^{T} (L^{-1})^{T} L^{-1} (x - \mu)$$
$$= (x - \mu)^{T} \Sigma^{-1} (x - \mu).$$

Practically we typically use a Cholesky factorization $\Sigma = L L^T$ where L is a lower triangular matrix.

Example 8 (Poisson distribution). Let (X_i) be i.i.d. $\mathcal{E}xp(1)$ and $S_n = \sum_{i=1}^n X_i$ with $S_0 = 0$. Then $S_n \sim \mathcal{G}a(n,1)$ and

$$\begin{split} \mathbb{P}\left(S_n \leq t \leq S_{n+1}\right) &= \mathbb{P}\left(S_n \leq t\right) - \mathbb{P}\left(S_{n+1} \leq t\right) \\ &= \int_0^t e^{-x} \left(\frac{x^{n-1}}{(n-1)!} - \frac{x^n}{n!}\right) dx \\ &= e^{-t} \frac{t^n}{n!}. \end{split}$$

If X_i correspond to the interarrival time between customers in a queueing system, then S_n is the arrival time of the n-customer and $S_n \leq t < S_{n+1}$ means that the number of customers that have arrived up to time t is equal to n. This number has a Poisson distribution with parameter t so

$$X = \min\left\{n : S_n > t\right\} - 1 \sim \mathcal{P}oi\left(t\right).$$

Practically this can be simulated using

$$X = \min\left\{n : -\sum_{i=1}^{n} \log U_i > t\right\} - 1$$
$$= \min\left\{n : \prod_{i=1}^{n} U_i > e^{-t}\right\} - 1.$$

3 Sampling via Composition

Assume we have a joint pdf $\overline{\pi}$ with marginal π ; i.e.

$$\pi\left(x\right) = \int \overline{\pi}_{X,Y}\left(x,y\right) dy \tag{1}$$

where $\overline{\pi}(x, y)$ can always be decomposed as

$$\overline{\pi}_{X,Y}(x,y) = \overline{\pi}_{Y}(y)\,\overline{\pi}_{X|Y}(x|y)$$

It might be easy to sample from $\overline{\pi}(x, y)$ whereas it is difficult/impossible to compute $\pi(x)$. In this case, it is sufficient to sample

$$Y \sim \overline{\pi}_Y$$
 then $X | Y \sim \overline{\pi}_{X|Y} (\cdot | Y)$

so $(X, Y) \sim \overline{\pi}_{X,Y}$ and hence $X \sim \pi$ as (1) holds.

Example 9 (Scale mixture of Gaussians). A very useful application of the composition method is for scale mixture of Gaussians; i.e.

$$\pi\left(x\right) = \int \underbrace{\mathcal{N}\left(x;0,1/y\right)}_{\overline{\pi}_{X|Y}\left(x|y\right)} \overline{\pi}_{Y}\left(y\right) dy$$

For various choices of the mixing distributions $\overline{\pi}_Y(y)$, we obtain distributions $\pi(x)$ which are t-student, α -stable, Laplace, logistic.

Example 10 (Finite mixture of distributions) Assume one wants to sample from

$$\pi\left(x\right) = \sum_{i=1}^{p} \alpha_i . \pi_i\left(x\right)$$

where $\alpha_i > 0$, $\sum_{i=1}^p \alpha_i = 1$ and $\pi_i(x) \ge 0$, $\int \pi_i(x) dx = 1$. We can introduce $Y \in \{1, ..., p\}$ and introduce

$$\overline{\pi}_{X,Y}\left(x,y\right) = \alpha_{y} \times \pi_{y}\left(x\right).$$

To sample from $\pi(x)$, then sample Y from a discrete distribution such that $\mathbb{P}(Y = k) = \alpha_k$ then

$$X|\left(Y=y\right)\sim\pi_{y}$$

4 Rejection Sampling

The basic idea of rejection sampling is to sample from a proposal distribution q different from the target π and then to correct through a rejection step to obtain a sample from π . The method proceeds as follows.

Algorithm (Rejection Sampling). Given two densities π, q with $\pi(x) \leq M.q(x)$ for all x, we can generate a sample from π by

- 1. Draw $X \sim q$
- 2. Accept X = x as a sample from π with probability

$$\frac{\pi\left(x\right)}{M.q\left(x\right)},$$

otherwise go to step 1.

We establish here the validity of the rejection sampling algorithm.

Proposition 2 (Rejection sampling). The distribution of the samples accepted by rejection sampling is π .

Proof. We have for any (measurable) set A

$$\mathbb{P}(X \in A | X \text{ accepted}) = \frac{\mathbb{P}(X \in A, X \text{ accepted})}{\mathbb{P}(X \text{ accepted})}$$

where

$$\mathbb{P}(X \in A, X \text{ accepted}) = \int_{\mathbb{X}} \int_{0}^{1} \mathbb{I}_{A}(x) \mathbb{I}\left(u \leq \frac{\pi(x)}{M.q(x)}\right) q(x) \, du dx$$
$$= \int_{\mathbb{X}} \mathbb{I}_{A}(x) \, \frac{\pi(x)}{M.q(x)} q(x) \, dx$$
$$= \int_{\mathbb{X}} \mathbb{I}_{A}(x) \, \frac{\pi(x)}{M} \, dx = \frac{\pi(A)}{M}$$
$$\mathbb{P}(X \text{ accepted}) = \mathbb{P}(X \in \mathbb{X}, X \text{ accepted}) = \frac{\pi(\mathbb{X})}{M} = \frac{1}{M}$$

 \mathbf{SO}

$$\mathbb{P}\left(X \in A \mid X \text{ accepted}\right) = \pi\left(A\right).$$

Thus the distribution of the accepted values is π .

Important remark: In most practical scenarios, we only know π and q up to some normalising constants; i.e.

$$\pi = \widetilde{\pi}/Z_{\pi}$$
 and $q = \widetilde{q}/Z_{q}$

where $\tilde{\pi}, \tilde{q}$ are known but $Z_{\pi} = \int_{\mathbb{X}} \tilde{\pi}(x) dx$, $Z_q = \int_{\mathbb{X}} \tilde{q}(x) dx$ are unknown. We can still use rejection in this scenario as

$$\frac{\pi(x)}{q(x)} \le M \Leftrightarrow \frac{\pi(x)}{\widetilde{q}(x)} \le M \frac{Z_{\pi}}{Z_{q}}.$$

Practically, this means we can throw the normalising constants out at the start: if we can find M' to bound $\tilde{\pi}(x)/\tilde{q}(x)$ then it is correct to accept with probability $\tilde{\pi}(x)/(M'\tilde{q}(x))$ in the rejection algorithm.

Lemma 1 Let T denote the number of pairs (X, U) that have to be generated until $U \leq \pi(X)/(Mq(X))$ for the first time. Then T is geometrically distributed with parameter 1/M and in particular $\mathbb{E}(T) = M$.

Example 11 (Uniform density on a bounded subset of \mathbb{R}^p). Consider $B \subset \mathbb{R}^p$ be a bounded subset of \mathbb{R}^p . We are interested in sampling from the uniform distribution on B

$$\pi\left(x\right)\propto\mathbb{I}_{B}\left(x\right).$$

Assume we can find a rectangle R with $B \subset R$ then we can use for q the uniform distribution on R. Then using $\tilde{\pi}(x) = \mathbb{I}_B(x)$, $\tilde{q}(x) = \mathbb{I}_R(x)$, we can simply use M' = 1 and $\tilde{\pi}(x) / (M'\tilde{q}(x)) = \mathbb{I}_B(x)$.

Example 12 (Beta density). We have for $\alpha, \beta > 0$

$$\widetilde{\pi}\left(x\right) = x^{\alpha-1} \left(1-x\right)^{\beta-1}, \ 0 < x < 1$$

For $\alpha, \beta \geq 1$, this is upper bounded on [0,1] so we can use $q(x) = \widetilde{q}(x) = \mathbb{I}_{(0,1)}(x)$ and

$$M = \sup_{x} \frac{\widetilde{\pi}(x)}{\widetilde{q}(x)} = \frac{(\alpha - 1)^{\alpha - 1} (\beta - 1)^{\beta - 1}}{(\alpha + \beta - 2)^{\alpha + \beta - 2}}.$$

For $\alpha < 1, \beta \geq 1$ we can use $q(x) = \widetilde{q}(x) = \alpha x^{\alpha-1} \mathbb{I}_{(0,1)}(x)$ thus

$$M = \sup_{x} \frac{\widetilde{\pi}(x)}{\widetilde{q}(x)} = \sup_{x} \frac{(1-x)^{\beta-1}}{\alpha} = \frac{1}{\alpha}.$$

Figure 2: Histogram approximation of $p(\theta|y_1, ..., y_4)$ (left) and histogram approximation of waiting time distribution before acceptance (mean 7.8) (right)

Example 13 (Normal distribution). Let $\tilde{\pi}(x) = \exp\left(-\frac{1}{2}x^2\right)$ and $\tilde{q}(x) = 1/(1+x^2)$. We have

$$\frac{\widetilde{\pi}\left(x\right)}{\widetilde{q}\left(x\right)} = \left(1 + x^{2}\right) \exp\left(-\frac{1}{2}x^{2}\right) \le 2/\sqrt{e} = M$$

which is attained at ± 1 . Hence the probability of acceptance is

$$\mathbb{P}\left(U \le \frac{\widetilde{\pi}\left(x\right)}{M\widetilde{q}\left(x\right)}\right) = \frac{Z_{\pi}}{MZ_{q}} = \frac{\sqrt{2\pi}}{\frac{2}{\sqrt{e}}\pi} = \sqrt{\frac{e}{2\pi}} \approx 0.66$$

and the mean number of trials to success is approximately $1/0.66 \approx 1.52$.

Example 14 (Genetic Linkage Model). We observe

$$(Y_1, Y_2, Y_3, Y_4) \sim \mathcal{M}\left(n; \frac{1}{2} + \frac{\theta}{4}, \frac{1}{4}(1-\theta), \frac{1}{4}(1-\theta), \frac{\theta}{4}\right)$$

where \mathcal{M} is the multinomial distribution and $\theta \in (0,1)$. The likelihood of the observations is thus

 $p(y_1, ..., y_4 | \theta) \propto (2 + \theta)^{y_1} (1 - \theta)^{y_2 + y_3} \theta^{y_4}.$

We follow here a Bayesian approach where we select a prior $p(\theta) = \mathbb{I}_{[0,1]}(\theta)$. Hence the resulting posterior is

$$p(\theta|y_1, ..., y_4) \propto (2+\theta)^{y_1} (1-\theta)^{y_2+y_3} \theta^{y_4}$$

We propose to use rejection sampling using a proposal $q(\theta) = \tilde{q}(\theta) = p(\theta)$ to sample from $p(\theta|y_1, ..., y_4)$. To use accept-reject, we need to upper bound

$$\widetilde{\pi}(\theta) = (2+\theta)^{y_1} (1-\theta)^{y_2+y_3} \theta^{y_4}$$

Using a simple optimization algorithm, we get

$$g(\theta) \le g(\theta_{\max})$$

where $\theta_{\text{max}} = 0.6268$ and $g(\theta_{\text{max}}) \approx \exp(67.4)$. Hence we can use rejection sampling; see Figure 2.