
Advanced Simulation Methods

Chapter 2 - Inversion Method, Transformation Methods and Rejection Sampling

We consider here the following generic problem. Given a “target” distribution of probability density
or probability mass function π, we want to find an algorithm which produces random samples from this
distribution. We discuss here the standard techniques which are used in most software packages.

1 Inversion Method

Consider a real-valued random variable X and its associated cumulative distribution function (cdf)

F (x) = P (X ≤ x) = F (x)

The cdf F : R→ [0, 1] is
- increasing; i.e. if x ≤ y then F (x) ≤ F (y)
- right continuous; i.e. F (x+ ε)→ F (x) as ε→ 0 (ε > 0)
- F (x)→ 0 as x→ −∞ and F (x)→ 1 as x→ +∞.
We define the generalised inverse

F− (u) = inf {x ∈ R;F (x) ≥ u}

also known as the quantile function. Its definition is illustrated by Figure 1. Note that F− (u) = F−1 (u) if
F is continuous.

F−(u) x

1

u

F (x)

Figure 1: Illustration of the definition of the generalised inverse F−

Proposition 1 (Inversion method). Let F be a cdf and U ∼ U[0,1]. Then X = F− (U) has cdf F .

Proof. It is easy to see (e.g. Figure 1) that F− (u) ≤ x is equivalent to u ≤ F (x). Thus for U ∼ U[0,1],
we have

P
(
F− (U) ≤ x

)
= P (U ≤ F (x)) = F (x) ;

i.e. F is the cdf of F− (U).

Example 1 (Exponential distribution). If F (x) = 1− e−λx, then F− (u) = F−1 (u) = − log (1− u) /λ.
Hence − log (1− U) /λ and − log (U) /λ where U ∼ U[0,1] are distributed according to an exponential distri-
bution Exp (λ).
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Example 2 (Cauchy distribution). The Cauchy distribution has density π (x) and cdf F (x) given by

π (x) =
1

π (1 + x2)
, F (x) =

1

2
+
arc tanx

π

Hence we have F− (u) = F−1 (u) = tan
(
π
(
u− 1

2

))
.

Example 3 (Discrete distribution). Assume X takes the values x1 < x2 < · · · with probability p1, p2, ....
In this case, both F and F−are step functions

F (x) =
∑
xk≤x

pk

and
F− (u) = xk for p1 + · · ·+ pk−1 < u ≤ p1 + · · ·+ pk.

For example, if 0 < p < 1 and q = 1− p and we want to simulate X ∼ Geo (p) then

π (x) = pqx−1, F (x) = 1− qx x = 1, 2, 3...

The smallest x ∈ N giving F (x) ≥ u is the smallest x ≥ 1 satisfying x ≥ log (1− u) / log (q) and this is given
by

x = F−(u) =

⌈
log (1− u)

log (q)

⌉
where dxe rounds up and we could replace 1− u with u.

This algorithm can also be used to generate random variables with values in any countable set.

2 Transformation Methods

Suppose we have a Y-valued random variable (rv) Y ∼ q which we can simulate (eg, by inversion) and some
other X-valued rv X ∼ π which we wish to simulate. It may be that we can find a function ϕ : Y→ X with
the property that if we simulate Y ∼ q and then set X = ϕ (Y ) then we get X ∼ π. Inversion is a special
case of this idea.

We may generalize this idea to take functions of collections of rv with different distributions.

Example 4 (Gamma distribution). Let Yi, i = 1, 2, ..., α, be iid rv with Yi ∼ Exp (1) (we can simulate
these as above) and X = β−1

∑α
i=1 Yi then X ∼ Ga (α, β). Indeed the moment generating function of X is

E
(
etX
)

=

α∏
i=1

E
(
eβ
−1tYi

)
= (1− t/β)

−α

which is the moment generating function of the gamma density π (x) ∝ xα−1 exp (−βx) of parameters α, β.

For continuous random variables, a useful tool is the transformation/change of variables formula for
probability density function.

Example 5 (Beta distribution). Let X1 ∼ Ga (α, 1) and X2 ∼ Ga (β, 1) then

X1

X1 +X2
∼ Beta (α, β)

where Beta (α, β) is the Beta distribution of parameter α, β of density π (x) ∝ xα−1 (1− x)
β−1

.

Example 6 (Gaussian distribution, Box-Muller Algorithm). Let U1 ∼ U[0,1] and U2 ∼ U[0,1] be
independent and set

R =
√
−2 log (U1),

ϑ = 2πU2.
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We have

X = R cosϑ ∼ N (0, 1) ,

Y = R sinϑ ∼ N (0, 1) .

Indeed R2 ∼ Exp
(
1
2

)
and ϑ ∼ U[0,2π] and their joint density is q

(
r2, θ

)
= 1

2 exp
(
−r2/2

)
1
2π . By the change

of variables formula,

π (x, y) = q
(
r2, θ

) ∣∣∣∣∣det
∂
(
r2, θ

)
∂ (x, y)

∣∣∣∣∣
where ∣∣∣∣∣det

∂
(
r2, θ

)
∂ (x, y)

∣∣∣∣∣
−1

=

∣∣∣∣det

(
∂x
∂r2

∂x
∂θ

∂y
∂r2

∂y
∂θ

)∣∣∣∣ =

∣∣∣∣det

(
cos θ
2r −r sin θ

sin θ
2r r cos θ

)∣∣∣∣ =
1

2
.

that is

π (x, y) =
1

2π
exp

(
−x

2 + y2

2

)
.

Example 7 (Multivariate Gaussian distribution). Let Z = (Z1, ..., Zd) be a collection of d independent
standard normal rv. Let L be a real invertible d × d matrix satisfying L LT = Σ, and X = LZ + µ. Then

X ∼ N (µ,Σ) . We have indeed q (z) = (2π)
−d/2

exp
(
− 1

2z
T z
)

and

π (x) = q (z) |det ∂z/∂x|

where ∂z/∂x = L−1 and det (L) = det
(
LT
)

so det
(
L2
)

= det (Σ) , and det
(
L−1

)
= 1/ det (L) so det

(
L−1

)
=

det (Σ)
−1/2

and

zT z = (x− µ)
T (
L−1

)T
L−1 (x− µ)

= (x− µ)
T

Σ−1 (x− µ) .

Practically we typically use a Cholesky factorization Σ = L LT where L is a lower triangular matrix.

Example 8 (Poisson distribution). Let (Xi) be i.i.d. Exp (1) and Sn =
∑n
i=1Xi with S0 = 0. Then

Sn ∼ Ga (n, 1) and

P (Sn ≤ t ≤ Sn+1) = P (Sn ≤ t)− P (Sn+1 ≤ t)

=

∫ t

0

e−x
(

xn−1

(n− 1)!
− xn

n!

)
dx

= e−t
tn

n!
.

If Xi correspond to the interarrival time between customers in a queueing system, then Sn is the arrival time
of the n-customer and Sn ≤ t < Sn+1 means that the number of customers that have arrived up to time t is
equal to n. This number has a Poisson distribution with parameter t so

X = min {n : Sn > t} − 1 ∼ Poi (t) .

Practically this can be simulated using

X = min

{
n : −

n∑
i=1

logUi > t

}
− 1

= min

{
n :

n∏
i=1

Ui > e−t

}
− 1.
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3 Sampling via Composition

Assume we have a joint pdf π with marginal π; i.e.

π (x) =

∫
πX,Y (x, y) dy (1)

where π (x, y) can always be decomposed as

πX,Y (x, y) = πY (y)πX|Y (x| y) .

It might be easy to sample from π (x, y) whereas it is difficult/impossible to compute π (x) . In this case, it
is sufficient to sample

Y ∼ πY then X|Y ∼ πX|Y ( ·|Y )

so (X,Y ) ∼ πX,Y and hence X ∼ π as (1) holds.

Example 9 (Scale mixture of Gaussians). A very useful application of the composition method is for
scale mixture of Gaussians; i.e.

π (x) =

∫
N (x; 0, 1/y)︸ ︷︷ ︸
πX|Y (x|y)

πY (y) dy.

For various choices of the mixing distributions πY (y), we obtain distributions π (x) which are t-student,
α−stable, Laplace, logistic.

Example 10 (Finite mixture of distributions) Assume one wants to sample from

π (x) =

p∑
i=1

αi.πi (x)

where αi > 0,
∑p
i=1 αi = 1 and πi (x) ≥ 0,

∫
πi (x) dx = 1. We can introduce Y ∈ {1, ..., p} and introduce

πX,Y (x, y) = αy × πy (x) .

To sample from π (x), then sample Y from a discrete distribution such that P (Y = k) = αk then

X| (Y = y) ∼ πy.

4 Rejection Sampling

The basic idea of rejection sampling is to sample from a proposal distribution q different from the target π
and then to correct through a rejection step to obtain a sample from π. The method proceeds as follows.

Algorithm (Rejection Sampling). Given two densities π, q with π (x) ≤ M.q (x) for all x, we can
generate a sample from π by

1. Draw X ∼ q

2. Accept X = x as a sample from π with probability

π (x)

M.q (x)
,

otherwise go to step 1.

We establish here the validity of the rejection sampling algorithm.

Proposition 2 (Rejection sampling). The distribution of the samples accepted by rejection sampling is
π.
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Proof. We have for any (measurable) set A

P (X ∈ A|X accepted) =
P (X ∈ A,X accepted)

P (X accepted)

where

P (X ∈ A,X accepted) =

∫
X

∫ 1

0

IA (x) I
(
u ≤ π (x)

M.q (x)

)
q (x) dudx

=

∫
X
IA (x)

π (x)

M.q (x)
q (x) dx

=

∫
X
IA (x)

π (x)

M
dx =

π (A)

M

P (X accepted) = P (X ∈ X, X accepted) =
π (X)

M
=

1

M

so
P (X ∈ A|X accepted) = π (A) .

Thus the distribution of the accepted values is π.
Important remark: In most practical scenarios, we only know π and q up to some normalising constants;

i.e.
π = π̃/Zπ and q = q̃/Zq

where π̃, q̃ are known but Zπ =
∫
X π̃ (x) dx, Zq =

∫
X q̃ (x) dx are unknown. We can still use rejection in this

scenario as
π (x)

q (x)
≤M ⇔ π̃ (x)

q̃ (x)
≤MZπ

Zq
.

Practically, this means we can throw the normalising constants out at the start: if we can find M ′ to bound
π̃ (x) /q̃ (x) then it is correct to accept with probability π̃ (x) /(M ′q̃ (x)) in the rejection algorithm.

Lemma 1 Let T denote the number of pairs (X,U) that have to be generated until U ≤ π (X) /(Mq (X))
for the first time. Then T is geometrically distributed with parameter 1/M and in particular E (T ) = M.

Example 11 (Uniform density on a bounded subset of Rp). Consider B ⊂ Rp be a bounded subset
of Rp. We are interested in sampling from the uniform distribution on B

π (x) ∝ IB (x) .

Assume we can find a rectangle R with B ⊂ R then we can use for q the uniform distribution on R. Then
using π̃ (x) = IB (x) , q̃ (x) = IR (x), we can simply use M ′ = 1 and π̃ (x) / (M ′q̃ (x)) = IB (x).

Example 12 (Beta density). We have for α, β > 0

π̃ (x) = xα−1 (1− x)
β−1

, 0 < x < 1.

For α, β ≥ 1, this is upper bounded on [0, 1] so we can use q (x) = q̃ (x) = I(0,1) (x) and

M = sup
x

π̃ (x)

q̃ (x)
=

(α− 1)
α−1

(β − 1)
β−1

(α+ β − 2)
α+β−2 .

For α < 1, β ≥ 1 we can use q (x) = q̃ (x) = αxα−1I(0,1) (x) thus

M = sup
x

π̃ (x)

q̃ (x)
= sup

x

(1− x)
β−1

α
=

1

α
.
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Figure 2: Histogram approximation of p (θ| y1, ..., y4) (left) and histogram approximation of waiting time
distribution before acceptance (mean 7.8) (right)

Example 13 (Normal distribution). Let π̃ (x) = exp
(
− 1

2x
2
)

and q̃ (x) = 1/
(
1 + x2

)
. We have

π̃ (x)

q̃ (x)
=
(
1 + x2

)
exp

(
−1

2
x2
)
≤ 2/

√
e = M

which is attained at ±1. Hence the probability of acceptance is

P
(
U ≤ π̃ (x)

Mq̃ (x)

)
=

Zπ
MZq

=

√
2π

2√
e
π

=

√
e

2π
≈ 0.66

and the mean number of trials to success is approximately 1/0.66 ≈ 1.52.

Example 14 (Genetic Linkage Model). We observe

(Y1, Y2, Y3, Y4) ∼M
(
n;

1

2
+
θ

4
,

1

4
(1− θ) , 1

4
(1− θ) , θ

4

)
where M is the multinomial distribution and θ ∈ (0, 1) . The likelihood of the observations is thus

p (y1, ..., y4| θ) ∝ (2 + θ)
y1 (1− θ)y2+y3 θy4 .

We follow here a Bayesian approach where we select a prior p (θ) = I[0,1] (θ). Hence the resulting posterior
is

p (θ| y1, ..., y4) ∝ (2 + θ)
y1 (1− θ)y2+y3 θy4 .

We propose to use rejection sampling using a proposal q (θ) = q̃ (θ) = p (θ) to sample from p (θ| y1, ..., y4).
To use accept-reject, we need to upper bound

π̃ (θ) = (2 + θ)
y1 (1− θ)y2+y3 θy4

Using a simple optimization algorithm, we get

g (θ) ≤ g (θmax)

where θmax = 0.6268 and g (θmax) ≈ exp (67.4) . Hence we can use rejection sampling; see Figure 2.
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