
Advanced Simulation Methods

Chapter 3 - Importance Sampling and Variance Reduction Methods

1 Importance Sampling

In the rejection sampling algorithm, we simulate from a distribution π by sampling from a proposal distri-
bution q and rejecting some of the proposed values. Importance sampling uses another correction scheme
based on reweighting. In this context the proposal q is also known as an importance distribution.

1.1 Standard Importance Sampling

Let q, π be two pdfs on X such that π (x) > 0⇒ q (x) > 0. Then, for any1 set A such that π (A) > 0

π (A) :=

∫
A

π (x) dx

=

∫
A

π (x)

q (x)︸ ︷︷ ︸ q
:=w(x)

(x) dx

=

∫
A

w (x) q (x) dx

where w : X→ R+ is the so-called importance weight function. This identity can be obviously generalised
to the expectation of any function. Assume π (x)φ (x) > 0⇒ q(x) > 0, then

I = Eπ(φ(X)) =

∫
X
φ (x)π (x) dx

=

∫
X
φ (x)w (x) q (x) dx

= Eq(φ(X)w (X)).

Now let X1, ..., Xn be a sample of independent random variables distributed according to q then the
estimator

ÎISn =
1

n

n∑
i=1

φ(Xi)w(Xi)

is consistent through the strong law of large numbers if Eq(|φ(X)|w (X)) < ∞. We also obtain easily the
following result.

Proposition 1 (Bias and Variance of Standard Importance Sampling)

(a) Eq
(
ÎISn

)
= I,

(b) Vq
(
ÎISn

)
= 1

nVq (φ(X)w (X)) and if σ2
IS := Vq (φ(X)w (X)) <∞

√
n
(
ÎISn − I

)
D→ N

(
0, σ2

IS

)
Remark. A sufficient condition for Vq

(
ÎISn

)
to be finite is to have Vπ (φ(X)) finite and π (x) /Mq (x) ≤

M <∞ for any x ∈ X.

A natural question consists of choosing what is the best proposal distribution to minimize Vq
(
ÎISn

)
.

1For X = Rd, we consider the Borel sigma algebra F = B
(
Rd

)
, A ∈ F and the density is with respect to the Lebesgue

measure dx.
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Proposition 2 The optimal proposal minimising Vq
(
ÎISn

)
is given by

qopt (x) =
|φ(x)|π (x)∫

X |φ(x)|π (x) dx
.

Proof. We have indeed
Vq (φ(X)w (X)) = Eq

(
φ2(X)w2 (X)

)
− I2.

For q = qopt, we have

Eqopt

(
φ2(X)w2 (X)

)
=

∫
X

φ2(x)π2 (x)

|φ(x)|π (x)
dx.

∫
X
|φ(x)|π (x) dx

=

(∫
X
|φ(x)|π (x) dx

)2

We also have by Jensen’s inequality

Eq
(
φ2(X)w2 (X)

)
≥ E2

q (|φ(X)|w (X)) =

(∫
X
|φ(x)|π (x) dx

)2

so we can conclude. �

This optimal variance estimator cannot typically be implemented; e.g for φ (x) > 0 we have qopt (x) =

φ(x)π (x) /I and Vqopt

(
ÎISn

)
= 0 but this cannot be implemented as this required knowing I! This can be

however use as a guideline to select q; i.e. select q (x) such that it approaches qopt (x) in some respect.

1.2 Normalised Importance Sampling

Practically standard importance sampling has limited applications as it requires knowing π (x) exactly con-
trary to rejection sampling where π (x) and q (x) can be known only up to some normalising constants.
However there is an alternative version of importance sampling known as normalised importance sampling
which bypasses this problem. It relies on the following identity which holds whenever π (x) > 0⇒ q(x) > 0

I = Eπ(φ(X)) =

∫
X
φ (x)π (x) dx

=

∫
X φ (x)w (x) q (x) dx∫

X w (x) q (x) dx

=
Eq(φ(X)w (X))

Eq (w (X))
.

Now let X1, ..., Xn be a sample of independent random variables distributed according to q then the
estimator

ÎNIS
n =

∑n
i=1 φ(Xi)w(Xi)∑n

i=1 w(Xi)

is consistent through the strong law of large numbers as long as Eq(|φ(X)|w (X)) <∞.

The normalised importance sampling estimator ÎNIS
n is a ratio of two estimators so we do not have simple

expressions for its finite bias and variance but we can obtain their asymptotic (i.e. as n → ∞) expression
by relying on the delta method.

Proposition 3 (The multivariate Delta method). Suppose Zn = (Zn1, ..., Znk) is a sequence of random
vectors such that √

n (Zn − µ)
D→ N (0,Σ) .

Let g : Rk → R and let

∇g =

(
∂g

∂z1
· · · ∂g

∂zk

)T

.

Let ∇g (µ) be ∇g evaluated z = µ and assume the elements of ∇g (µ) are non-zero then
√
n (g (Zn)− g (µ))→ N

(
0,∇Tg (µ) Σ ∇g (µ)

)
.
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Proposition 4 (CLT for Normalised Importance Sampling)

Assume that Vq (φ(X)w (X)) <∞ and Vq (w (X)) <∞ then

√
n
(
ÎNIS
n − I

)
D→ N

(
0, σ2

NIS

)

We know that ÎISn is unbiased whereas ÎNIS
n is not. We give here an expression for the asymptotic bias.

Proposition 5 (Asymptotic Bias). Assume that Vq (φ(X)w (X)) < ∞ and Vq (w (X)) < ∞ then we
have

lim
n→∞

nEq
(
ÎNIS
n − I

)
= −covq (φ(X)w (X) , w (X)) + Vq(w (X))I

= −
∫

(φ (x)− I)
π2 (x)

q (x)
dx.

Remark. The bias being of order 1/n, we can conclude that the mean square error of ÎNIS
n is asymptot-

ically governed by its variance term.

Example 1 (Bayesian analysis of a Markov chain) Consider a two-state discrete time Markov chain (Xt)
with transition matrix (

α1 1− α1

1− α2 α2

)
that is P (Xt+1 = 1|Xt = 1) = 1−P (Xt+1 = 2|Xt = 1) = α1 and P (Xt+1 = 2|Xt = 2) = 1−P (Xt+1 = 1|Xt = 2) =
α2. We assume that some physical constraints tell us that α1 + α2 < 1. Assume we observe (X1, ..., Xm) =
(x1, ..., xm) and want to perform Bayesian inference about (α1, α2). We set the following prior

p (α1, α2) = 2Iα1+α2≤1

then the posterior of interest is

p (α1, α2|x1:m) ∝ αm1,1

1 (1− α1)
m1,2 (1− α2)

m2,1 α
m2,2

2 Iα1+α2≤1

where

mi,j =

m−1∑
t=1

Ixt=iIxt+1=i

The posterior does not admit a standard expression and its normalizing constant is unknown.
We are interested in estimating E [ϕi (α1, α2)|x1:m] for ϕ1 (α1, α2) = α1, ϕ2 (α1, α2) = α2, ϕ3 (α1, α2) =

α1/ (1− α1), ϕ4 (α1, α2) = α2/ (1− α2) and ϕ5 (α1, α2) = log α1(1−α2)
α2(1−α1)

.

We can sample from the posterior through rejection sampling using the prior as a proposal but this can
be highly inefficient if m is large. We discuss various possible Importance Sampling proposals.

If there was no constraint on α1, α2 and p (α1, α2) was uniform on [0, 1]× [0, 1] , then the posterior would
be

q0 (α1, α2) = Beta (α1;m1,1 + 1,m1,2 + 1)

× Beta (α2;m2,2 + 1,m2,1 + 1)

so we could use this as importance distribution. Unfortunately, this is very inefficient, as for the given data
(m1,1,m1,2,m2,2,m2,1) we have q0 (α1 + α2 < 1) = 0.21.

The form of the posterior also suggests using a Dirichlet distribution with density

q1 (α1, α2) ∝ αm1,1

1 α
m2,2

2 (1− α1 − α2)
m1,2+m2,1

but p (α1, α2|x1:m) /q1 (α1, α2) is unbounded.
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(Geweke, 1989) proposed using the normal approximation to the binomial distribution

q2 (α1, α2) ∝ exp
(
− (m1,1 +m1,2) (α1 − α̂1)

2
/ (2α̂1 (1− α̂1))

)
× exp

(
− (m2,1 +m2,2) (α2 − α̂2)

2
/ (2α̂2 (1− α̂2))

)
Iα1+α2≤1

where α̂1 = m1,1/ (m1,1 +m1,2) , α̂1 = m2,2/ (m2,2 +m2,1). To simulate from q2 (α1, α2) , we simulate first
q2 (α1) and then q2 (α2|α1) which are univariate truncated Gaussian distributions. The ratio p (α1, α2|x1:m) /q2 (α1, α2)
is upper bounded.

A final possible choice of q consists of using

q3 (α1, α2) = Beta (α1;m1,1 + 1,m1,2 + 1) q3 (α2|α1)

where p (α2|x1:m, α1) ∝ (1− α2)
m2,1 p

m2,2

2 Iα2≤1−α1
is (badly) approximated through q3 (α2|x1:m, α1) =

2
(1−α1)

2α2Iα2≤1−α1
. It is straightforward to check that p (α1, α2|x1:m) /q3 (α1, α2) ∝ (1− α2)

m2,1 p
m2,2

2 / 2
(1−α1)

2α2 <

∞ whenever m2,2 ≥ 1.
We present the empirical standard deviation of 4 of the sampling distributions for N = 10, 000 samples.

Distribution ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

q1 0.748 0.139 3.184 0.163 2.957
q2 0.689 0.210 2.319 0.283 2.211
q3 0.697 0.189 2.379 0.241 2.358
π 0.697 0.189 2.373 0.240 2.358

Sampling from π using rejection sampling works well but is computationally expensive. q3 is computationally
much cheaper whereas q1 does extremely poorly as expected.

2 Antithetic Variates

We are interested in computing

I =

∫ 1

0

φ(x)dx = E (φ(U)) , U ∼ U[0,1]

Instead of

În =
1

n

n∑
i=1

φ(Ui),

we consider here

In =
1

2n

n∑
i=1

(φ(Ui) + φ(1− Ui)) .

We obtain

V
(
In
)

=
n

4n2
V (φ(U) + φ(1− U))

=
1

2n
(V (φ(U)) + cov (φ(U), φ(1− U))) .

If cov(φ(U), φ(1− U)) < 0, V
(
In
)
≤ V

(
În

)
. The following lemma gives conditions for this to hold.

Lemma 1 If the function φ is monotonic, then cov (φ(U), φ(1− U)) < 0, unless φ is constant on [0, 1].

Proof. Let U1, U2 be independent and uniformly distributed on [0, 1]. Then we have

cov (φ(U), φ(1− U)) =
1

2
E [(φ(U1)− φ(U2)) (φ(1− U1)− φ(1− U2))] .

We assume that φ is monotonically increasing. If U1 < U2, then the first factor is negative and the second
positive, and vice versa for U1 > U2. Thus, the integrand is always non-positive. To verify that the covariance
is strictly negative, we investigate when the integrand is zero. One factor must be 0, that is almost surely
either φ(U1) = φ(U2) or φ(1−U1) = φ(1−U2). Because φ is monotone, this is only possible if φ is constant.
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3 Control Variates

Assume there exists a function ϕ such that
∫
ϕ (x)π (x) dx is known and we want to compute I =

∫
φ(x)π (x) dx.

Without loss of generality, assume further that
∫
ϕ (x)π (x) dx = 0. Then for any λ

În,c =
1

n

n∑
i=1

(φ(Xi)− λϕ (Xi))

is an unbiased estimator of I for Xi
i.i.d∼ π. Its variance is

V
(
În,c

)
=

1

n
V (φ(Xi)− λϕ (Xi))

=
1

n

{
V (φ(Xi)) + λ2V (ϕ(Xi))− 2λcov (φ(Xi), ϕ(Xi))

}
.

The optimal λ is

λopt =
cov (φ(Xi), ϕ(Xi))

V (ϕ(Xi))

and the minimal variance is

Vopt

(
În,c

)
=

1

n
V (φ(X))

{
1− corr (φ(X), ϕ(X))

2
}
≤ 1

n
V (φ(X)) .

In general, λopt is unknown, but it can be estimated by

λ̂opt =

∑n
i=1

(
φ(Xi)− În

)
ϕ (Xi)∑n

i=1 ϕ (Xi)
2 .

This is consistent, and we obtain asymptotically the same variance as if λopt is known.
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