Welcome to

STAT 547C,
Topics in Probability

Instructor:Alexandre Bouchard
Fall 2018



Plan for today:

® | ogistics.
® Why you should care about probability.

® The vocabulary of probability



Logistics



Contact & other logistic
Issues

® Web site: always check first!
http://www.stat.ubc.ca/~bouchard/teaching.html

® Jextbook and other readings
® Hints and updates for assighments
® Office hours

e Contact:
|. Piazza
2. bouchard@stat.ubc.ca



mailto:bouchard@stat.ubc.ca

Homeworks (40%)

Main assignments (~3-4, 25%)

‘Exercises/Participation’ (15%): doing the
short exercises, scribing, interacting in
class, coming at office hours



Exams

® |n class midterm (20%)
® Finals:

® |ast day of class: ‘Essay: what | have
learned in the course’ (10%)

® Take home final/project (30%)



Why this topic is important

Automated theorem proving
Adaptive websites

Affective computing
Bioinformatics
Brain—machine interfaces
Cheminformatics
Classifying DNA sequences
Computational anatomy
Computer Networks
Computer vision, including object recognition Robot locomotion
Detecting credit-card fraud Search engines
General game playing
Information retrieval

Medical diagnosis
Economics
Insurance

Online advertising

Sequence mining

Machine perception

@

Natural language processing
Natural language understanding
Optimization and metaheuristic

Recommender systems

Sentiment analysis (or opinion mining) User behavior analytics \&

XA

Internet fraud detection @
Linguistics

Marketing

Machine learning control

Software engineering

Speech and handwriting recognition
Financial market analysis
Structural health monitoring
Syntactic pattern recognition
Time series forecasting

Translation
slo
Google

Machine Learning

Probability

Optimization




VWhy this topic is important

® Fundamental tool in statistics, computer science,
physics, econometrics, ... and increasingly, biology,
linguistics, sociology, ...

® Creating models
® |nverting them (Bayesian statistics/conditioning)
® Computational power of randomness

® Also a branch of pure math in its own right

® Replacing logic as the philosophical foundations of

science and cognition?
(‘Dawning of the age of stochasticity’, D. Mumford)



Probability in action:
Diverse examples



Engineering, technology,
logistics



Ex. |

The Search for Malaysia
Airlines Flight 370 s,

cour the depths for the plane

Goal: finding the s
location of the crash o

Question: how to
prioritize search

Inmarsat-3 F1
geostationary 1 .

satellite ¢ Kuala Lumpur
° P A
How to reconcile J——
several sources of
partial info: — ol e
2

- Last known position —
- Fuel range

- Last satellite ping http://tinyurl.com/lhzrufa


http://tinyurl.com/lhzrufa

Ex. 3 . .
Rational behavior and

uncertainty

General question: how to act when

- we are facing uncertainty
- errors have different costs

Examples: - fraud detection
- medical diagnosis
- spam classifiers

Key tool: expected value



Sciences



Ex. 4

Ecology: Estimating
animal population sizes

Example: finding the
number of Sockeye
salmon in the Pacific

Ocean (!)

Very important
problem for
conservation, setting
fishing quotas, etc.




Ex. 4

Insight: the capture-
recapture trick

Population Capture and tag  Recapture and count




Ex. 5
Assessing significance

® Histogram of # of births
organized by month: .

Month of birth distribution for live births across the 27 States of the European Union
in the period from 2000 to 2009 (millions). Dataset 51.7 million source data Eurostat

6.000

® Question:is the # of -

births uniform across |
months!? |

2,000 1 -

1.000

® Note: even if the

0.000 r - - -
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

answer Is yes, we
would expect small
differences across
months.

® How small?



Ex. 5

JELLY BEANS WE FOUND NO THAT SEMES THAT.
CAUSE ACNE! LINK GETWEEN T HEAR IT5 OnLY
o SCENTISTS! JELLY BEANS AND
INVESTIGATE! AONE (P > ©.05) / ? wcmc': thszscmm
Ef;g SOENTISTS!
jaca ( -

o Q|| @ X
significance THRIT

W FOUND ND VL FOUND NO WE RN WE FONDND WE FuNo N
LNy, BOWTIN Uns, GEVEEN L GOy L GO L, GOwEDN
P Xy BROWUN 0y ToAC Xy

(P>005)

o
® Tricky problem i

® Mis-use of statistical tools has | <s
lead to the reproducibility crisis

D
Most scientists 'can't replicate studies by ﬁ%
their peers' "

By Tom Felden
Science ooer

espondent, Today programme




! Astrophysics: Estimating the
age and fate of the Universe

OM = 0.3, OA\ = 0.7 ,‘

e Goals: finding the Universe’s | F o=
® age
® density (=> fate)

® Data: Cosmic Microwave
Background (CMB):
remnants of Big Bang

Average distance between galaxies

* Detailed map from the 157 IO 5 Billio(:)lsofyeargs from nol\? '5 -
Planck satellite

® Age, Physical constants =>
known distribution on CMP

® |nvert using Bayes’ rule




Ex. 7
Phylogenetics: Reconstruction of

ancient species

* Goals e

GEOGRAPIIC

® better understand ancient EXTINCT SPECIES
species :

® revive them?

® Fossil DNA degrades after
few 1000s years

® Are dinosaurs’ genomes ju@ﬁ@u(mm
completely lost? —




Ex. 7

Phylogenetic tree
Idea: use the genomes g 's 02' ...............

from the descendants of 7 °!/

dinosaurs (modern birds) \wl/ %
T —~—~—

We know how DNA > —~ ‘

change over time
(probabilistically)

Marginalization of
unknown genomes

Additional challenge:
structure of tree is
unknown




Core topics

® Applications of probability in statistics

® Formal treatment of the probability spaces and
expectation and their properties (the language
of probability)

® The ‘surprising challenges of composing r.v.s’
® Asymptotics
® Generating functions

® Conditioning

® Going beyond independence.e.g Markov chains



Additional topics from:

® Selected stochastic processes useful in
the stats literatures (e.g. Continuous time
Markov chains / piecewise deterministic
Markov processes / Poisson processes ...)

® Martingales
® Bandits

® Optimal transports



First exciting landmark (coming up
this month): A Surprising Challenge

® Sums of random variables
® Omnipresent in statistics

® Taking the sum of variables is easy, so taking the
sum of random variables should also be easy, right?

® Not quite... consider for example the problem of
computing the probability that the sum of 1000
coins is greater that 500.

® Would have been hard in the pre-computer era

® Generalized versions of this problem still hard
with computer



Limiting theory to the rescue

® Another surprise: sums of random
variables can be approximated by s,
something simple when large numbe I
of terms involved

® No matter what each X is!!!
(almost)

® Also explains why we spend
disproportionate amount of time on
some specific types of random
variables (normal, Poisson, ...)

300 coins

® |nh some sense, ultimate motivation
for continuous random variables, as
they often arise as limiting objects



Building models



Two coins

® | et us ask Probability Theory:

Flip 2 coins.What is the probability that the 2
coins both show heads?

A. 1/2
B. 1/3
C. 1/4

D. I cannot tell you



Probability that 2 coins show heads

® |/2? Either they do, or they don't.
® |/3? Either both heads, both tails, or heads-tails.

® |/4! Imagine one coin is painted red, one is
painted blue. There are then 4 possibilities:

. . 4 ~N
- red:heads, bluerheads [ _ These correspond to 3
- red:heads, blue:tails different models
- red: tails, blue: heads | = None is ‘true
= red: tails, blue: tails - But the third is more
useful (accurate at doing
predictions)

. J




Models are approximations

® Reality: a complex dynamical

system
Stroboscopic image of a coin flip by Andrew
Davidhazy
® Model:a ‘bag’ with 4 ‘objects’ in it : \

(HH)  (T.T)
(LH) (H,T)

.



http://www.rit.edu/~andpph/

Which model to use!?

Probability theory alone does
cannot answer this question.

Reality > (Simr/lli(:“lccj:zelltion) _ Prediction /
B P ~ answers
trial-and-error, probability theory

scientific method
(test predictions)



But...

® Probability theory still useful:

® Given a model, it makes certain
predictions

® We can then test those predictions
® Example: law of large numbers

® Relates probability and frequency in
repeated experiments



Reality check

0 2000 6000 10000

® Datasetof & o 2
10,000 S T —
0
actual =S X
>
tosses of g © ©
: 0 O o
two coins
: N <t
available 03 = S
[Q\ g
on the N o 0.247
web (!) o _
° 5 [2000 " 6000 " 10000

http:/ /tinyurl.com/ljtc63g 1000 coin toss



All models are wrong

® Given the large number of throws, 0.247
may seem a bit far from 0.25 (we will
formalize this idea later)

® is there something fishy!?

® after reading the fine prints of the data,
realized all throws started with same face
in hand of thrower

® see P Diaconis’ paper,
http://tinyurl.com/yked5fk

® Essentially, all models are wrong, but some
are useful. -- G. Box


http://tinyurl.com/yked5fk
http://en.wikiquote.org/wiki/Scientific_modelling

Probability models
Measure-theoretic vocabulary



VVhy bother with
measure theory

® Many concepts more natural to define and
easier to prove

® independence
® exchange of integral / limits / derivatives

® Unified treatments of discrete/continuous,
univariate/multivariate

® Read the literature fearlessly



The 3 ingredients
(axioms of probability)

1. a set €2, called the sample space,

2. a closed collection of events, F C 2%, called a o-algebra,

3. a probability measure (synonym: probability distribution), P : F — [0, 1].
where:

1. the o-algebra satisfies:

(a) Qe F,
(b) Ay e F, Ao e F,A3 € F,...,— NXA; € F,
c) AcF= Al e F

2. and the probability measure satistifies:

(a) P(2) =1,
(b) if Ay € F,Ay € F,A3 € F,... are disjoint (Z%]SAZQA]:@),
then

P(UA;) = i P(A;).



Example: bag of distinct objects of
same size

Y @ Proportion of red
shapes!

® Probability of drawing a
red shape!

® Qutcome: an individual
object in the bag

~ o ex..s = *

# of outcomes of interest

Example of a probability
where outcomes are
equally likely:

# of outcomes




: C This is a set of outcomes
- Notatlon N Nickname: event
Sample space Typical notation: red, E, blue, F, ..
_ Typical notation: £ E={acel y

7\
- ]

® Proportiontofred

-

\_

Notation: P Q, ..

P is a function:
- Input: an event
- output: a number in [0,
P:29 — [0, I]

Example: P(E) = 3/5

N
y

- _— shapes? .+
—

® Probability of drawing a
red shape!

’e ® QOutcome: an individual

I
J object in the bag

— [Pe) =1l ]

Example of a probability

where outcomes are

equally likely:

............................ ——

# of outcomes of interest

# of outcomes



Basic properties

® We know P(E)

® Example: P(square) = 2/5
® What is P(E%) ?

® Example: P(not square)
® [° means:

® the complement of E

® the outcomes notin E

® =S\ E (minus,for sets)




Basic properties

® We know P(E), P(F)

® Example: P(blue) = 2/5
P(star) = I/5

® Whatis P(EU F) !

® Example: P(blue or star)

® Try now on:

® Example: P(red) = 3/5
- g P(square) = 2/5

P(E U F) = P(E) + P(F) |fEIaendEFna|;:e dlgomt,




-

\_

These are
called the
axioms of

probability
KoKk

~

>

Axioms of probability

J

Discrete, equally weighted

(" Assume: A
a) 0 < P(E) < |

b) P({2) = |
c)PEUFU..)=PE)+PF) +..
_ if E,F ... are all disjoint y

Not equally weighted

" Definition (1): A
P(E) =1E 73]
! Properties (2):
a) 0 < P(E) < |
b) P(Q2) = |

c) P(E U F) =P(E) + P(F)

_if E and F are disjoint

(or not discrete)




More interesting
examples: random walk;
statistical models



Some type checking

1. a set €2, called the sample space,

2. a closed collection of events, F C 2%, called a o-algebra,

3. a probability measure (synonym: probability distribution),|P: F — [0, 1].

where:

1. the o-algebra satisfies:

(a) Qe F,
(b) Ay e F,As e FAs € F,...,—= NXA; € F,
c) AcF= Al e F

2. and the probability measure satistifies:

(a) P(2) =1,
(b) if Ay € F,Ay € F,A3 € F,... are disjoint (Z%]SAZQAJZQ),
then

P(UA;)|= i P(A;).




Axioms for measure spaces

1. aset Q, called the sample space, Change upper bound to
2. a closed collection of events, F C 2%, called a o-algebra, (00
3. a probability measure (synonym: probability distribution), P : F — [O>1(

where:

1. the o-algebra satisfies:

(a) Qe F,
(b) Ay e F, Ao e F,A3 € F,...,— NXA; € F,
c) AcF= Al e F

2. and the probability measure satistifies:

(a) IP)(Q)><1’ Change boundary condition to ]P(@) — ()

(b) if Ay € F,Ay € F,A3 € F,... are disjoint (Z#]:>AZQA] :@),
then

P(UA;) = i P(A;).



Next: how this set of axioms
is exquisitely fine tuned

1. a set €2, called the sample space,

2. a closed collection of events, F C 2%, called a o-algebra,

3. a probability measure (synonym: probability distribution), P : F — [0, 1].
where:

1. the o-algebra satisfies:

(a) Qe F,
(b) Ay e F, Ao e F,A3 € F,...,— NXA; € F,
c) AcF= Al e F

2. and the probability measure satistifies:

(a) P(2) =1,
(b) if Ay € F,Ay € F,A3 € F,... are disjoint (Z%]SAZQA]:@),
then

P(UA;) = i P(A;).



