
Probability, illustrated

Alexandre Bouchard-Côté
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1 Motivations

Why learn probability theory?

1. Probability theory is a fundamental tool in statistics, computer science,
physics, econometrics, and many more traditionally quantitative fields.
It is also quickly gaining in importance in fields making the quantitative
transition, for example biology, linguistics, sociology, and many more.

2. The theory is beautiful in its own right. Probability Theory can also be
approached as a branch of pure mathematics.

Both of the above points are excellent motivations. However by the nature
of this course (we are in a stats department!), I will focus on the first point
above and heavily use practical motivations throughout the notes.

Why is probability a fundamental tool in so many fields? Because Probabil-
ity Theory is useful for creating models.

Models are sketches of reality that capture the essential of a problem while
being amenable to mathematical analysis. Probability-based models are great
at incorporating phenomena like uncertainty and non-linearity. Moreover, com-
pared to other types of models you might be familiar with (e.g. linear algebra
or calculus based), they arguable tend to be more resilient to mis-specification,
i.e. they can recover from certain mismatches between the model and reality
(data) in the sense of still giving good predictions.

There are many other motivations. I will just mention two more quickly:

From model to prediction: in Bayesian statistics, probability theory is es-
sential not only to formulate models, but also to make predictions. Bayesian
statisticians construct a probability model in which both the known quantities
(data) and the unknown quantities are modelled using random variables. In
Bayesian inference, prediction then involves conditioning on the data. We will
use Bayesian statistics as a recurrent example when talking about conditioning.

The computational power of randomness. Probability Theory arises in
a surprising way in the subfields of computer science concerned with the de-
sign and analysis of algorithms. Researchers have found since the 1940s many
problems where the best way to solve deterministic problems is to introduce ar-
tificial randomness in the execution of the algorithm (an idea called algorithmic
randomness). Consider for example the problem of quickly approximating the
volume of an arbitrary convex body. In a 1991 landmark paper [2], Dyer, Frieze
and Kanna devised the first provably efficient approximation algorithm, which
crucially depends on algorithmic randomness to perform random walks. More-
over, it is known that no efficient deterministic algorithms can provide accurate
approximations [1]. There are many instances where there are no known deter-
ministic algorithms and where algorithmic randomness is necessary to scale to
large problems.
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2 Foundations

On being formal: An important thing to realize is that despite the fact that
Probability Theory is used to model uncertainty, it is as formal as any other
fields of mathematics (despite what you may have been led to believe if you took
a course using the standard undergraduate way of teaching). Formalization of
the field was achieved by Kolmogorov in the 1930s, when he realized that the
same tools used to formalize the notions of area and volume (measures) could
be applied to probabilities.

On intuition: While being formal is useful, intuition is important too. Prob-
ability is very connected to the real world so using your intuition is also very
useful in making guesses that you can then prove using theory.

Why measure theory? Measure theory is the standard framework used to
formalize probability theory. There are several reasons to learn the basics of
measure theory (i.e., as Pollard puts it, to be user of measure theory). We will
see some of these technical motivations as we go along:

1. Unified treatment of things are taught separately in naive undergraduate
probability course: discrete/continuous, univariate/multivariate.

2. Certain results about expectations are easier to state and hold more gen-
erally under the measure-theoretic definition of expectations.

3. Establishing independence can in certain case be much easier under the
measure theoretic definition of independence.

However in my view the main motivation is that a big chunk of the literature is
written in the language of measure theory. This course will prepare you so that
you can be fearless when reading the stat literature.

The danger is to be too formal and that the notation gets in the way of the
intuition. I will avoid this pitfall. I will also skip the tedious details that I find
less useful in statistics, e.g. certain proofs of existence, especially if they do not
reveal a technique more broadly applicable

2.1 The basic vocabulary of probability

The axioms of probability, formulated by Kolmogorov in the 1930s, provide a
vocabulary and basic set of rules used in everything that follows. We look at
how they become alive by showing how they are used to build two simple models
(the second, not as simple as it initially looks!).

Recurrent example: imagine an infinite railroad, modelled by the integers
Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }. A train starts at position zero. At every
time step,the train operator flips a coin. If the coin shows heads, the train moves
left by one unit. Otherwise, the train moves to the right by one unit.
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We will look at two versions of this example, version A, where there is fuel
limit which restricts the train to six moves, and version B, where there is no
fuel limit.

Let us start with version A.

Outcomes/scenarios: several scenarios can arise from the dice-driven train
“story” or “experiment”. For example the train could go left, right, left, right,
right, left. Or it could go left, right, right, right, right, left. We will call these
two scenarios, two outcomes. The usual letter for one outcome is ω or s.

To help visualization, we will draw one outcome in the time series example
as a graph where the x-axis is time t and the y-axis is the position at time t.
Here is one example for version A:

and for version B (infinite fuel):

Definition: The set of all possible outcomes is called the sample space, which
I will denote by Ω or S.

Example: what is the size or cardinality of Ω (i.e. the number of elements in
it) for version A of our train example? I will denote the size by |Ω|. Answer:26

because there are six bits each free to take two possible values. We conclude
that the probability of any given outcome in version A is 1/64. Note that

∑

ω∈Ω

probability of outcome ω = 1.

Here is a picture for the train version A example:
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Science-fiction interpretation: if you read or watch science fiction (e.g.
check out “The man in the High Castle” by Philip K. Dick), you may think
about an outcome as encoding all the information for one universe, and the the
set of all outcomes (the sample space) as the multiverse.

Note: an outcome may contain many bits of information. We only need one of
those bits to get two different outcomes. I.e. outcomes can be very similar, but
not identical.

Definition: a set of outcomes is called an event.

Example: events are often created using a property defining what outcomes
are in the event. For example, consider the set of outcomes where the train goes
left in the second time step, A1. We use the terminology “the event that the
train goes left in the second time step.” What is its size? Notice that events
that are described by a small number of properties tend to be large, while event
that are described by a larger number of properties tend to be smaller.

Partitions: often we consider not one event but several events at once. For
example we want to categorize outcomes into sub-cases. This can be done using
partitions. A partition of a set E (for example E = Ω), is a collection1 of events
B1, B2, . . . such that (1) Bi ∩Bj = ∅ for all i 6= j and (2) ∪Bi = E. Each Bi is
called a block.

Decision trees are useful to organize a hierarchy of events. Each node in the
tree is an event. At the root, we put Ω. When |Ω| < ∞, at the leave we have
singletons, i.e. sets with only one element. In between, each node of the tree is

1Just a synonym for set.
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split into subcases. More formally, say we are at a node corresponding to event
E. Pick a partition B1, B2, . . . is of E. Then the children of E in the decision
tree are defined as the blocks of the partition splitting E.

Additivity: it is not too hard to see in example A that the probability of
disjoint events (i.e. non-intersecting events) can be added up. E.g.:

probability go left in first turn + probability go right in first two turns

= probability go left in first turn or right in first two turns.

Both sides are equal to 1/2 + 1/4.

Note: it is not too hard to see in example A that the probability of overlapping
events (i.e. intersecting events) cannot always be added up. E.g.:

probability go left in first turn + probability go left in first two turns

6= probability go left in first turn or left in first two turns.

The left hand side is equal to 1/2 + 1/4 while the right hand side is equal to
1/2.

A routine task in probability problems consists in expressing events of un-
known probability in terms of events of known probability.

Exercise/example: express, in version A of the train example, the event that
the train eventually returns home (position zero), in terms of the events:

At = event that the train goes left in the t-th time step,

which have known probability. Do it using only the set theoretic operations ∪,
∩, and set complement A{t .

2.2 Motivating the axioms of probability

Difficulty pre-Kolmogorov/pre-1930s: people were already very good at
doing computations for things like version A of the train. But surprisingly, they
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were running into serious foundational problems when trying to formalize the
theory for version B of the problem!

Difficulty: in version B, we cannot always define probability of events by adding
up probability of individual outcomes. We cannot have these three things:

probability of one path = lim
t→∞

(1/2)t = 0

probability of Ω = 1
∑

ω∈Ω

probability of outcome ω = probability of Ω.

The problem is that each individually appears to make sense (the third one, in
the light of the disjoint additivity observation), but they are inconsistent! We
will see that the third one is the one causing problems.

Root cause of the problem: in version B, the set Ω is uncountably infinite.
Recall that a set is countable if we can come up with a list of all the elements
in it. More formally, a set is countable if we can come up with a surjective
function f taking as input an integer and returning an element in B (think of
the input of f as the position in the list, and the output as the item listed in
that position). The terminology surjective means {f(i) : i ∈ 0, 1, 2, . . . } = Ω,
i.e. the list is exhaustive. To see why the set Ω of all infinite train paths is
uncountable, argue as follows: suppose on the contrary that there was a list
(i.e. suppose you claim to come up with a surjective function f listing all the
paths). I will show you there must be at least one path not in your list, an
“outlier.” Recall that a path is just a list of coin toss, say encoded as 0 and 1.
Here is a picture followed by a description:

1. I start by building the first coin toss in my outlier. I look at the first toss
of the first element in your list, f(1)1. If I see a 0, I set my first toss to 1.
If I see a 1, I set my first toss to 0.
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2. Then I build the second toss in my outlier. I look at the second toss of
the second element in your list, f(2)2. If I see a 0, I set my second toss
to 1. If I see a 1, I set my second toss to 0.

3. Third toss: I look at the third toss of the third element in your list,
f(3)3. If I see a 0, I set my third toss to 1. If I see a 1, I set my third toss
to 0.

4. etc.

By construction, the outlier cannot be in your list! We conclude the set Ω of all
infinite coin tosses is not countable (i.e., uncountable).

Remedy: here is the first part of Kolmogorov’s insight (in turn based on in-
sights from the then-nascent theory of measure)

1. Give up defining the probability by assigning it to single outcomes.

2. Instead, assign probability to events. I.e. define P(A) for event A, not
P(ω) for outcome ω.

3. The function P is now defined on a much bigger space! Many functions
defined on that large space make no sense (e.g. we could have P(Ω) 6= 1
which does not make sense). Let us use the intuition gained with example
version A to extract what are the things we want to assume on P. The
list of what to include in order to get an interesting theory is surprisingly
short:

(a) Additivity of disjoint events.

(b) P(Ω) = 1.

Second difficulty: we need to be careful about how we define the disjoint
additivity axiom! If we allowed additivity over uncountable collections of events,
we would be back the “paradox” at the beginning of the section, i.e. that
P({ω}) = 0 but

P(∪ω∈Ω{ω}) = P (Ω) = 1.

Remedy (continued): assume disjoint additivity only for countable collec-
tions of events. More formally, assume that if A1 ∈ F , A2 ∈ F , A3 ∈ F , . . . is a
countable collection of disjoint events (i 6= j =⇒ Ai ∩Aj = ∅), then

P(∪Ai) =

∞∑

i=1

P(Ai).

Third difficulty: a strange theorem of measure theory states that there exists
no probability distribution defined on all events, P : 2Ω → [0, 1] such that
P({ω}) = 0 for all ω ∈ Ω.
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Intuition: when Ω is countably infinite, 2Ω is very strange! E.g. some events
cannot be described by any language (any languages that we know of proceeds
by putting letters from a finite alphabet one after another; well, that can only
produce a countable set of descriptions. So that mean certain paths in Ω cannot
be described in version B of the train example)!

Remedy (continued): do not attempt to define P on all subsets of Ω. Define
it on a subset of events called a σ-algebra. Make the σ-algebra big enough to
do all the computations we are interested in doing: taking countable unions,
intersections, and complements. As we will see soon this solves our problem, in
the sense that there is a F ( 2Ω, P : F → [0, 1] such that P({ω}) = 0 but for
example P(At) = 1/2.

2.3 The axioms of probability

To summarize the discussion of the last section, a probability space contains
three things:

1. a set Ω, called the sample space,

2. a closed collection of events, F ⊂ 2Ω, called a σ-algebra,

3. a probability measure (synonym: probability distribution), P : F → [0, 1].

where:

1. the σ-algebra satisfies:

(a) Ω ∈ F ,

(b) A1 ∈ F , A2 ∈ F , A3 ∈ F , . . . ,=⇒ ∩∞i=1Ai ∈ F ,

(c) A ∈ F =⇒ A{ ∈ F .

2. and the probability measure satisfies:

(a) P(Ω) = 1,

(b) if A1 ∈ F , A2 ∈ F , A3 ∈ F , . . . is a countable collection of disjoint
events (i 6= j =⇒ Ai ∩Aj = ∅), then

P(∪Ai) =

∞∑

i=1

P(Ai).

Measure: a measure space is a very close cousin to a probability space. The
axioms are identical, except for two changes:

1. We remove the bound [0, 1] and replace by [0,∞), and use the terminology
measure (often denoted µ) instead of probability, µ : F → [0,∞).

2. We modify P(Ω) = 1 into µ(∅) = 0.
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2.4 Some basic properties

Some examples of basic properties we can derive from these axioms:

1. P(A{) = 1− P(A),

2. if A and B are events that are not necessarily disjoint, P(A∪B) = P(A)+
P(B)− P(A ∩B).

Idea: partition sets into disjoint bits, so that the disjoint additivity can be used.
For part 1, use that A and A{ form a partition of Ω. For part 2, define the set
subtraction as E\F = {e ∈ E : e /∈ F}, and use the partition A\B,B\A,A∩B.

Exercise: write down the argument.

2.5 Probability spaces as models

2.5.1 Coin tosses

Question: you toss two coins, what is the probability of two heads? Note that
you are not able to tell the two coins apart.

Sample space: which of these should we pick?

1. Ω1 = {(H,H), (H,T ), (T,H), (T, T )}

2. Ω2 = {{H,H}, {H,T}, {T, T}}.

The best answer is Ω1, but why? Choosing between these two (essentially,
selecting one of these two models) is not part of probability theory per se. Use
have to use your intuition about the real world here. For example, note that
if you painted one coin red and one blue, the setup of this experiment would
not have changed. Hence, the model that is most useful is the one that uses
lists even though we could not observe this distinction. Probability theory
comes in once we have built a model, at which point inference can be carried
using mathematical principles. Probability theory can help selecting model
though, for example by making certain predictions for a given model, which
can then be tested (for example, the long term behavior of frequencies, which
is mathematically understood for a wide range of probability models).

2.5.2 Reliability

Reliable systems replicate a critical component (e.g. a power supply in a com-
puter server) so that the whole system works as long as at least one of the two
copies works. Consider an assembly line for computer servers. Suppose the first
power supply assembly line is observed to put in a power supply that works
60% of the time. The second power supply assembly line is observed to put in
a power supply that works 70% of the time. At delivery, both power supplies
work 40% of the time.
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Exercise: What is the probability that both power supplies are broken at
delivery? Hint: the answer is not 12%.

If you answered 12%, you are using a property that is not built into (or
derivable from) the axioms of probability: namely that if P(A∩B) = P(A)P(B).
It is an extra assumption called independence of the events A and B. It is kept
separate because there are situation where it is useful to describe the world,
and others where it is not (can you imagine a scenario where the two assembly
lines are not independent?). This contrast with the disjoint union axiom of
probability, which models a universal aspect of reality.

2.6 Statistical models

Statistical models are built using probability models. Consider the following
example:

Estimation: consider the train example, but where instead of a standard coin
being used to make the decision at each step (50%-50% to go left or right), a
biased coin is used, i.e. where the train goes left with probability θ ∈ [0, 1] and
right with probability 1−θ. The problem is that we do not know θ! Instead, we
try to reconstruct θ from data (observed paths). This problem, point estimation,
is one an important type of problems considered in statistics.

Frequentist models: use not one but many probability distributions all de-
fined on a shared space (Ω,F):

frequentist model = {Pθ : F → [0, 1], θ ∈ Θ}.
If the index set Θ is some subset of Rd, the model is called parametric, otherwise,
it is called non-parametric.

Bayesian models: use only one probability distribution. Augment the space
Ω to include the unknown quantity θ ∈ [0, 1], i.e. Ω̄ = [0, 1] × Ω. We will go
over this way of modelling in more detail when we talk about conditioning.

2.7 Simple examples of σ-algebra

We have seen one “foundational” motivation for σ-algebras. We will also see
a more useful motivation soon which is that σ-algebras can encode rules of a
game, but we will need to define random variables first. For now, let us look at
some examples to make this concept a bit more concrete.

Power set: the power set 2Ω is always a σ-algebras on Ω. For example

F0 := {{a, b, c}, {a, b}, {a, c}, {b, c}, {a}, {b}, {c}, ∅}
is a σ-algebras on Ω := {a, b, c}.

Another discrete example: the collection of events

F1 := {{a, b, c}, {a, b}, {c}, ∅}
is also a σ-algebra on Ω := {a, b, c}.

15



A non-example: the collection F2 := F1 ∪ {{a}} is not a σ-algebra. Why?
We have {a} ∈ F2 yet {a}{ /∈ F2.

2.8 More interesting examples of σ-algebra via generation

Let S denote a collection of events. The machinery of this section is useful when
the collection S is “broken,” i.e. when it is not a σ-algebra (example: S := F2

above).
We would like to “repair” S by adding more events until we get a closed

collection of event. How can we do this is such a way that the output of the
repair process is unique and well-defined?

1. Let F and F ′ be two σ-algebra on Ω. Exercise: convince yourself that

their intersection F ∩ F ′ is also a σ-algebra.

2. The result in 1 can be generalized: if we have any collection of σ-algebras
{Fα : α ∈ I}, where I is some index set (not necessarily countable), then

⋂

α∈I
Fα

is also a σ-algebra.

3. Let us pick

{Fα : α ∈ I} = {Fα : Fα is a σ-algebra containing S},

then we get that the intersection of the Fα is a σ-algebra.

4. We call this intersection the σ-algebra generated by S, denoted σ(S).

5. Another way to think about σ(S): the smallest σ-algebra containing S.

Some examples:

1. σ(F2) = 2{a,b,c}.

2. An important example where the generated σ-algebra is smaller than 2Ω:
the Borel σ-algebra. To follow this example, it will help to first make the
observation that infinite paths can be made in correspondence with the
interval [0, 1). This is done via the binary representation of real numbers,
which works schematically as follows:

16



This correspondence shows that many events of interest can be expressed
as intervals in [0, 1). For example what is the interval corresponding to
“the train goes left in the first step”? The interval [0, 1/2). So to be able
to have these intervals in our σ-algebra, we proceed as follows:

(a) Take Ω := [0, 1), and SB := {F : F is a finite collection of intervals}.
(b) Convince yourself that S is not a σ-algebra.

(c) We call σ(SB) the Borel σ-algebra, denoted FB.

(d) Elements of FB are called Borel events.

(e) Some measure theory shows that FB is a proper subset of 2[0,1).

2.9 Simple examples of probability measures

Discrete probability measure: assume you are given a countable sample
space Ω and a function p : Ω → [0, 1] called a Probability mass func-
tion (PMF). Define, for any event A ∈ F :

P(A) :=
∑

ω∈A
p(ω).

Check that this definition satisfies the axioms of probability. Note: do not
confuse p and P, as they take different types of inputs!

Conditional probabilities: fix an event E which you can interpret as some
data, with P(E) > 0. Define a new probability distribution as

P′(A) =
P (A ∩ E)

P(E)
.
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Check P′ is indeed a probability. If P is some agent’s belief before observing
E, P′ can be interpreted as the optimal way for the agent to update its
belief after observing E. This updated belief is notated P′(·) = P(·|E) and
is called the conditional probability given E. From now on, if we write
P(A|E) we will assume P(E) > 0 implicitly.

The uniform probability measure: some (surprisingly heavy) measure the-
ory shows that there exists a probability measure on FB such that P([a, b)) =
b− a for all 0 ≤ a ≤ b < 1.

This second example is actually enough to build a rich theory! How? Using
random variables and their distributions, which we will cover shortly.

Example of a measure: the Lebesgue measure is the same as the uniform
probability distribution, except that it is defined on R instead of [0, 1).

2.10 Computations for discrete models

We already have enough tools to formulate and solve many interesting problems
involving discrete models (i.e. with |Ω| <∞).

Exercises: You can solve the following problems by explicitly enumerating all
the possible scenarios. However, I ask here that you go beyond and that you
formalize your reasoning, by (1) setting up a probability model using set theory
only, no English allowed,2 and (2), use the axioms of probability to solve the
problem. All you need is the following two tools.

Tool 1: chain rule. For any event A, B,

P(A ∩B) = P(A)P(B|A) (= P(B)P(A|B)).

Tool 2: law of total probability (version 1). Suppose B1, B2, . . . is a
partition of E, then

P(E) =
∑

i

P(E ∩Bi)
(

=
∑

i

P(Bi)P(E|Bi)
)
.

Proposed strategy: build the model and list the known (conditional) prob-
abilities. Write the (conditional) probability you wish to compute. Then rein-
troduce the “missing” variable in this last probability using the law of total
probability and the chain rule.

1. Prove that the two “tools” follow from the axioms of probability.

2. An HIV test has the following two modes of failure:

2Obviously, in general I do recommend a mix of English and math for clarity, but proba-
bility beginners tend to rely too much on the former.
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• When a patient has the disease, the test will still be negative 2% of
the time (false negative)

• When a patient does not have the disease, the test will turn positive
1% of the time (false positive)

Given that the test is positive, what is the updated (posterior) probability
that the patient is indeed affected by HIV?

Suppose now 25% of the population has HIV. Given that the test is posi-
tive, what is the updated (posterior) probability that the patient is indeed
affected by HIV? What happens if the prevalence of the disease is very
small instead?

3. There are 3 kindergarten classrooms and 9 kindergarten students in a
school. The children are lined up and assigned to classrooms in turn. The
principal claims the assignment is uniform over all possible assignments.
The classrooms have the following capacities:

• Classroom (a): 4 students

• Classroom (b): 3 students

• Classroom (c): 2 students

You are fifth in the list of children. What is the probability that you get
assigned to class (a)?

2.11 Exercise set 1

1. Solve the exercise in Section 2.4

2. Solve the exercise in Section 2.5.2

3. Solve the exercise in Section 2.10

2.12 Solutions for exercise set 1

2.12.1 Basic properties

First, not that additivity for a countable collection implies additivity for a pair,
by taking A3 = A4 = A5 = ∅. Since A and A{ are disjoint, P (A) + P (A{) = 1,
and hence the first simple property.

For the second property we make use of the following:

1. {A\B,A ∩B} is a partition of A; hence P(A\B) + P(A ∩B) = P(A);

2. {B\A,A ∩B} is a partition of B; hence P(B\A) + P(A ∩B) = P(B);

3. {A\B,B\A,A ∩ B} is a partition of A ∪ B; hence P(A\B) + P(B\A) +
P(A ∩B) = P(A ∪B).

Now substitute P(A\B) in the equation in 3 above using equation in 1 above as
well as P(B\A) using equation in 2.
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2.12.2 Reliability problem

Define Ω = {(0, 0), (0, 1), (1, 0), (1, 1)} where element ω = (i, j) encodes if the
first power supply works (i = 1, otherwise i = 0) and if the second power supply
works (j = 1, otherwise j = 0). Define Wk as the event that power supply
k ∈ {1, 2} works, i.e. W1 = {(1, 0), (1, 1)} and W2 = {(0, 1), (1, 1)}. We know:

1. P(W1 ∩W2) = 4/10, (by the way sometimes denoted just P(W1W2)),

2. P(W1) = 6/10,

3. P(W2) = 7/10.

The goal is to compute P(W {1W
{
2 ).

First, get rid of the complement. How to do so? Use a result from set theory:

De Morgan’s “Laws”: distributing complements swap unions to intersections
and vice versa, i.e. (A ∪ B){ = A{ ∩ B{; (A ∩ B){ = A{ ∪ B{. E.g., using an
example from wikipedia, the search query “NOT (cars OR trucks)” is the same
as “(NOT cars) AND (NOT trucks)”.

Then we have using De Morgan and the first property from previous question:

P(W {1 ∩W {2 ) = P((W1 ∪W2){) = 1− P(W1 ∪W2).

Finally, using the second property:

P(W1 ∪W2) = P(W1) + P(W2)− P(W1 ∩W2) = 6/10 + 7/10− 4/10 = 9/10.

Hence the answer is 1− 9/10 = 1/10.

2.12.3 Discrete computation

Tools: Chain rule follows directly from the definitions:

P(A)P(B|A) = P(A)
P(A ∩B)

P(A)
= P(A ∩B).

To establish the law of total probability (version 1), first show that {E ∩
B1, E ∩B2, . . . , . . . } is a partition of E. The result then follows from countable
additivity.

Bayes rule: For the HIV test, define the following events: H, the event that
HIV is present, and E the observation (a test turned positive). We know P(H) =
25% = 0.25, P(E|H{) = 1% and P(E{|H) = 2%. To help visualize this, you
may want to draw a decision tree where the first branching is done according to
H and H{, and the second branching, by further refining via intersections with
E and E{. We seek to compute P(H|E).
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Notice that H and H{ form a partition of Ω. Using this fact and the law of
total probability, we obtain what is called Bayes rule:

P(H|E) =
P(H ∩ E)

P(E)

=
P(H)P(E|H)

P(H)P(E|H) + P(H{)P(E|H{)

=
0.25 · (1− 0.02)

0.25 · (1− 0.02) + 0.75 · 0.01
≈ 97%

Now what happens if the prevalence ρ of the disease is very small? Gener-
alizing the equation above, we get:

Pρ(H|E) =
1

1 + 1−ρ
ρ

0.01
1−0.02

,

hence as ρ ↓ 0, we get Pρ(H|E)→ 0, which is kind of surprising.

Combinatorics problem:

Ω = {(C1, C2, C3) : {C1, C2, C3} partitions {1, 2, . . . , 9}, |C1| = 4, |C2| = 3, |C3| = 2}.

The definition of uniform assignment is then, for any S ⊂ Ω:

P(S) =
|S|
|Ω| .

Here we are interested in an even T which can be described as:

T = {(C1, C2, C3) : {C1, C2, C3} partitions {1, 2, . . . , 8}, |C1| = 3, |C2| = 3, |C3| = 2}.

A first solution is to compute |Ω| and |T |. To do so use a decision tree with in
the first level, events capturing the assignment of the first classroom:

E1
C = {ω ∈ Ω : ω1 = C},

then, at the next two levels, events capturing the assignment of the second and
third classroom:

EiC = {ω ∈ Ω : ωi = C}.
Using the fact that the number of subsets of size k from an inventory of size n
is
(
n
k

)
, you will find that Ω can be decomposed as a regular tree with branching

factors
(

9
4

)
,
(

5
3

)
, 1, and thus:

|Ω| = 9!

4!3!2!
.

Similarly for T ,

|T | = 8!

3!3!2!
,

thus P(T ) = 4/9.

21



A second solution:

Ω = {(a1, a2, . . . , a9) : ∪{ai} = {1, 2, . . . , 9}},

where ai is the assignment of student i, identifying {1, 2, 3, 4} as the seats for the
first classroom, {5, 6, 7}, for the second. Then use the events Ei = {ω : ω5 = i}.
We have |Ei| = |Ej | and the event of interest is E1 ∪ E2 ∪ E3 ∪ E4. Thus:

P(E1 ∪ E2 ∪ E3 ∪ E4) =
4|E1|
9|E1|

= 4/9.

2.13 Random variables

Informal definition:

• A random variable is often used to encode a measurement, for example,
in the previous train example, whether the train goes left or right at time
step 3.

• Random variables are used to model partial observability of the world.
In contrast to each outcome ω ∈ Ω, which contains all the information
possible within the model, a random variable can be defined to “forget”
information. For example, you may only known the position of the train
at time steps 1 and 6, and what happens in between is unknown.

• Another use of random variables is to express a quantity that is unknown,
but that we would like to have the probability of. A concept that I call a
“query.”

Pre-requisite for the formal definition: if f : S → T is some function,
we can lift function evaluation, which takes as input points and returns points
f(x) ∈ T for x ∈ S, into function evaluation taking as input a set and returning
a set, i.e. for A ⊂ S, f(A) = {f(x) : x ∈ A}.

Note that we abuse the notation and use the same symbol for lifted function
evaluation, but no confusion can arise because of the type of the input. We do
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the same for lifted function inverse: for B ⊂ T , f−1(B) = {x ∈ S : f(x) ∈ B}.
The lifted inverse is nice because it always exists: the set it returns can be
empty or have cardinality larger than one, but it is still a set.

We can now formally define random variables:

1. Let (Ω,F ,P) denote a probability space,

2. then a (real) random variable X is:

(a) a map, X : Ω→ R,3

(b) such that X−1(A) ∈ F for all A ∈ FB.

Why do we need condition 2b? Often, we will ask questions like “what states of
the worlds can yield an observation in A?” In set theory, the set of such states
(outcomes) is X−1(A). Now, we want to be able to compute the probability
of this set of outcomes, so we require that X−1(A) be an event (i.e. in the
σ-algebra).

Note: random variables are especially interesting when we define more than
one on the same sample space.

Synonym: “X is a measurable function.”

Notes:
3Technically, we add two points to the real line, +∞ and −∞, to ensure for example that

limits of say increasing random variables are guaranteed to be random variables even if the
sequence diverges for some outcomes ω.
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• Observations are not always real numbers, for example, they could be
colours, the nodes in a discrete graph, or even a graph. Let X denotes the
set of say all colours that could be potentially observed, X = {blue, red,
yellow}. We can modify our definition above to get colour-valued random
variables (terminology: “random colours”). This is done as follows:

– In the definition of real random variable, replace “R” by “X .”

– Since we need a collection of sets on X in 2b, let us assume we have
a (second) σ-algebra FX on X as well as on Ω.

– Therefore, we see that all we really need is a σ-algebra on the input
space Ω, and one on the output space σ-algebra. Notation: a random
colour is a (F → FX )-measurable function.

• Using this idea, we will later define random vectors (vector-valued ran-
dom variable), random graphs, random sets, random functions, and even
random probability measures!

• (Real) random variables and random vectors are special though, as they
will later allow us to define the notion of expectation (not possible with
colours, as we cannot for example “add colours”). More on this later!

Terminology: values in the set X are called realizations, and are often denoted
with the small-cap version of the random variable, e.g. a realization of X is
denoted x = X(ω). This distinction is useful for example to distinguish f(x),
which is just function evaluation, from f(X), which is the construction of a new
random variable obtained by composing f and X (composition is reviewed in
the next section).

Warning: make sure you follow the type conventions! For example, P(red) or
P(X) are not defined!4

2.14 Compositions of random variables

Recall: g ◦h means a new function that first applies h to the input, then plugs
in the intermediate quantity into g: g ◦ h(x) = g(h(x)).

Convention: use capital letters only for the random variables mapping ele-
ments from the sample space Ω → X . Use standard function notation (g, h,
etc) for subsequent transformations g : X → X ′ of the output of X. E.g.
g ◦X = g(X).

Exercise: show that the composition g(X) of a random variable X with a
measurable function g is a random variable.

Convention: from now on, we will implicitly assume all functions involved are
measurable.

4Some authors do give a meaning to the latter, but it is not what you think! We will see
this meaning, namely the expectation of X, later.
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2.15 The graph of a random variable

In the special case where Ω = R, we can plot the graph real random variables
X : Ω → R. While in practice Ω is usually much more complicated, looking at
simple examples where Ω = R is a powerful technique to get some intuition on
several results we will cover in the next few weeks. Note that measurability is
much weaker than continuity, so the the graph of random variables can be quite
pathological in general.

2.16 The probabilist’s event notation

It is tedious to write expressions like X−1({r ∈ R : 6 ≤ r}). Probabilists noticed
that the notation (6 ≤ X) was not defined, and decided to give it a new, precise
meaning: X−1({r ∈ R : 6 ≤ r}). Some other examples:

• (X ∈ A) := X−1(A),

• (X = x) := X−1({x}).

More generally:

(logical statement s containing a random variable X) := {ω ∈ Ω : s(X(ω)) is true}.
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2.17 Constant random variables

The simplest example of a random variable is a constant function, e.g. X(ω) =
42 for all ω or Y (ω) = 3.14 for all ω, denoted X = 42 and Y = 3.14 respectively.
These are boring but important building blocks. We will abuse notation and
denote the random variables such as X and Y here by just 42 and 3.14 respec-
tively. For example Z + 3 if a shorthand for the composition g(Z,W ), where
g(z, w) = z + w and W (ω) = 3.

2.18 Indicator random variables

Often we need random variable taking binary values (either zero or one). These
are called indicator random variables.

For any set A, define the indicator function or just indicator for short as
follows:

1A(ω) := 1[ω ∈ A] :=

{
1 if ω ∈ A
0 otherwise.

The indicator random variable is just an indicator on an event.
If A can be defined using the probabilist’s notation introduced in Sec-

tion 2.16, for example if A = (X = x), we will use the notation 1(X = x)
for 1A.

2.19 Modelling randomized algorithms as random vari-
ables

Recall: we mentioned randomized algorithms as one of the motivations for
learning Probability Theory. Randomized algorithms can be defined as algo-
rithms having access to the realization of one random variable. Since in practice
we need several random variables, randomized algorithms use pseudo-random
generators to turn one random number into a potentially very large list of ran-
dom variables. In this section we see how to model randomized algorithms and
pseudo-random generators using random variables.

Example of a simple randomized algorithm: which simulates 100 coin
flips and counts the number of times the coin comes heads. More precisely,
the algorithm takes as input a random seed r (an integer, but modelled in a
computer as being in a finite range of values, from 1 and say 232), and proceeds
as follows:

1. s← 0

2. For i = 1, 2, . . . , 100:

(a) Extract a pseudo-random coin flip from the least significant binary
digit of r:

xi = r mod 2.

In other words, xi is equal to one if and only if r is an odd number,
otherwise it is equal to zero.
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(b) increment the sum counter, s← s+ xi

(c) Get a new pseudo-random integer by “flipping” an artificial wheel
of fortune (wheel because we do modular arithmetic modulo m, the
number of slots in the wheel), first nudging it by a multiplicative
amount a, then by a constant amount c:

r ← (ar + c) mod m.

3. Return the sum s

Note: Here, m, a and c are fixed constants. For example, the famous Numerical
Recipes book [4] recommends m = 232, a = 1664525 and c = 1013904223.

Illustration of how the flipping works: from wikipedia, created by user
Cmglee, distributed under CC BY-SA 3.0

Model for the algorithm? Take Ω to be the set of integers 1, . . . , 232. A seed
corresponds to an outcome ω ∈ Ω. Given a seed, everything is deterministic
in the algorithm. In particular, we can think about the value x1 as the output
of a deterministic function taking a seed as input. Let us call this function,
X1 : Ω → {0, 1}, and as our choice of letter suggest, it is indeed a random
variable. Similarly, we can define random variables X2, X3, . . . , X100, each one
being a deterministic function (of increasing complexity) of the input random
seed ω. E.g.:

X2(ω) = ((aω + c) mod m) mod 2.

Practical importance. This model illustrates a key design pattern useful
when building any randomized algorithm:

• Make the random seed an explicit input of the program.

• Given this input, all computations should be deterministic.

This is useful because you can re-run exactly the same program, i.e. reproduce
your results. This comes handy if there is a bug you need to fix and you want to
replay the crash to analyze in detail what happened. It is also handy if someone
wants to replicate somebody else’s published work.
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Better pseudo-random generators: the recipe used here (r ← (ar + c)
mod m) is called a linear congruential generator. This class of generators have
been largely superseded by other methods, a good choice for example is the
Mersenne Twister pseudo-random generator [3].

2.20 Distribution of a random variable

Idea: you give me a probability space (Ω,F ,P) and a random variable X : Ω→
X , and I create a new probability P′. This new probability is defined on the
values X that the random variable takes.

Definition: for any B ∈ FX , set P′(B) := P(X ∈ B).

Notation: we denote this new probability P′ by PX , and call it the distribution
of X.

Exercise: suppose X is an indicator variable on an event A, with p = P(A).
Find the distribution of X. The answer is called “Bernoulli with parameter p”,
denoted PX = Bern(p). The shorthand X ∼ Bern(p) is also widely used in
statistics.

Possible confusion: “probability distribution” is a synonym of “probability
measure.” Here we defined the “distribution of X,” which is a specific way of
constructing a probability measure.

2.21 Cumulative distribution function

Idea: a probability is a function taking inputs from a tricky space (F). This
makes it hard to plot naively. It would be nice to be able to summarize it with
a function taking inputs in a more familiar space, R.

Note: the following definition only works for X = R.

Definition: the Cumulative Distribution Function (CDF) of a random variable
is given for all x ∈ R by:

FX(x) := P(X ≤ x).
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Exercise: this is the same as PX((−∞, x]).

2.22 Equality in distribution

Example: Suppose the only probability distribution available in some pro-
gramming language is the uniform distribution on [0, 1). How can we transform
it into a coin toss?

An answer: X1 = 1[0,1/2).

Question: is this answer unique? No! For example, X2 = 1[0,1/4) + 1[1/2,3/4)

will also do!

Note:

1. X1 6= X2 (the two functions are not equal, for example X1(1/4) = 1 6=
0 = X2(1/4)

2. but: PX1 = PX2 .

Definition: We call 2 equality in distribution, denoted X1
d
= X2.
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2.23 Densities (first definition)

A random variable is said to have density f ≥ 0 if:

FX(x) =

∫ x

−∞
f(z) dz.

Note that we will cover a more general definition of density later in this course.

Example: a density for the exponential distribution is given by

f(x) = 1[x ≥ 0]λe−xλ.

Exercise: find an example where there is a x such that a density has f(x) > 1.

2.24 Limit properties of probability measures

Lemma: monotonicity. If B ⊂ A are events, then P(B) ≤ P(A).

Proof idea: Use the “donut decomposition,” A = Bt(A\B), where we use the
symbol t to denote a union while asserting that the two sets we are taking the
union over are disjoint.

Notation: to express the following limit properties, we make use of the follow-
ing overloaded notations,

• Monotone real numbers limits:

– If r1 ≤ r2 ≤ . . . , and lim ri = r, we write ri ↑ r,
– If r1 ≥ r2 ≥ . . . , and lim ri = r, we write ri ↓ r.

• Monotone set limits:

– If A1 ⊂ A2 ⊂ · · · , and ∪Ai = A, we write Ai ↑ A,

– If A1 ⊃ A2 ⊃ · · · , and ∩Ai = A, we write Ai ↓ A.

Monotonicity of probability measures:

• Ai ↑ A =⇒ P(Ai) ↑ P(A),

• Ai ↓ A =⇒ P(Ai) ↓ P(A).
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Proof idea for the increasing case: generalize the donut decomposition and
write

A = A1t(A2\A1)t(A3\A2)t · · · ,
then use countable additivity to get:

P(A) = P(A1) + lim
n→∞

n∑

i=1

P(Ai+1\Ai),

using our previous monotonicity property, and telescoping the sum inside the
limit, we get:

P(A) = P(A1) + lim
n→∞

[P(An)− P(A1)] = lim
n→∞

P(An).

2.25 Limit properties of CDFs

Since the CDF is derived from a probability measure, it shares similar continu-
ity property. But being a function from the real to [0, 1], these monotonicity
properties coincide with familiar notions from elementary real analysis.

Notation: Throughout this section, F denotes the CDF of some random vari-
able X, F := FX .

Monotonicity of CDFs: x ≤ y =⇒ F (x) ≤ F (y) (F is monotone increasing).

Proof: x ≤ y =⇒ (X ≤ x) ⊂ (X ≤ y), so we can use monotonicity of the
probability measure P to conclude the proof.

Semi-continuity property:

1. xi ↑ x =⇒ the limit limF (xi) exists,

2. xi ↓ x =⇒ F (xi) ↓ F (x).

Proof idea for the decreasing case: we have (X ≤ xi) ⊃ (X ≤ xi+1), so by
monotonicity of P, we get

P(X ≤ xi) ↓ P(∩Ai),

where ∩Ai = (X ≤ x), therefore P(∩Ai) = F (x).
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Reason: for the asymmetry between semi-continuity property 1 and 2. First,
do the proof for the increasing case as an exercise. You will see that in the
increasing case, the limit of the probabilities is given by P(X < x), which is not
guaranteed in general to be equal to F (x) (because of a potential point mass as
x).

Terminology: functions that satisfy the semi-continuity properties (1 and 2)
are called cadlag, coming from “continue à droite, limite à gauche” (French for
“continuous to the right, limits to the left”).

Proposition: let F : R→ [0, 1] be some function. The following are equivalent:

1. The function F is non-decreasing, cadlag and satisfies the boundary con-
ditions limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1 (denoted F (−∞) = 0
and F (+∞) = 1),

2. There is some random variable X with FX = F .

Proof idea: we proved the main steps of 1⇐=2. The main idea for the other
direction is to use the following construction:

X(ω) := sup{x : F (x) < ω}.

Note: this is a first instance of an important idea in this course, namely to
identify the distributions of random variables with simpler types of functions.

2.26 Building random variables with a prescribed CDF

Example/exercise: simulate an exponential random variable (defined below)
from a uniform distribution on [0, 1), where an exponential random variable is
defined as follows:

Definition: we say X is a standard exponential random variable, a statement
denoted X ∼ Exp(λ), if

FX(x) = 1[x ≥ 0](1− e−xλ).
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Hint: use the construction from the “proof idea” of Section 2.25, which is called
the “inverse CDF.”

2.27 σ-algebra, revisited

Often it is useful to put some restrictions on what a random variable can depend
on. For example, a model may have two random variables, Y which is observed,
and X which is unknown. A statistical estimator δ should only depend on Y ,
not X.

One way to do this is to force δ to be a composition based on X only:
δ = f(X) for some f .

There is another equivalent way to do that based on the σ-algebra generated
by a random variable, defined as:

σ(X) = {(X ∈ B) : B ∈ FB},

(Exercise: this is a σ-algebra). In an optional question in the assignment, you
will show: σ(δ) ⊂ σ(X) if and only if δ = f(X) for some measurable X.

We use the shorthand δ ∈ σ(X) for σ(δ) ⊂ σ(X).

Exercise: To get a feeling for what this means, consider X = (X1, X2) as the
value on two dice, and Y as the sum. We want an estimator for X1. Consider
δ1 = 61[Y > 6] + 1[Y ≤ 6] and δ2 = X1. Check δ1 ∈ σ(Y ) but δ2 /∈ σ(Y ).

Answer:

Ω = {(i, j) : i, j ∈ {1, 2, . . . , 6}
σ(X) = 2Ω

σ(Y ) = σ({{(1, 1)}, {(2, 1), (1, 2)}, {(1, 3), (2, 2), (3, 1)}, . . . , {(6, 6)}})
= σ({{(i, j) : i+ j = k} : k = 2, 3, . . . , 12})

σ(δ1) = σ({{(i, j) : i+ j < 6}, {(i, j) : i+ j ≥ 6}}).

2.28 Exercise set 2

1. Let X be a random variable with a uniform distribution on [0, 2). Draw
a possible graph of X, a density for X, and the CDF of X.

2. Solve the exercise in Section 2.8.

3. Solve the exercise in Section 2.14.
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4. Solve the exercise in Section 2.23.

5. Solve the exercise in Section 2.26.

6. If X1 ∼ F (a notation that means that P(X1 ≤ x) = F (x)), and X1 ≥ 0,
find the CDF of X2 := X2

1 .

2.29 Solutions for exercise set 2

1. The three pictures should be as follows:

(a) Graph of X: The x-axis should be a bounded segment labelled Ω.
The y-axis should be the full real line. There are several choices for
the function. For example the line y = x or y = 1−x on the interval
[0, 1) are acceptable. Other choices are possible.

(b) CDF: The x-axis should be the full real line. The y axis should be
the interval [0, 1]. The function should be zero in (−∞, 0], then affine
in [0, 1], then one in [1,+∞).

(c) Density: the x axis should be the full real line. The y axis should be
the positive real line. The function should be the indicator on the
set [0, 1).

2. We need to check the three conditions given in the definition of σ-algebra:

(a) Since F is a σ-algebra, Ω ∈ F and since F ′ is a σ-algebra, Ω ∈ F ′,
therefore Ω ∈ F ∩ F ′.

(b) We need to show that if A1, A2, . . . are all in F ∩ F ′, then ∩Ai ∈
F ∩ F ′. By the definition of intersection, we have that A1, A2, . . .
are all in F . Since F is a σ-algebra, it follows that ∩Ai ∈ F . By the
same reasoning, ∩Ai ∈ F ′. Therefore, ∩Ai ∈ F ∩ F ′.

(c) We need to show that if A ∈ F ∩ F ′, then A{ ∈ F ∩ F ′. By the
definition of intersection, we have that A ∈ F . Since F is a σ-
algebra, it follows that A{ ∈ F . By the same reasoning, A{ ∈ F ′.
Therefore, A{ ∈ F ∩ F ′.

3. We have that X : Ω → X and g : X → X ′ are random variables. Let us
denote by FΩ,FX and FX ′ the σ-algebra on Ω, X and X ′ respectively.
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Let A ∈ FX ′ . We have to show that (g ◦X)−1(A) ∈ FΩ. First, note that
(g ◦ X)−1(A) = X−1(g−1(A)). Since g is a random variable, g−1(A) ∈
FX . Next, since X is a random variables, g−1(A) ∈ FX implies that
X−1(g−1(A)) ∈ FΩ.

4. Examples are common. The uniform distribution on [0, 1/2) has height 2.

5. As in Section 2.25, we pick X(ω) := sup{x : F (x) < ω} (note that in
this special case were Ω = [0, 1), writing “F (x) < ω” is well defined—for
general Ω is would not). This construction has some nice properties (draw
a picture of a CDF having flat regions as well as discontinuities to convince
yourself, as these are the interesting “corner cases”):

(a) X is monotone increasing,

(b) X ◦ F (x) ≤ x,

(c) F ◦X(ω) ≥ ω.

We first use properties 5b and 5c to prove the following set equality:

(X ≤ x) = {ω ∈ Ω : ω ≤ F (x)}.

We show that the LHS includes the RHS and vice versa:

• {ω ∈ Ω : ω ≤ F (x)} ⊆ (X ≤ x):

ω ≤ F (x) =⇒ X(ω) ≤ X ◦ F (x) (from 5a)

=⇒ X(ω) ≤ x (from 5b).

• (X ≤ x) ⊆ {ω ∈ Ω : ω ≤ F (x)}:

X(ω) ≤ x =⇒ F ◦X(ω) ≤ F (x) (monotonicity of CDFs)

=⇒ ω ≤ F (x) (from 5c).

Finally, it follows that:

CDF of X := P(X ≤ x)

= P{ω ∈ Ω : ω ≤ F (x)}
= F (x) (by the definition of uniform probability).

Here in this special case: X(ω) = −λ−1 log(1− ω).

6. We have:

FX2
(x) := P(X2 ≤ x)

= P(X2
1 ≤ x)

= P(−√x ≤ X1 ≤
√
x)

= P(X1 ≤
√
x) (Non-negativity assumption)

= F (
√
x).
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3 Integration and expectation

3.1 Overview

How to define the mean? At an undergraduate level, this is usually done as
follows for continuous random variables:

E[X] :=

∫ +∞

−∞
xf(x) dx,

where f is the density of X. There are two limitations with this definition:

1. it is not very intuitive (why multiply the density with an x?),

2. we need a separate definition for discrete random variable (and what about
cases where we have both continuous and discrete parts?).

Better definition: the expectation is the area under the graph of X!

Note: we will need to generalize the notion of “area,” to cover cases where
Ω 6= R.

Terminology: the definition of integral we will cover today is called the Lebesgue
integral (not to be confused with the Lebesgue measure). It is the default defi-
nition in measure theory, and in general in probability theory.

Note: we will get the undergraduate definition of expectation of a continuous
random variable as a special case arising when X has a density. However, the
Lebesgue expectation does not need to assume existence of a density.

3.2 Notation, inputs and outputs

The integral you know from calculus (called the Riemann integral) takes one
input (a function f : R → R) and return one real number. In contrast, the
Lebesgue integral needs two inputs:

1. a probability measure P : F → [0, 1], where F is a σ-algebra on a sample
space Ω,

2. a random variable X : Ω→ R.

Notations from real analysis: you will see different notations depending
on the author/community to encode this operator on two inputs, for example
(these are all synonyms):

•
∫
X dP

•
∫
X(ω)P( dω)

• PX
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• (P, µ).

In probability theory and Bayesian statistics, there is often a “global” prob-
ability P. When this is the case:

Notation in probability theory/Bayesian statistics:

E[X] :=

∫
X dP.

Frequentist statistics: in this branch of statistics, there is often a collection
of probabilities indexed by a parameter θ, i.e. {Pθ : θ ∈ Θ}. When this is the
case:

Eθ[X] :=

∫
X dPθ.

3.3 Generalizing the notion of the “area” of a “rectangle”

Let us start by defining the notion of area under the curve for something simple:
an indicator function multiplied by a constant, Z = a1A. To make it easier to
visualize, let us make this assumption from now on (we will relax it at some
point later):

Assumption: assume that all random variables take values ≥ 0.
Now if A is an interval, the graph is just a rectangle! The height is a. What

should be the base? Since we are given a probability, let us use it to measure
the base, giving P(A) for the base. This suggests:

Definition: the Lebesgue integral for indicator function is given by

E[Z] =

∫
Z dP := aP(A).

Note: A could actually be complicated (e.g., the Cantor set), but this definition
still holds as long as A ∈ F .

Note: there will be cases (especially when we talk about limits) where the base
has measure zero, but the height is infinite. We would like our definition to
return zero in these cases (since the function blows up on a negligeable set). For
this reason, we define 0×∞ = 0.
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Exercise: compute the expectation of a constant.

Important special case: following from the definition directly, the expecta-
tion of an indicator on an event A is just the probability of A, i.e.

E[1A] = P(A).

In light of the answer of the exercise in Section 2.20, we only need the distribu-
tion of the indicator random variable to compute its expectation. As we will see
soon, this is always true, i.e. we only need the distribution of a random vari-
able in order to compute its expectation. In other words, all random variables
sharing the same distribution have the same expectation (and many distinct
random variables do share the same distribution, see Section 2.22).

Exercise: based on the above special case, can you guess the general formula
for computing the expectation of a random variable given only the distribution
of the random variable, not the random variable itself?

3.4 Area under the graph of “simple functions”

Simple function: a simple function is a random variable of the form

Y =

N∑

i=1

ai1Ai ,

where the Ai are assumed to be disjoint.

Definition: motivated by linearity we extend the definition of the Lebesgue
integral to simple functions:

E[Y ] =

∫
Y dP :=

N∑

i=1

aiP(Ai).

Note: our previous definition for indicators is just a special case of this, so we
are not contradicting ourselves.

Property: the above definition is motivated by linearity, and important prop-
erty we want expectations to enjoy:

E[Y + Y ′] = E[Y ] + E[Y ′].

Exercise: prove this property holds for the above definition of integral of simple
functions.

3.5 Area under graph of non-negative random variables

Now, how to define the area under the graph of an arbitrary non-negative ran-
dom variable? We make use of our previous definition for simple functions:
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Definition: let X ≥ 0 (meaning X(ω) ≥ 0 for all ω ∈ Ω),

E[X] =

∫
X dP := sup

{∫
Y dP : Y is simple and 0 ≤ Y ≤ X

}
.

Exercises: show E[X] ≥ 0 and monotonicity: X ≤ Y =⇒ E[X] ≤ E[Y ].

3.6 Algorithmic construction

To avoid having to deal with an uncountable collection we follow a two steps
strategy:

1. express the random variable to integrate X as the limit of a sequence of
increasing and simple random variables. This is done using:
Proposition: (approximation by simple functions) For any random vari-

able X ≥ 0, there exists a sequence of random variables 0 ≤ Y1 ≤ Y2 ≤ . . .
such that:

(a) each Yn is simple, and

(b) for all ω ∈ Ω, limn→∞ Yn(ω) = X(ω) (this property is known as
pointwise convergence, denoted Yn → X, or in this case since the

r.v. are additionally increasing, Yn ↑ X).

2. We will use the monotone convergence theorem (MCT) to exchange

the limit and integral: if 0 ≤ Y1 ≤ Y2 ≤ . . . are non-negative random vari-
ables (not necessarily simple, although they are in this specific context),
then ∫

( lim
n→∞

Yn) dP
︸ ︷︷ ︸

hard!

= lim
n→∞

∫
Yn dP.

︸ ︷︷ ︸
easier!

Proof idea of the proposition on approximation by simple functions:

1. Recall that in the case of a Riemann integral, we do something similar,
i.e. breaking the x-axis of the graph of X into a grid and making this grid
finer and finer.

2. In general, this cannot work here, because the x-axis, Ω, is not necessarily
R.
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3. Idea: break the y-axis instead! Then use the inverse of the random variable
X−1, to get the Ai’s required in the definition of simple functions.

3.7 Proving tool: simple function approximation + MCT

The previous section sets the stage for a powerful proving strategy:

1. Suppose you want to prove an identity involving expectations.
Example: linearity for non-negative random variables X,X ′ ≥ 0,

E[X +X ′] = E[X] + E[X ′].

2. First prove that the identity holds for simple random variables
Example: that was an earlier exercise in the case of linearity.

3. Then, use the approximation theorem to get simple Yn ↑ X and Y ′n ↑ X ′.

4. Use MCT to conclude.
Example:

E[X +X ′] = E[lim(Yn + Y ′n)]

= limE[Yn + Y ′n] (we can use MCT here since 0 ≤ Yn + Y ′n ↑ X +X ′)

= lim(E[Yn] + E[Y ′n]) (easy to prove since Yn, Y
′
n are simple)

= limE[Yn] + limE[Y ′n] (properties of limits of real sequences)

= E[X] + E[X ′] (MCT again, twice).

Easy extension: E is a linear operator: E[aX + b] = aE[X] + b.

Note: this proving strategy is incredibly useful in practice, in part thanks to
how simple the statement of the monotone convergence theorem is. Similar
statements with Riemann integrals are not as simple. Just this proving method
arguably justifies the effort of learning to be a user of measure theory.

3.8 Integrals of random variables taking negative values

For a general random variable X:
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1. Write X = X+ + X−, where X+ and X− are the negative and positive
parts respectively. For example, X− = 1[X < 0]X.

2. Note: −X− is non-negative.

3. Compute I+ := E[X+] and I− := E[−X−].

4. If both I+ = I− = ∞, return an error (“the Lebesgue integral is not
defined”),

5. else define E[X] := I+ − I−.

Terminology:

• If at least one of I+ and I− is finite, we say the Lebesgue integral of X is
defined,

• when both I+ and I− are finite, we say X is integrable, denoted X ∈ L1.

Exercise: find a random variable X /∈ L1 such that EX exists. Find a random
variable Y where EY is not defined.

3.9 Integrals with respect to a measure

So far, we have assumed that the Lebesgue integral was computed with respect
to probability measure P : F → [0, 1].

Exercise: go over the above argument again with a measure µ : F → [0,∞)
instead of a probability measure P and check that everything goes through.

Notes:

1. The previous definitions are again special case of the new one, so we are
not contradicting ourselves.

2. The last definition is always well defined, but could be +∞.

3. However, the last definition seems hard to compute algorithmically be-
cause the sup is over an uncountable collection.
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3.10 More on exchanging limits and integrals

The monotone convergence theorem (Section 3.7) says that we can exchange
integrals and limits when the sequence of function is increasing (X1 ≤ X2 ≤
. . . ). Is this necessary?

Example showing that it is: consider Xn = n1(0,1/n].

Exercise: compute limXn and EXn. Conclude that limits and integrals cannot
be exchanged in this case.

However: there are non-monotone cases where you can exchange limits and
integrals. For example, when they have an integrable envelope, defined as a

random variable such that:

1. |Xi| ≤ Y ,

2. E|Y | <∞.

Theorem: (Dominated Convergence Theorem, DCT) if X1, X2, . . . have an
integrable envelope, and limXi exists, then limEXi = E limXi.

3.11 Measure zero sets and almost sure statements

As a direct consequence of the axioms of probability, an empty event has prob-
ability zero: P(∅) = 0. The converse is not true though. For example under the
uniform probability an event that contains only a single point still has probabil-
ity zero P({0.2}) = 0. In fact, under the uniform probability, events containing
countably many points have probability zero.5

For this reason, it is often possible to relax a statement like “|Xi| ≤ Y ” in the
previous statement to a statement like “|Xi| ≤ Y except for a set of probability
zero.” This second statement is formalized as P(|Xi| ≤ Y for all i) = 1, and
denoted “|Xi| ≤ Y a.s.”

5Even more surprising, there are set containing uncountably many points that still have
probability zero. Read about the Cantor set if you are curious.
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3.12 Convexity and integration

Review: convexity. A function g : R → R is convex if for all x1, x2 ∈ R and
λ ∈ [0, 1],

λg(x1) + (1− λ)g(x2) ≥ g(λx1 + (1− λ)x2).

Exercise: convince yourself that ϕ(EX) 6= E[ϕ(X)] in general (with some
exceptions to this, e.g. when ϕ is linear). This is unfortunate because ϕ(EX)
is often easier to compute than E(ϕ(X)).

However: if ϕ is convex, we can at least get the following bound.

Jensen’s inequality: if ϕ is convex, then ϕ(EX) ≤ E[ϕ(X)].

Proof: to prove Jensen’s inequality, we will use the following result from convex
analysis:

Lemma: for all convex function ϕ, there is a sequence of linear functions
Ln(x) = anx+ bn such that

ϕ(x) = sup
n
Ln(x).

Exercise: provide an example showing that the above lemma does not hold in
the case for non-convex functions.
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Back to Jensen’s: using our lemma, we have ϕ(X) ≥ Ln(X) by construction.
“Taking expectations on both sides” (i.e. using monotonicity of expectations):

Eϕ(X) ≥ E[Ln(X)] (1)

= Ln(EX) since Ln is linear. (2)

Finally, taking sup over n on both sides:

E[ϕ(X)] ≥ supLn(EX) (3)

= ϕ(EX). (4)

Example: since ϕ(x) = x2 is convex, Jensen’s gives us the following inequality:
(EX)2 ≤ E[X2].

Application: the variance is defined as Var[X] := E[(X − µ)2], where µ =
EX. By computing the square and linearity, this last equation is equal to
E[X2] − (EX)2. Therefore, Jensen’s inequality gives us another proof that the
variance is non-negative.

3.13 Markov’s inequality and its friends

Motivation: let X be the water level near a dam of height of 7.5m. What is
the probability of a flood? All you know is that the mean water level is 5m.

Proposition (Markov’s inequality): if X ≥ 0, then for all α ≥ 0,

P(X ≥ α) ≤ EX
α
.

Exercise: solve the dam problem using Markov’s inequality.

Proof: Convince yourself by looking at the graph of X that the following
identities hold:

X ≥ 1[X ≥ α]X (follows from X ≥ 0)

≥ α1[X ≥ α].
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Taking expectations on both sides:

EX ≥ αE[1[X ≥ α]]

= αP(X ≥ α).

Note: non-negativity is necessary. Consider for example a random variable
with the discrete uniform distribution on {−1,+1}.
Note: the bound will sometimes be greater than one. On the other hand,
there are random variables X and α such that the bound it tight, i.e. where
P(X ≥ α) = EX

α . For example X such that P(X = 2) = 1/2, P(X = 0) = 1/2,
α = 2.

Corollary 1: for all random variable X, p ≥ 0,

P(|X| ≥ α) ≤ E|X|p
αp

.

Proof: since the power function is strictly increasing, (|X| ≥ α) = (|X|p ≥ αp).
Why? Manipulations of this kind are explained in gory details in the next few
section, see specifically 3.14 for this step. Therefore P(|X| ≥ α) = P(|X|p ≥ αp).
Since |X|p ≥ 0, we can apply Markov’s inequality on this last probability.

Corollary 2 (Chebyshev’s inequality): for any random variable Y with
µ := EY , |µ| <∞ (non-negativity not needed anymore!),

P(|Y − µ| ≥ α) ≤ VarY

α2
.

Proof: define X := |Y − µ|, and apply the preceding lemma with p = 2.

Corollary 3 (Chernoff bound): if X is any random variable, then

P(X ≥ α) ≤ inf
t

E[etX ]

etα
.

Proof: For any fixed t, the function f(x) = etx is strictly increasing, so we can
use the same reasoning as Chebyshev’s. Since the inequality if true for all t, the
left-hand side is bounded by the infimum over t.

Note: the quantity E[etX ], viewed as a function of t, is called the moment
generating function. We will meet this object again.

We will also revisit Chernoff’s bound soon once we have introduced inde-
pendence of random variables.

3.14 Rewriting events involving equalities

This section and the next two provide additional details as well as generalize
one of the key step used in the proof of Markov’s, Chebyshev’s, and Chernoff’s
inequalities.
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Some background: when dealing with equations involving non-random vari-
ables, a common heuristic is to “add on both sides,” e.g. x + 5 = 2 becoming
x = −3. Let us call these two logical statements s1 and s2. Since s1(X(ω)) is
true if and only if s2(X(ω)) is true, it follows that the two events, (X + 5 = 2)
and (X = −3), are equal. In particular, P(X + 5 = 2) = P(X = −3).

More generally, if f is one-to-one, then (X = Y ) = (f(X) = f(Y )). For
example (−X = −5) = (X = 5).

In fact, we only need f to be one-to-one on the set of possible values attained
by X and Y (i.e. the union of their ranges). For example, if X is non-negative
(denoted X ≥ 0), then (X = 2) = (X2 = 4). Indeed, even though f(x) = x2 is
not one-to-one, it is when restricted to the positive real line.

Many steps in probability arguments follow that kind of logic-based reason-
ing.

3.15 Rewriting events involving inequalities

Be a bit more careful when dealing with inequalities, we need a more specialized
form a one-to-one mapping: if f is strictly increasing, then (X ≤ Y ) = (f(X) ≤
f(Y )). For example (X ≤ 0) = (exp(X) ≤ 1).

This is indeed necessary as (−X ≤ −5) = (X ≥ 5) 6= (X ≤ 5).

3.16 Bounding events

When we cannot rewrite the event using the methods described in Sections 3.14
and 3.15, we can settle on bounding the event instead. Suppose event A1 is
defined using statement s1(Y ) (e.g. A1 = (Y = 2)) and similarly, event A2,
using s2(Y ) (e.g. A2 = (Y 2 = 4). Suppose s1 =⇒ s2. Then we have A1 ⊆ A2.
In our example, y = 2 =⇒ y2 = 4, but the converse is not true if the random
variable Y can take negative values, as y = −2 also yields y2 = 4. So all we get
for general random variables is that (Y = 2) ⊂ (Y 2 = 4).

Now we have seen in Section 2.24 that A1 ⊆ A2 implies P(A1) ≤ P(A2).

4 Independence

4.1 More than one random variables (random vectors)

Motivation: A man and a woman try to meet at a certain place between
1:00pm and 2:00pm. Suppose each person pick an arrival time between 1:00pm
and 2:00pm uniformly at random (denote X and Y respectively), and waits for
the other at most 10 minutes. What is the probability that they meet?

Practical question: How to compute a probability of the form P((X,Y ) ∈ S)?

Theoretical question: Given two random variables on the same space, X :
Ω→ R and Y : Ω→ R, what is (X,Y ) exactly?
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Definition: A random vector is a random variable that takes values in X = R2:

(X,Y ) : Ω→ R2.

Recall: The definition of random variable requires a σ-algebra on X . What
should we pick? We know that we will at the very least need to compute the
probability of X falling in a rectangle:

Definition: a rectangle is a set of the form:

R = A×B for some A ∈ FB, B ∈ FB (5)

= {(x, y) : x ∈ A, y ∈ B}. (6)

Unfortunately: S = {R : R is a rectangle} is not a σ-algebra (why?). Also, it
does not contain the set that we would need to answer the “practical question”
that kicked off this section.

Solution: generate a σ-algebra from S. The result of this is called the product
σ-algebra:

F⊗2 := F ⊗ F := σ(S).

Exercise: show that the set S in the “practical question” is in F ⊗ F .

4.2 Distribution, CDF and density of a random vector

These definitions follow directly from the univariate case:
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Definition: the joint distribution of a random vector (X,Y ), denoted PX,Y :
F ⊗ F → [0, 1], is defined by:

PX,Y (S) := P((X,Y ) ∈ S).

Definition: the joint CDF of a random vector (X,Y ), denoted FX,Y : R2 →
[0, 1], is defined by:

FX,Y (x, y) := PX,Y ((−∞, x]× (−∞, y]).

Note: This last definition seems slightly arbitrary. Why pick this particular
class of sets S (“quarter-planes”)? As we will see in the next section, this is
because this class characterizes the joint distribution. In other words, given a
joint CDF, you can in principle obtain the probability of X falling in any set S.

Definition: a function f : R2 → [0,∞) is called a joint density of the random
vector (X,Y ) if:

F(X,Y )(x, y) =

∫ x

−∞

∫ y

−∞
f(x, y) dx dy.

Note: these definitions can be generalized to more than two dimensions.

4.3 Determining classes

In this section, we explain the tool used to prove the characterization statement
of the previous section.

Tool: π-λ theorem.

1. Let π denote a collection of sets satisfying the following condition (called
a π-system condition):

(a) A,B ∈ π =⇒ A ∩B ∈ π.

2. Let λ denote a collection of sets satisfying the following conditions (called
a λ-system condition):

(a) Ω ∈ λ,

(b) A,B ∈ λ,A ⊆ B =⇒ B\A ∈ λ,

(c) Ai ↑ A,Ai ∈ λ =⇒ A ∈ λ.

3. Then, the following holds: π ⊂ λ =⇒ σ(π) ⊂ λ.

Proposition: Supposet P1 and P2 are probability measures on F = σ(S),
where S is closed under finite intersection. Then the following are equivalent:

1. P1(A) = P2(A) for all A ∈ F ,
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2. P1(A) = P2(A) for all A ∈ S.

Exercise: prove this using the π-λ theorem. Hint: let λ = {A ∈ F : P1(A) =
P2(A)}.
Corollary: FX,Y determines PX,Y .

Proof: (−∞, x] ∩ (−∞, y] = (−∞,min{x, y}].

Corollary: if (X,Y ) has joint density f , then

P((X,Y ) ∈ S) =

∫

S

f(x, y) dxdy.

4.4 Independence of random variables

Definition: the random variables X1, X2, . . . , Xn : Ω → R are independent if,
for all Ai ∈ FB,

P(X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An) =

n∏

i=1

P(Xi ∈ Ai).

Equivalent notation:

PX1,X2,...,Xn(A1 ×A2 × · · · ×An) =

n∏

i=1

PX1
(Ai).

Exercise: using π−λ show that the above statement can be checked by showing
that the CDF factorizes as

FX1,X2,...,Xn =

n∏

i=1

FXi .

Note: similarly to the above exercise, if the random variables have a joint
density fX1,X2,...,Xn , independence can be checked by factorizing the density
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into marginal densities fXi of each individual random variable:

fX1,X2,...,Xn =

n∏

i=1

fXi .

Definition: we say the random variables X1, X2, . . . , Xn are pairwise indepen-
dent if each pair is independent.

Exercise: find 3 random variables such that these random variables are pair-
wise independent but not independent. Hint: this can be done using indicator
random variables.

4.5 Chernoff’s bound, continued

We encountered the moment generating function f(t) = E[etX ] when talking
about Chernoff’s bound. When X is a sum of independent random variables,
X = X1 +X2 + · · ·+Xn, we get this nice formula:

f(t) =

n∏

i=1

fi(t),

where fi(t) = E[etXi ]. Informally, adding random variables multiplies their
moment generating functions.

Since the moment generating function for individual variables are often easy
to compute, this gives a powerful way to evaluate the right hand side of Cher-
noff’s bound

Example: Chernoff-Hoeffding theorem if the Xi are independent and each
have a Bernoulli(p) distribution (terminology: “are iid Bernoulli”), and ε > 0:

P
(

1

n

∑
Xi ≥ p+ ε

)
≤
((

p

p+ ε

)p+ε(
1− p

1− p− ε

)1−p−ε
)n

P
(

1

n

∑
Xi ≤ p− ε

)
≤
((

p

p− ε

)p−ε(
1− p

1− p+ ε

)1−p+ε
)n

Proof: compute the moment generating function of a Bernoulli. Then use
calculus to minimize over t. Then plug-in the minimum. Use the variable
Yi = 1−Xi to establish the other side of the bound.

Other versions: see the wikipedia page for many more bounds derived from
this.

4.6 Exercise set 3

1. Exercise in Section 3.4 about linearity in the case of simple functions.
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2. Solve the two exercises in Section 3.12.

3. Motivating exercise in Section 3.13.

4. Exercise in Section 4.3.

4.7 Solutions for exercise set 3

1. Let Y =
∑N
i=1 ai1Ai and Y ′ =

∑M
j=1 bj1Bj for {Ai}Ni=1, {Bj}Mj=1 are mea-

surable disjoint collections. Notice that since {Ai}Ni=1 and {Bj}Mj=1 are
disjoint, we have

1Ai =
M∑

j=1

1Ai∩Bj , 1Bj =

N∑

i=1

1Ai∩Bj .

Therefore, Y + Y ′ can be written as

Y + Y ′ =

N∑

i=1

ai1Ai +

M∑

j=1

bj1Bj

=

N∑

i=1

ai

M∑

j=1

1Ai∩Bj +

M∑

j=1

bj

N∑

i=1

1Ai∩Bj

=

N∑

i=1

M∑

j=1

(ai + bj)1Ai∩Bj .

Since Ai ∩Bj are disjoint, we have Y +Y ′ is a simple function and by the
definition of the expectation,

E[Y + Y ′] =

N∑

i=1

M∑

j=1

(ai + bj)P(Ai ∩Bj)

=

N∑

i=1

ai

M∑

j=1

P(Ai ∩Bj) +

M∑

j=1

bj

N∑

i=1

P(Ai ∩Bj)

=

N∑

i=1

aiP(Ai) +

M∑

j=1

bjP(Bj)

= E[Y ] + E[Y ′].

2. (a) Let Ω = [0, 1] with P be the Lebesgue measure and X : Ω → R be
the identity. If ϕ : R→ R be ϕ(x) = x2. Then,

E(X) =

∫

[0,1]

xP(dx) =

∫ 1

0

xdx =
1

2
,
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and similarly,

E(X2) =

∫

[0,1]

x2P(dx) =

∫ 1

0

x2dx =
1

3
.

Therefore ϕ(E[X]) = 1/4 which does not equal E[ϕ(X)] = 1/3.

(b) Let ϕ = 1{0}. Suppose that there is a sequence of linear functions
Ln(x) = anx+bn such that supn L(x) = ϕ(x) for all x. Suppose that
an0 6= 0 for some n0. Then Ln0 is unbounded from above and there is
some x0 ∈ R such that Ln0

(x0) = 2. Thus supn Ln(x0) ≥ 2 > ϕ(x0)
which is a contradiction. Thus we have all an = 0.

For x 6= 0, we have ϕ(x) = 0 = supnLn(x) = supn bn, which im-
plies bn ≤ 0 for all n. However when x = 0, and supn Ln(0) =
supn bn ≤ 0 6= 1ϕ(x).

Thus we have shown there does not exist a sequence of linear func-
tions Ln such that supn L(x) = ϕ(x) for all x.

3. There is a flood when the water level X is higher than the dam, which is
at 7.5m. By Markov’s inequality,

P(Flood) = P(X ≥ 7.5) ≤ EX
7.5

=
5

7.5
=

2

3
.

Therefore a flood will occur with maximum probability 2/3.

4. “(1)→ (2).” This follows trivially since S ⊂ F .

“(2)→ (1).” As suggested by the hint, we define

λ = {A ∈ F : P1(A) = P2(A)}.

We will now show that λ is a λ-system:

1. Note that P1(Ω) = 1 = P2(Ω), thus Ω ∈ λ.

2. Suppose A,B ∈ λ and A ⊂ B. We then have,

P1(B\A) = P1(B)− P1(A)

= P2(B)− P2(A) (since A,B ∈ λ)

= P2(B\A).

3. Suppose Ai ↑ A for all Ai ∈ λ. Then

P1(A) = lim
i→∞

P1(Ai) (continuity of measures)

= lim
i→∞

P2(Ai) (since Ai ∈ λ)

= P2(A) (continuity of measures).
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Therefore we have shown that λ is a λ-system. Since S is closed under
finite intersection, we have by definition it is a π-system. Thus by the
λ− π theorem F = σ(S) ⊂ λ, which completes the proof.

5 Computing expectations in practice

5.1 Computing integrals using calculus

When Ω = [a, b] ⊂ R, µ is uniform, and f is bounded, then the Lebesgues
integral

∫
f dµ behaves in the same way as the standard Riemann integral (as

long as the latter exists, which is true iff the set of discontinuities of f have
measure zero). Hence you can in principle use the fundamental theorem

of calculus to compute these integrals: if there is a function F such that
F ′(x) = f(x) for all x ∈ Ω, then

∫
f dµ =

∫
f(x) dx = F (b)− F (a).

It also follows that F is the CDF of X.
The limitation of this approach is that even when f is a simple close-form

expression (expressed in terms of +,−, ∗, /, exp, log), the CDF F might not have
such a close-form expression (example: f(x) = exp(−x2)).

5.2 Computing expectations using the distribution of the
random variable

Motivating example: consider a space Ω containing the following four objects:
a circle, a triangle, a square, and a pentagon, and a probability P that give then
equal probabilities (1/4). Let X denote a random variable that takes a shape as
input and output the number of faces. Suppose we want to compute E[g(X)],
where g(x) = 1[x is an even integer]. We will see two methods for doing this:

From the definition: let Y = g(X). We see that Y can take two possible val-
ues, zero and one, therefore it is simple. Applying the definition of expectation
of simple function:

E[Y ] =

∫
Y dP

= 1× P(Y = 1) + 0× P(Y = 0)

= P(Y −1({1})
= P(X−1(g−1({1}))) = 1/2.

Another way: first, derive the distribution of X:

PX(A) =
1

4
(1[0 ∈ A] + 1[3 ∈ A] + 1[4 ∈ A] + 1[5 ∈ A]) .
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then, compute an integral of g with respect to the distribution of X:

∫
g dPX .

Here, g is an indicator, so it is a simple function, so we can use our definition
of integral of simple functions:

∫
g dPX = 1× PX({x : g(x) = 1}) + 0× PX({x : g(x) = 0})

= PX({. . . ,−6,−4,−2, 0, 2, 4, 6, . . . })
= 1/2.

Proposition (“change of variable”): these two methods are equivalent.
More precisely, if Y = g(X) is a random variable and either g ≥ 0 or Y ∈ L1,
then: ∫

Y dP =

∫
g dPX .

Note: by “either g ≥ 0 or Y ∈ L1” I mean that the above can actually be slit
into two propositions, one assuming the first condition, and a second proposition
assuming the second condition.

Note: an important special case is g(x) = x.

Note: the nice thing with the second way is that you do not have to know Ω
and P, which are often not explicitly given to you. Often all I tell you is X ∼ F ,
which characterizes PX , and I ask E[g(X)]. Using our proposition we can solve
this using an integral over the real line with a measure on the reals provided by
PX .

Proof: assume first that g = 1A. From the same computation as in the example
above, we have on one hand:

∫
Y dP = P(Y = 1),

and on the other hand:
∫
g dPX = PX({x : g(x) = 1})

= P(X ∈ {x : g(x) = 1})
= P(g(X) = 1)

= P(Y = 1).
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Next, assume g is simple, i.e. g = a11A1 + · · ·+ an1An . We have:
∫
g(X) dP =

∫ ∑

i

ai1Ai(X) dP

=
∑

i

ai

∫
1Ai(X) dP (using linearity)

=
∑

i

ai

∫
1Ai dPX (using first part of proof)

=

∫ (∑

i

ai1Ai

)
dPX (using linearity)

=

∫
g dPX .

Third, assume g ≥ 0 (or g ∈ L1). Use the approximation theorem to get gi ↑ g,
so that:

∫
g(X) dP =

∫
lim gi(X) dP

= lim

∫
gi(X) dP (using MCT (or DCT))

= lim

∫
gi dPX (using second part of proof)

=

∫
lim gi dPX (using MCT)

=

∫
g dPX .

.

5.3 How probability spaces and random variables are con-
structed in practice

So far we have often insisted in explicitly constructed Ω, F , P, and designed
random variables X by providing, for each ω, the value X(ω). This level of detail
is useful for certain proofs (e.g. Markov’s inequality), but for many day-to-day
calculations, it is not necessary to go into that much detail.

Idea: instead of defining Ω, F , P and X, just specify the distribution of X. I.e.
say something like “let Ω, F , P and X be such that X ∼ Bern(p), i.e. such that
X has a Bernoulli p distribution.”

How do we know that there are such Ω, F , P and X? Thanks to the
inverse CDF construction, introduced in Section 2.26.

This does not uniquely define Ω, F , P and X: recall from Section 2.22 that
there are several ways to build Ω, F , P and X that yield the same distribution
on X.

55



However: in light of the preceding Section (5.2), we only need the distribution
in order to compute arbitrary expectations. So even though Ω, F , P and X are
not technically fully specified, they are constrained enough for our purpose.

For this reason, often we do not even mention Ω, F , P, and just assume
there is a “global” probability space on which the random variables are defined
based on their distributions.

5.4 Computing expectations using densities

Generalization of density: we say X has a density f with respect to µ
(typically, µ is the uniform measure on R, but other choices are possible), if:

PX(A) =

∫
1Af dµ for all A ∈ FB.

Note: this generalizes our previous definition of density given in Section 2.23:

FX(b)− FX(a) = PX([a, b])

=

∫ b

a

f(x) dx (by Section 5.1)

Therefore by letting a→ −∞ we recover the formula from Section 2.23.

Critical question in first assignment: show that if g ≥ 0 or g ∈ L1,

E[g(X)] =

∫
f(x)g(x)µ( dx).

Why this is useful: because we can now compute expectations using calculus,
even when Ω 6= R, and by knowing only PX .

5.5 Computing the expectation of a function of indepen-
dent random variables

Motivation: back to the motivating problem of Section 4.1. How to formalize
the compution of the expectation, E[1[|X − Y | ≤ 1/6]]. Let us define g(x, y) :=
1[|x− y| ≤ 1/6]. By our change of variable formula (Section 5.2),

E[g(X,Y )] =

∫
g dPX,Y .

Now our independence assumption on the arrival times of the woman and
man means that PX1,X2

(A1×A2) = PX1
(A1)PX2

(A2). To solve this last integral,
we use this independence statement and the following theorems:

Tonelli: if g ≥ 0, and µ×µ is such that µ×µ(A1×A2) = µ1(A1)µ2(A2) (think
of µ1 and µ2 as the marginal distributions of two independent random variables,
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i.e. µ× µ as PX,Y , µ1 as PX and µ2 as PY ), then:

∫
g d(µ1 × µ2) =

∫ (∫
g dµ1

)
dµ2

=

∫ (∫
g dµ2

)
dµ1,

in other words, we can approach the problem as iterated univariate integrals,
and do so in any order we wish.

Fubini: same statement as Tonelli, but instead of requiring g ≥ 0, we ask that∫
|g|d(µ1×µ2) <∞. How to check this L1 condition? By first applying Tonelli

on |g| ≥ 0!
Being able to write joint integrals as iterated ones is nice because the inner
integral is just over the real line, so we can use our density f of X1 and calculus
at this point.

Corollary: X and Y are independent if and only if for all measurable gi ≥ 0,

E[g1(X)g2(Y )] = E[g1(X)]E[g2(Y )].

Solving the meeting problem: by Fubini, we have

∫
gPX,Y =

∫ (∫
g dPX

)
dPY .

Now the inner integral can be rewritten as an integral over [0, 1] using the density
question in the first assignment:

∫ (∫
g dPX

)
dPY =

∫ (∫
f(x)g(x, y) dx

)
dPY ,

where f(x) is the uniform density over [0, 1], f(x) = 1[0,1](x). Applying the
same argument to the outer integral, we get:

∫ (∫
f(x)g(x, y) dx

)
dPY =

∫
f(y)

∫
f(x)g(x, y) dxdy,

which is the area of the dashed region in the following figure:
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Important: the above should not be confused with uncorrelated random vari-
ables: X and Y are uncorrelated if and only if

E[XY ] = E[X]E[Y ].

Note: X and Y independent implies they are uncorrelated,6 but the converse
is not true!

Exercise: consider (X,Y ) with a uniform density on the unit circle.

Example: uniform density 
on a subset B of the plane

density

x y
x

yB
height = density

= 1/ area(B)

Example:

Ex 60

f(x, y) =
1B(x, y)

area(B)

Recall:
1B(x, y) =

⇢
1 if (x, y) 2 B
0 o.w.

1. Find E[XY ],E[X],E[Y ]. Hint: use symmetry.

2. Find gi’s such that E[g1(X)g2(Y )] = 0 but E[g1(X)]E[g2(Y )] > 0. Hint:
use the indicators shown in the figure below.

Example: two random variables 
that are NOT independent

y

x

Ex 66

why?
For some intervals, A1, A2:

P (X 2 A1, Y 2 A2) = P (X 2 A1)P (Y 2 A2)

A1

A2

Pick A1, A2 as shown on the left

Which one(s) of these are zero? (use 
material from earlier today)

P (X 2 A1, Y 2 A2) = P (X 2 A1)P (Y 2 A2)

P (X 2 A1, Y 2 A2) = P (X 2 A1)P (Y 2 A2)

P (X 2 A1, Y 2 A2) = P (X 2 A1)P (Y 2 A2)

5.6 Declaring independent random variables

Let us continue the discussion of Section 5.3, on implicit specification of proba-
bility spaces. Suppose now we want to declare more than one random variables.
Often we do so by declaring that (1) they are independent, and (2) the distri-
bution of each random variable. For example: “let X1, X2, . . . be independent
Bern(0.5) random variables.” A shorthand: “X1, X2, . . . are i.i.d. Bern(0.5)”
(identically and independently distributed). Or just:

Xi
iid∼ Bern(p).

There is always some Ω, P, F , X1, X2, . . . satisfying the constraints (1)
and (2): you can take this as a fact (search Kolmogorov’s Extension Theorem
if you are curious).

This does not uniquely specify Ω, P, F , X1, X2, . . . : for the same reason
as in Section 5.3.

But: in the light of Section 5.5, all we need to know to compute expectation is
(1) to know that the random variables are independent and (2) the distribution
of each random variable Xi (called the “marginal distributions”).

6Assuming say XY ∈ L2.
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5.7 Computing expectation using the cumulative distri-
bution function

Idea: consider the following identity, which holds true for all x ≥ 0,

x =

∫ ∞

0

1[x > t] dt.

Now for X ≥ 0, let us take expectations on both sides and use Fubini:

EX =

∫

Ω

X dP =

∫

Ω

∫ ∞

0

1[X > t] dtdP =

∫ ∞

0

∫

Ω

1[X > t] dPdt,

which yields:

EX =

∫ ∞

0

P[X > t] dt =

∫ ∞

0

(1− FX(t)) dt.

5.8 Transformations of random variables and random vec-
tors

One dimension. In light of exercise 6 in Section 2.28, it should not be a surprise
how to solve the following problem: “given a random variable X with known
density fX (with respect to the Lebesgue measure), and strictly increasing,
differentiable function g, find the density of Y = g(X) (again, with respect to
the Lebesgue measure).”

Solution: from exercise 6 in Section 2.28, we already know the CDF FY of Y ,
namely FY (y) = FX(g−1(y)). To get the density fY of Y , based on Section 5.1,
we simply take the derivative with respect to y and use chain rule, obtaining:

fY (y) =
d

dy
FX(g−1(y)) = fX(g−1(y))

d

dy
g−1(y).

The multivariate version is a natural extension of the above formula: let
X : Ω → Rn denote a random vector with density fX : Rn → [0,∞), let
g : Rn → Rn be invertible with both g and g−1 continuously differentiable (a so
called C1 diffeomorphism), then the density of fY : Rn → [0,∞) is given by

fY (y) = fX(g−1(y))

∣∣∣∣det

(
∂

∂yc
g−1
r (y)

)∣∣∣∣

where the derivative is generalized into the determinant of a Jacobian matrix
indexed by rows r ∈ {1, 2, . . . , n} and columns c ∈ {1, 2, . . . , n}.
Note: the above theorem can be modified to change Rn to open subsets of Rn
in the obvious way, which is useful when X takes values in a subset of Rn such
as the simplex (a list of n positive numbers that sum to one) in the case of a
Dirichlet random variable.
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For computations: it is often easier to compute the derivative of g rather
than g−1, and thankfully using properties of Jacobian matrices,

∣∣∣∣det

(
∂

∂yc
g−1
r (y)

)∣∣∣∣ =
1∣∣∣det

(
∂
∂yc

gr(y)
)∣∣∣
.

Example: if X1 ∼ Exp(1) and X2 ∼ Exp(1) are independent, show that Y =
X1/(X1 +X2) is uniform between zero and one. Hint: the function g(x1, x2) =
x1/(x1 +x2) is not a diffeomorphism (it looses information) so you cannot apply
the above theorem directly! Use instead g(x1, x2) = (x1/(x1 + x2), x1 + x2).
This augmentation trick is often useful. In computational statistics it forms
the basis of “reversible jump Markov chain Monte Carlo,” a method used in
Bayesian statistics to select among models of different dimensionalities which
fits better the data.

Do you really need to do this? Not always! Sometimes you may be only
interested in the expectation of the transformed random variable E[Y ]. In this
case, we know from the first assignment that this can be done directly without
computing g−1 or derivatives via:

E[Y ] =

∫
g(x)fX(x) dx.

This is often much quicker than finding fY and then computing

E[Y ] =

∫
yfY (y) dy.

However in other cases, such as when a random variable is not well summarized
by its first few moments (e.g. mean and variance), you will have to compute
fY .

6 Asymptotics

Often we are faced with a question about a large number of random variables,
say X1, X2, . . . , X1,000,000,000. In the context of big data, or big models, or large
Monte Carlo simulations, the number of random variables of interest can be
quite large. Providing an exact answer to questions involving so many random
variables is often computationally prohibitive or impossible.

Key observation: paradoxically, under certain angles, the behaviour of large
sets of random variables becomes increasingly simple. This allows us to make
approximations. Asymptotics is the field concerned with making sure that these
approximations can become arbitrarily accurate as the number of random vari-
ables increases. Moreover, asymptotics can sometimes give some hint on how
to compare different approximations, i.e. how fast approximations converge
(rates).
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6.1 Infinitely often and eventually

Motivation: Let X1, X2, X3, . . . be iid non-atomic (continuous) random vari-
ables representing the best performance achieved in a sport (e.g. 100m freestyle)
at consecutive olympic games. LetRn denote the indicator variable that a record
is broken at olympic n (i.e. Rn = 1 if Xn > Xj for all j = 1, 2, . . . , n − 1, and
Rn = 0 otherwise). Let An = (Rn = 1). What is the probability that records
are broken infinitely often? One! Let Bn = (RnRn+1 = 1). What is the prob-
ability that records are broken in two consecutive years infinitely often? Zero!
Why? And how to define “infinitely often” formally?

Definition: Let An denote an infinite collection of events, n ∈ {1, 2, 3, . . . }
(not necessarily nested). We create two new events from these:

(An ev.) := {ω ∈ Ω : ∃N ∈ {1, 2, . . . },∀n ≥ N,ω ∈ An}
(An i.o.) := {ω ∈ Ω : ∀N ∈ {1, 2, . . . },∃n ≥ N,ω ∈ An}.

Examples: consider the “drunk train” example from the first lecture.

• Let Xi = 2Yi − 1 denote the direction the train takes at each step where
Yi ∼ Bern(1/2) are iid (independent and identically distributed)

• Let Sn = X1 +X2 + · · ·+Xn denotes the current position of the train.

• Let An denote the event that the train is at “home” at step n, i.e. An =
(Sn = 0).

• The event that the train never gets lost: call this the event A, i.e. that
the train returns to zero infinitely often. A := (An i.o.).

• The event that train eventually gets lost: B := (Sn 6= 0 ev.).

Proposition: (An i.o.) = (A{n ev.){.

Proof: by definition:

(An i.o.) =

∞⋂

N=1

⋃

n≥N

An

(An ev.) =

∞⋃

N=1

⋂

n≥N

An.

The proposition follows from De Morgan’s law.

6.2 Borel-Cantelli (BC) lemma 1

Proposition: If
∞∑

n=1

P(An) <∞,
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then P(An i.o.) = 0.

Notes:

• An do not need to be independent/disjoint/nested!

• But independence will be needed for a partial converse (BC 2)

Example: A drunk bird eventually gets lost (with probability one).

• Let X
(3)
i := (X

(1)
i , X

′(1)
i , X

′′(1)
i ), where the three coordiates are inden-

dent copies of the random walk of Section 6.1. I.e. diagonal moves are
permitted.

• Similarly, S
(3)
n = X

(3)
1 +X

(3)
2 + · · ·+X

(3)
n .

• The claim can be rewritten as P(S
(3)
n = (0, 0, 0) i.o.) = 0.

1. First, by the binomial formula,

P(S
(1)
2n = 0) =

(
2n

n

)
2−2n.

Why? Well each individual path of length 2n has probability 2−2n.
How many such paths are at zero at step 2n? Those where you go
up n times and down n times. Counting the number of paths is like
counting the subset of {1, 2, . . . , 2n} where we go up. There are

(
2n
n

)

subsets of {1, 2, . . . , 2n} of size n.

2. Next, apply Stirling’s formula (n! ∼
√

2πn
(
n
e

)n
) to get

P(S
(1)
2n = 0) ∼ c√

n
,

where c is a constant, and an ∼ bn means that an/bn → 1.

3. This means that for the whole process,

P(S
(3)
2n = 0) ∼ c

n3/2
,

which is summable, i.e.

∞∑

n=1

c

n3/2
<∞,

because 3/2 > 1.

4. Hence, by BC 1, P(S
(3)
n = (0, 0, 0) i.o.) = 0.

Proof of BC: let N denote the number of An’s that occur:

N =

∞∑

n=1

1An .

We have:
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1. (N =∞) = (An i.o.),

2. By MCT:

E[N ] = E

[ ∞∑

n=1

1An

]

=

∞∑

n=1

P(An).

3. Hence by the assumption, E[N ] <∞.

4. It follows that P(N =∞) = 0.

Converse? It is NOT true that

P(An i.o.) = 0 =⇒
∑

P(An) <∞.

Counter-example:

• Let P be uniform on [0, 1].

• Take An = [0, 1/n].

• We have (An i.o.) = {0}, hence P(An i.o.) = 0.

• But
∑

P(An) =∞.

But if we add independence, it is true: (BC 2) If

∞∑

n=1

P(An) =∞,

and the events An are independent, then P(An i.o.) = 1.

Example: a monkey on a typewriter will write the complete work of Shake-
speare infinitely often. Some notation first:

• Denote the work of Shakespeare by x0, x1, x2, . . . , xk−1 where each xi is a
letter.

• Let Mi denote the letter pressed by the monkey at step i. Assume the
{Mi} are independent.

• Define An := (Mn = x0,Mn+1 = x1, . . . ,Mn+k−1 = xk−1).

Problem? An are not independent! We will actually prove something stronger.
Informally, the idea is that we are going to show the monkey write the work
of Shakespeare and with the first letter written say Jan 1st infinitely often.
Formally:
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• Define A′n := (Mkn = x0,Mkn+1 = x1, . . . ,Mkn+k−1 = xk−1).

• The A′n are independent by construction.

• Hence, by BC 2, P(A′n i.o.) = 1.

• Now, (A′n i.o.) ⊂ (An i.o.), so P(An i.o.) ≥ P(A′n i.o.) = 1.

6.3 Weak law of large number (WLLN)

Let Xi : Ω→ R be iid, with E[Xi] = µ, |µ| <∞, and defined Sn = X1+· · ·+Xn.
To capture our intuition of how repeated random processes behave (“frequencies
approach probabilities”), we would like to be able to write something like:

1

n
Sn → µ.

That raises the question: what do we mean by “→”? So far, the definition we
used was pointwise limits, meaning that for all ω ∈ Ω,

lim
n→∞

1

n
Sn(ω) = µ.

Note here that the LHS is a random variable, so the right hand side should be
interpreted as a constant random variable (i.e. such that µ(ω) = µ for all ω).

It is too much to ask for such convergence to hold in general. Consider for
instance the train example, where ω corresponds to an infinite trajectory. Then
for the trajectory ω0 where the train always goes right (s.t. Xi(ω0) = +1 for all
i). Then

lim
1

n
Sn(ω0) = 1 6= µ = 0.

Instead: we will relax the notion of convergence. There are several ways to do
this, which are useful in different contexts. Let us start with one that gives us
a simple proof of the LLN.

Proposition: let Xi : Ω → R be iid, with E[Xi] = µ, |µ| < ∞, and defined
Sn = X1 + · · ·+Xn. Then for all ε > 0,

lim
n→∞

P
(∣∣∣∣

1

n
Sn − µ

∣∣∣∣ ≥ ε
)

= 0.

Visualization: suppose µ = 0, and note that
(∣∣ 1
nSn − 0

∣∣ ≥ ε
)

= (|Sn| > εn).
On a graph where the x-axis is n and the y-axis is Sn (the same picture we used
for train trajectories), consider the cone specified by εn and −εn. The event
(|Sn| > εn) can be understood as selecting the trajectories that are outside the
cone at step n. The probabilities of these events should go to zero as n→∞.
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Visualization when E[X] = 0
• Pick a slope ε
• Imagine two lines with slope +/- ε
• The probability that a path is outside of 

the beam on the N-th step goes to 0 as N 
goes to infinity

N

X1+...+XN

ε N

-ε N

Proof: we will start with a proof that uses an extra assumption, VarX < ∞.
I will then give a sketch of how to get rid of this condition.

1. First, assume without loss of generality that µ = 0 (otherwise, set X ′i =
Xi − µ).

2. Use Chebyshev:

P
(∣∣∣∣

1

n
Sn

∣∣∣∣ ≥ ε
)
≤ E

∣∣ 1
nSn

∣∣2

ε2

=
E[X1 + · · ·+Xn]2

n2ε2

=

∑n
i=1 E[X2

i ] +
∑

(i,j):i 6=j E[XiXj ]

n2ε2

=
nEX2

i

n2ε2

=
constant

n
.

3. Taking limits on both sides:

lim
n→∞

P
(∣∣∣∣

1

n
Sn

∣∣∣∣ ≥ ε
)
≤ lim
n→∞

constant

n
= 0.

Note: we actually only used pairwise uncorrelation in this proof.

Sketch: for how to lift the finite variance condition. The idea is to first fix
x > 0, and to write the following decomposition:

Xi = Xi1[|Xi| ≤ x]︸ ︷︷ ︸
Yi

+Xi1[|Xi| > x]︸ ︷︷ ︸
Zi

.

Now we can use our previous result on Yi since a bounded random variable will
necessarily have finite variance. As for Zi, we can get rid of it by letting x→∞
and using DCT (where we use |Zi| ≤ |Xi| and our assumption that |µ| < ∞
and hence E|Xi| <∞).
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6.4 Convergence in probability

The definition of “→” used in the previous section is used in other contexts, so
let us give a name to it:

Definition: a sequence of random variables Yi : Ω→ R converges in probability
to a random variable Y : Ω→ R if, for all ε > 0,

lim
n→∞

P(|Yn − Y | > ε) = 0.

Notation: Yn
P−→ Y .

6.5 Convergence almost surely

Question: can we come up with other notions of convergence? Yes, we will see
many alternative, starting with “almost sure” convergence (“Yn

a.s.−→ Y ”). Why
is this useful? With almost sure convergence, it is harder to prove the LLN, but
once this is done, it is easier to establish corrolaries, e.g. that Yn

a.s.−→ Y and
Y ′n

a.s.−→ Y ′ implies Yn + Y ′n
a.s.−→ Y + Y ′.

Definition: a sequence of random variables Yi : Ω→ R converges almost surely
(a.s.) to a random variable Y : Ω→ R if

P(Yn → Y ) = 1,

where

(Yn → Y ) := {ω ∈ Ω : lim
n→∞

|Yn(ω)− Y (ω)| exists and is = 0}.

Note: with this last notation, another way to write convergence pointwise
is (Yn → Y ) = Ω. From this, it is clear that convergence pointwise implies
convergence a.s. but not vice-versa.

Notation: Yn
a.s.−→ Y .

Lemma connecting this notion of convergence back to convergence in probabil-
ity as well as the notions of i.o. and ev.: Xn

a.s.−→ X if and only if for all ε > 0,
P(|Xn −X| > ε i.o.) = 0.

Proof: we have:

ω ∈ (Xn → X)⇐⇒ ∀ε > 0, ω ∈ (|Xn −X| ≤ ε ev.),

and hence:

Xn
a.s.−→ X ⇐⇒ ∀ε > 0,P(|Xn −X| ≤ ε ev.) = 1

⇐⇒ ∀ε > 0,P(|Xn −X| > ε i.o.) = 0.

Strong law of large numbers: under the same conditions as the WLLN, this
says

1

n
Sn

a.s.−→ µ.
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Proposition: convergence in probability does not imply convergence a.s. in
general.

Counter-example: moving blip. Let Ω = points on a circle, P be uniform on
the circle, and Xi be defined as:

X1 = 1[0,1/2] mod 2π

X2 = 1[1/2,1/2+1/3] mod 2π

X3 = 1[1/2+1/3,1/2+1/3+1/4] mod 2π

...

Proposition: convergence a.s. implies convergence in probability.

Proof: according to our earlier lemma, we have for all ε > 0, P(|Xn − X| >
ε i.o.) = 0. Then, if we let An := (|Xn −X| > ε):

0 = P



∞⋂

k=1

⋃

n≥k

An




= lim
k→∞

P


⋃

n≥k

An


 (by monotonicity of P)

≥ lim
k→∞

P(Ak) ≥ 0.

It follows that limk→∞ P(Ak) = 0.

6.6 Toward Central Limit Theorems

Central limit theorems (CLT) are tools to approximate the distribution of a sum
of certain random variables, Sn =

∑n
i=1Xi. Before we describe CLTs and their

proofs, let us motive the problem by first computing the exact distribution of
Sn to illustrate why it is non-trivial.

6.7 Exact distribution of sums of random variables

Let us say we have two iid random variables X and Y with densites fX and fY .
What is the distribution of Z = X+Y ? It is not as easy as it looks, for example
you should certainly not average the densities (check! either by playing Settlers
of Catan, or deriving the pmf of the sum of two dice).
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Example: to make things concrete, suppose X and Y are iid uniform on [0, 1].

Compute the CDF of Z first: at a fixed point, say one, FZ(1). To do so let
us use the techniques of Section 5.5:

P(Z ≤ 1) = P(X + Y ≤ 1)

=

∫
1[(x, y) ∈ A]fX(x)fY (y) dxdy,

where the region A is shown in red below.

Hence

P(Z ≤ 1) =

∫ ∞

−∞

∫ 1−x

−∞
fX(x)fY (y) dy dx =

1

2
.

More generally,

P(Z ≤ z) =

∫ ∞

−∞

∫ z−x

−∞
fX(x)fY (y) dy dx

=

∫ ∞

−∞
fX(x)

∫ z−x

−∞
fY (y) dy dx

=

∫ ∞

−∞
fX(x)FY (z − x) dx

Computing the density: by differentiation of the above expression with re-
spect to the argument z.

fZ(z) =
dFZ(z)

dz

=
d

dz

∫ ∞

−∞
fX(x)FY (z − x) dx.

If only we could interchange the order of differentiation and integration that
would lead to a nice expression:

fZ(z) =

∫ ∞

−∞
fX(x)

d

dz
FY (z − x) dx

=

∫ ∞

−∞
fX(x)fY (z − x) dx.

In the next section, we justify this swap.

Exercise: show that if you sum two uniform, you get the following density,
called the triangular density:
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Summing more than two variables. In theory, generalizing this argument to
more than two variables is simple, just iterate the above argument. In practice,
for summing n random variables we end up with a n−1 dimensional integral to
compute. It can be tricky to compute the integral exactly, motivating the need
for CLTs.7

6.8 Interlude: exchanging the order of integration and
differentiation

Here we present some useful theorem justifying swapping the order of differen-
tiation and integration. Doing so will not only justify the swap in last section,
but will also be needed soon in our CLT proof.

Example: “reparameterization trick,” a technique very popular in machine
learning. The idea is that you have a collection of probability models indexed
by a parameter θ (as in Section 2.6 for example) and you seek to compute

∇Eθ[h(X)].

Here the difficulty is that the distribution of X depends on θ. The idea with the
reparameterization trick is to remove this dependency by writing X = g(Z, θ),
where the distribution of Z does not depend on θ. From Section 2.26, we know
how to do this: set Z to be uniform, and g(·, θ) to the inverse CDF of Fθ(·).
After doing this, the hope is to swap the order of differentiation and integration:

∇Eθ[h(X)] = ∇E[h(g(Z, θ))] (always possible)

= E[∇h(g(Z, θ))] (have to be careful here).

If we can do this, that would be nice, since we can then use the Law of large
number to approximate the right hand side:

E[∇h(g(Z, θ))] ≈ 1

N

N∑

n=1

∇h(g(Z(n), θ)),

where Z(n) are iid samples, and the inner gradient is often computed using
Automatic Differentiation techniques.

Counter-example. Let us see a concrete example where the above trick does
not work, to emphasize the importance of checking conditions for integral-
differential swaps. Let us say X ∼ Bern(θ). We can reparametrize with

7But there is one clever trick that exploit the special structure of these iterated integrals,
called the Fast Fourier Transform. It uses similar techniques as the CLT. But it is still more
expensive than the CLT and for sums of random vectors it can be prohibitive.
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Z ∼ Unif(0, 1) and g(z, θ) = 1[z < θ]. Indeed, g(Z, θ) ∼ Bern(θ). We have:

d

dθ

∫ 1

0

g(z, θ) dz

︸ ︷︷ ︸
=θ

= 1,

but on the other hand:

∫ 1

0

d

dθ
g(z, θ)

︸ ︷︷ ︸
=0 almost everywhere

dz = 0.

Theorem for swaps: suppose

1. g(·, θ) is integrable for all θ ∈ [a, b],

2. g(x, θ) is differentiable for all x and θ,

3. there is an integrable envelope h(x) such that |dg(x, θ)/dθ| ≤ h(x) for all
x and θ,

then both sides of the equation below are well defined and equal:

d

dθ

∫
g(x, θ)µ( dx) =

∫
d

dθ
g(x, θ)µ( dx).

Exercise: find the condition that does not hold in the counter example.

Exercise: use DCT and the mean value theorem to prove the theorem for
swaps.

6.9 CLT: numerical exploration and intuition

We have seen how computing the distribution of sums Sn = X1 + · · · + Xn is
tedious, even for iid random variables. Now, as promised in the introduction
of this chapter, the good news is that the distribution of such sums typically
becomes more and more regular.

Numerical example. To start with, let us look, for 3 possible distributions
for Xi, what the distribution of the sums look like when we increase n. The
columns are three different distributions for X1, and each row shows Sn for
n ∈ {1, 2, 4, 8, 16, 32}.
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1
2

4
8

16
32

−25 0 25 50 −25 0 25 50 −25 0 25 50

0

20000

40000

60000

0

20000

40000

60000

0

20000

40000

60000

0

20000

40000

60000

0

20000

40000

60000

0

20000

40000

60000

value

co
un

t

As you can see, we start with three very different distributions (first row, n = 1,
shows the distribution of S1 = X1):

1. A discrete distribution: Bernoulli distribution Xi ∼ Bern(0.3).

2. A continuous distribution with support on [0,∞): an exponential distri-
bution, Xi ∼ Exp(1)

3. A multimodal distribution: with a density given by a mixture of normal
distribution fXi(x) = 0.4fN(x;−2, 0.1)+0.6fN(x; 2, 0.1) where fN(·;µ, σ2)
is the normal density (defined below).
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Normal approximation: notice that for n = 32, all three look the same, up
to stretching and translation. In fact, all three look like normal distributions!
This is surprising, since the normal is continuous on (−∞,∞) and unimodal,
which neither of the three starting distribution X1 remotely looked like! Our
next big goal is to understand why!

Heuristic. Before going into proofs, however, the above numerical study al-
ready motivates the following heuristic:

1. Find the mean µ and variance σ2 of Sn. (why? in the “normal approxima-
tion” paragraph above, we say all three “look like normal distributions,”
now we need to find which normal distribution!

2. Let Zn denote a normal distribution with mean µ and variance σ2, defined
as the random variable with density

fN(x;µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
.

3. Use the approximation Sn
d≈ Zn.

Interpretation of approximation: Sn
d≈ Zn? We will need more theoretical

understanding to refine what this means exactly. For now think about it as:

1. P(Sn ≤ x) ≈ P(Zn ≤ x), or

2. E[g(Sn)] ≈ E[g(Zn)] for nice g, e.g. bounded continuous.

CLTs and leaps of faith. CLTs attempt to justify the above heuristic, ei-
ther by telling us that the approximation will become arbitrarily accurate as
n→∞ (basic CLT), or by providing explicit bounds on the error (Berry-Esseen
theorem), or by relaxing the conditions on the random variables. In some sit-
uations, the theory might not bridge completely to your problem, but even in
such cases, it might be still useful to take a “leap of faith” and use the normal
approximation (in particular, in a situation where you might not be able to give
an answer at all otherwise).

Exercise: You seed a Petri dish with a colony of 1e9 bacteria. Each day, the
number of bacteria either:

• stays the same, with probability 2/5;

• doubles, with probability 3/10;

• quadruples, with probability 1/5;

• is divided by a factor of two, with probability 1/10.

Ten days later, what is the probability that there are more than 30e9 bacteria?

Hint: write number of bacteria as 2
∑
Xi , and rewrite the probability you want

to obtain into one that can be computed using the normal approximation.
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6.10 Basic CLT

Assumptions: the random variables we sum are independent and identically
distributed and have finite variance. Also, without loss of generality assume
EXi = 0 (otherwise, center the random variables).

Relax: there are CLTs for non-identical random variables, also for random vec-
tors, and finally, for dependent random variables (e.g. certain types of Markov
chains).

In relation with LLN: sure, the LLN gives us 1
nSn

a.s.−→ 0. But this does not
give us much information about how to approximate the distribution of Sn for
finite n.

Exercise: show that in fact, 1
nαSn

a.s.−→ 0 for all α > 1/2.

Idea: the above exercise suggest that α = 1/2 is a critical point. A related
heuristic is that for a symmetric simple random walk, the expected distance
from the origin at step n is roughly

√
n.

Theorem: indeed, if X1, X2, . . . are idd with EX2
1 = 1 and EX1 = 0, then for

any x ∈ R:

P
(
X1 + · · ·+Xn√

n
≤ x

)
→ P(Y ≤ x), as n→∞,

where Y is a standard normal.

6.11 Exercise set 4

1. First problem in Section 6.8.

2. Second problem in Section 6.8 again.

3. One problem in Section 6.9.

4. One problem in Section 6.10.

6.12 Solutions for exercise set 4

Question 1: there is a discontinuity at θ = x, so we cannot say the function
is differentiable at all points, which is required for this theorem (in contrast to
many other measure theoretic ones, where almost everywhere is enough, here
we really need everywhere).

Question 2: the first idea is to transform the statement into one about se-
quences of function in the optic of applying DCT. Let θn → θ by arbitrary in
[a, b]. Let

hn =
g(x, θn)− g(x, θ)

θn − θ
.
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Note that

limhn =
dg

dθ
(x, t).

Next let us bound |hn| by h:

|hn(x)| ≤ sup
θ∈[a,b]

∣∣∣∣
dg

dθ
(x, θ)

∣∣∣∣ ≤ h(x),

where we use the mean value theorem in the first inequality and the assumption
on h in the theorem statement for the second inequality. With this bound and
the second assumption on h that it is an integrable envelope, we can apply DCT
and obtain the result.

Question 3: Following the hint in the question we will seek to express the
number of bacteria at day 10 in terms of 2

∑10
i=1Xi . To see this, consider the

possible day-over-day changes in the number of bacteria in the Petri dish: (i)
stays the same; (ii) doubles; (iii) quadruples; (iv) or is halved. Each of the
changes in the number can be represented as a power of two. For example,
if the number starts with value 1e9 then doubles, stays the same, quadruples,
and halves in the subsequent 4 days, the number of bacteria can be expressed
succinctly as:

the number of bacteria after 4 days = 1e9× 21 × 20 × 22 × 2−1 = 1e9× 21+0+2−1 = 1e9× 22 = 4e9.

To generalize the number of bacteria over all possible paths, we define the
random variable Xi to correspond to the power of 2 that the number “grows”
in each day. Therefore, over a ten day period the (random) value of the number

of bacteria is represented as 2
∑10
i=1Xi . Since we want the number of bacteria to

be more than 30 times of its initial value, we need to calculate:

P(more than 30e9) = P
(

2
∑10
i=1Xi ≥ 30

)
= P

(
10∑

i=1

Xi ≥ log2(30)

)
.

However, we do not know the distribution of
∑10
i=1Xi! Notwithstanding this

limitation, this quantity is still possible to approximate. We will use the Central
Limit theorem to provide an approximation which is easy to calculate. First,
let Sn :=

∑n
i=0Xi, then:

S10

approx.≈ a+ bZ

where Z follows the standard normal distribution, with:

a = nµ = n · E(Xi) = 10

(
2

5
· 0 +

3

10
· 1 +

1

5
· 2 +

1

10
· (−1)

)
= 10 · 0.6 = 6

b = σ
√
n =

√
Var(Xi) · n =

√
(E(X2

i )− E(Xi)2) · 10 =
√

(1.2− 0.62) · 10 =

√
42

5
≈ 2.898,

where the fact that E(X2
i ) = 2

5 · 02 + 3
10 · 12 + 1

5 · 22 + 1
10 · (−1)2 = 1.2 was used.
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Therefore,

P(more than 30e9) = P
(

2
∑10
i=1Xi ≥ 30

)
= P

(
10∑

i=1

Xi ≥ log2(30)

)

= P(S10 ≥ log2 30) = P


Z ≥ log2 30− 6√

42
5




= 1− Φ (−0.3772) ≈ 0.647.

Question 4: we start with the weaker result, convergence in probability, which
is more intuitive; i.e. a simple modification of our argument for WLLN

1. First, assume without loss of generality that µ = 0 (otherwise, set X ′i =
Xi − µ).

2. Use Chebyshev:

P
(∣∣∣∣

1

nα
Sn

∣∣∣∣ ≥ ε
)
≤ E

∣∣ 1
nαSn

∣∣2

ε2

=
E[X1 + · · ·+Xn]2

n2αε2

=

∑n
i=1 E[X2

i ] +
∑

(i,j):i 6=j E[XiXj ]

n2αε2

=
nEX2

i

n2αε2

=
constant

n2α−1
.

3. Taking limits on both sides:

lim
n→∞

P
(∣∣∣∣

1

nα
Sn

∣∣∣∣ ≥ ε
)
≤ lim
n→∞

constant

n2α−1
= 0.

provided 2α− 1 > 0, i.e. α > 1/2.

To prove the version almost sure, we make use of a result in the posted readings:
namely the basic L2 convergence theorem (see e.g. Du (8.3) in ch. 1) and of
Kronecker’s lemma (Du (8.5) in ch. 1). Let X ′ := X

nα and note that

∞∑

i=1

EX ′2i =

∞∑

i=1

1

n2α
<∞

because 2α > 1. We can therefore apply the basic L2 convergence theorem
and obtain that

∑∞
i=1 EX ′ converges a.s.. Kronecker’s lemma then yields the

required result.
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6.13 Types of convergence: big picture

We would like to generalize the notion of convergence used in the CLT. We
would like this new notion of convergence, called convergence in distribution, to
sit nicely in our hierarchy of convergence modes as follows.

Covered so far:

Xn → X =⇒ Xn
a.s.−→ X =⇒ Xn

P−→ X.

Next:
Xn

P−→ X =⇒ Xn
d−→ X.

6.14 Weak convergence

Motivation: so far, the two types of convergence we have covered assume
that all random variables and the limit live in the same space: Xi : Ω → R,
X : Ω → R. This could create problem when we formalize the central limit
theorem. Why?

Solution: define convergence with respect to objects that get rid of Ω while
characterizing the distribution of the random variables.

Definition 1: we say Xn : Ωn → R converges in distribution to X : Ω → R,

denoted Xn
d−→ X, if for all bounded continuous function g : R → R (called

“test function”), we have

lim
n→∞

∫
g dPXn =

∫
g dPX .

Note: more generally, weak convergence is really about convergence of mea-

sures. Similarly to the above definition, the notation µn
d−→ µ means that for

all bounded continuous function g,

lim
n→∞

∫
g dµn =

∫
gµ.

Definition 2: we say Xn : Ωn → R converges in distribution to X : Ω → R,

denoted Xn
d−→ X, if for all x with P(X = x) = 0, FXn(x) → F (x). In other

words, convergence of the CDFs at points that are not atoms under X.

Proposition (Portmanteau): definition 1 and 2 are in fact equivalent. In
fact, search Portmanteau in your favourite reference, there are many more
equivalent definitions, e.g. a useful variant is to replace “bounded contin-
uous” by “Lipschitz” (i.e. such that there is a constant K > 0 such that
|g(x1)− g(x2)| ≤ K|x1 − x2|.
Intuition regarding why we do not require convergence of the CDF at atomic
points: otherwise, our nice hierarchy in Section 6.13 would not hold! Consider:
Xn = 1/n. Show it converge in probability to zero:
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however the limit of the cdfs at zero is equal to zero but the cdf of the limit at
zero is one:

We can now write the CLT as follows: if X1, X2, . . . are idd with EX2
1 = 1

and EX1 = 0, then:
X1 + · · ·+Xn√

n

d−→ Y,

where Y is a standard normal.

Note: this statement is not true in probability or a.s. (this can be proven using
‘Kolmogorov zero-one law’).

6.15 Overview of some properties of convergence of r.v.’s

Scheffé’s theorem: if Xn have density fn such that fn → f pointwise, where

f is the density of X, then Xn
d−→ X.

Proof: dominated convergence.

Continuous mapping I: if g is continuous, Xn
a.s.−→ X, then g(Xn)

a.s.−→ g(X).

Proof: follows directly from definition of continuity.

Continuous mapping II: if g is continuous, Xn
d−→ X, g(Xn)

d−→ g(X).

Proof: trivial, provided you use the right equivalent definition provided by
Portmanteau.

Continuous mapping III: if g is continuous, Xn
P−→ X, then g(Xn)

P−→
g(X).

Note: this can be relaxed to accommodate a set of discontinuity D as long as
it has probability zero under the asymptotic distribution.
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Template for many results: “Xn
�−→ X and Yn

�−→ Y implies Xn ◦ Yn �−→
X ◦ Y ” where you should replace � and ◦ by any of these combinations (note
that some combinations require extra assumptions):

1. � =a.s. and ◦ = +, or −, ∗, /.

2. � =p and ◦ = +, or −, ∗, /.

3. � =d and ◦ = +, AND Xn, Yn, X, Y independent.

4. � =d and ◦ = +, or −, ∗, /, AND Y = constant (“Slutsky’s theorem”).

Example: of why we have to be careful, especially with convergence in distri-

bution. Let Y,X,Xn all be iid N(0,1), and Yn = −Xn. Then Xn
d−→ X and

Yn
d−→ Y , but Xn + Yn

d−→ 0
d

6= X + Y . Here we cannot use Slutsky’s theorem
because neither Xn nor Yn converge to a constant.

Main tools: used to proved these results.

• Subsequence characterization of convergence in probability: Xn
P−→ X if

and only if for all subsequence nk, there is a further subsequence nki such
that Xnki

a.s.−→ X.

• Skorokhod representation: suppose Xn
d−→ X, then there exists Yn and

Y such that Yn, Y : Ω→ R, Yn
d
= Xn, Y

d
= X, and Yn

a.s.−→ Y .

6.16 Towards a proof of the CLT: generating functions

To prove the CLT, we first need to look at tools that will help us study sums
of random variable. These tools are called generating functions. We go over
generating functions because they are useful in many contexts, from theory to
computation.

Why generating functions? A generating function associates a function
GX(s) to a random variable X. They are designed with two goals in mind:

1. They characterize certain classes of distributions. I.e. just as CDFs, if
generating functions are equal (as functions), GX = GY , then the corre-

sponding random variables are equal in distribution, X
d
= Y .

2. The generating function of sums of independent random variables is the
product of the individual generating functions: GX+Y (s) = GX(s)GY (s).

Specific applications of generating functions:

1. Most CLT proofs.
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2. The Fast Fourier Transform, one of the most important algorithms out
there, is heavily based on generating functions. As an example of applica-
tion of the Fast Fourier Transform, say you want to get the coefficient of
the polynomial product (anx

n+an−1x
n−1 + · · ·+a0)×(bnx

n+bn−1x
n−1 +

· · ·+b0). How long does it take to compute the coefficients of the product,
c2nx

2n+c2n−1x
2n−1 + · · ·+sc0? Naively, O(n2). Surprisingly, there exists

a O(n log n) algorithm based on the Fast Fourier Transform.8

Types of generating function that we will survey:

Probability generating functions: simplest to understand but only charac-
terizes natural number valued random variables. We will start there for
pedagogical reasons.

Moment generating functions: which we already encountered when we talked
about Chernoff bound in Section 4.5. They are defined for some random
variables beyond natural number valued ones, but not all.

Characteristic function: which are always defined but will require a quick
review on complex numbers. After covering those we will be ready for the
proof of CLT.

6.17 Probability generating functions

Restriction: we only consider natural number valued random variables, i.e.
X : Ω→ {0, 1, 2, . . . }.
Definition of a probability generating function (PGF):

GX(s) = E[sX ],

which in the context of a natural number valued random variables,

GX(s) =

∞∑

i=0

P(X = i)si.

Note that this sum might diverge for some values of s. For reason that will
become clear soon, we elect to only define it when E|sX | <∞ (the terminology
is “define G for s where the series is absolutely convergent”).9

Exercise: compute it for a Bernoulli. Then for a Poisson, with pmf for param-
eter λ > 0 given by

p(n) = e−λ
λn

n!
1[n ∈ N].

Solution for Bernoulli: if X ∼ Bern(θ), then GX(s) = (1− θ) + θs.

8Many references available online, e.g. http://www.cs.uleth.ca/~benkoczi/files/

fourier-excerpt.pdf
9From real analysis, this is is true in a radius of at least one around the origin.
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Solution for Poisson: if Y ∼ Poi(λ), the GY (s) = eλ(s−1).

Next: do probability generating functions indeed satisfy the two desiderata
described in the last section (characterization and nice behaviour for sums)?

First desiderata: nice behaviour with sums. If X and Y are independent,
the PGF of their sum is the product of the PGFs, GX+Y = GXGY .

Proof: by Tonelli:

E|sX+Y | = E|sXsY | = E|sX |E|sY |,

and the right hand side is finite by the absolute convergence assumption intro-
duced in the definition. Then this mean we can apply Fubini and obtain:

GX+Y (s) = E[sX+Y ] = E[sX ]E[sY ] = GX(s)GY (s).

Exercise: find the PMF of a sum of two independent (1) Bernoullis, (2) Poisson
random variables with rates λ1 and λ2.

Solution for Bernoulli: GX1+X2
(s) = ((1− θ) + θs)2.

Solution for Poisson: GY1+Y2(s) = e(λ1+λ2)(s−1).

Observation: closure under sums. Notice that for the Poisson example
above, the PGF of Y1 + Y2 coincides with the PGF of a Poisson with mean
parameter λ = λ1 + λ2. This is not always the case: for example, for the
Bernoulli example, we do not have this property. In the Poisson case, can we
conclude right away that Y1 + Y2 is Poisson distributed?

Answer: not yet! A priori, we do not know that some other distribution could
yield the same PGF! But we will next argue that in fact this cannot happen!

Second desiderata: characterization. How to show that some other distri-
bution cannot in fact yield the same PGF? By solving the following problem:
give me a PGF G, and reconstruct the PMF, pk = P(X = k). How to do this?
Hint: view G(s) as a polynomial. Start with reconstructing p0 = p(0).

Solution:
G(s) = p0 + p1s+ p2s

2 + p3s
3 + . . . .

Hence: G(0) = p0. Next, how to get p1?

Trick: If you know G you can differentiate it! Get:

G′(s) = p1 + 2p2s+ 3p3s
2 + . . . .

Hence: G′(0) = p1.

More generally:

pn =
G(n)(0)

n!
.

Application (reading): branching processes. If a cell has a number of off-
spring that is Poisson-distributed with rate λ, and all its descendants recursively
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also have each iid Poisson-distributed descendants, what is the probability p that
the population eventually dies off? If λ < 1, p = 1! For λ ≥ 0, we can have
p < 1, and even compute it from the PGF! Please read Section 5.4 in Grimmett
and Stirzaker.

Application (optional): probability generating functions are important for
the analysis of time series for count data, see for example [5].

6.18 Moment generating function

How to extend the ideas of last section to more general random variables? First
try: moment generating functions (MGF).10

Idea: in the previous section, we looked at the expectation of sX . If X is non
integer-valued, and we plug in a negative s, we get

√
−1. In an attempt to

avoid complex numbers, the MFG M(t) use the reparameterization s = et > 0
to avoid complex numbers, yielding:11

M(t) = E[etX ].

As with the PGF, this expectation may diverge for some values of t. As we
shall see this is more problematic here since we get into situations where this is
defined only at t = 0, in which case the MGF clearly does not characterizes the
distribution.

Exercise: compute the MGF of a standard normal distribution. Hint: complete
the square to use known normalization of the normal density.

Answer: ϕ(t) = exp(t2/2).

6.19 Characteristic function

We would like to have a construction that is defined for all real random variables,
and that has our two desiderata.

Idea: in the last section we use the function f(t) = et, which is a function into
an unbounded space, f : R→ [0,∞). Let us try to map into a bounded space.
To do this, let us wrap around the line into a circle as follows:

10Also known as the Laplace transform, up to reparameterization.
11However, as we will see soon, complex numbers are in some sense inevitable to do this in

full generality.
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Let us formalize this construction using some light complex analysis.

Recall: a complex number c ∈ C can be written as: c = a+ bi where i =
√
−1,

i.e. such that i2 = −1.

Definition: a complex random variable is defined as Z = X+iY , and we define
its expectation as EZ = EX + iEY .

Some nice tricks with Taylor series: let us say x is real.

eix = 1 + (ix) +
(ix)2

2!
+

(ix)3

3!
+ . . .

= 1 + (ix)− x2

2!
− i(x)3

3!
+ . . .

= (1− x2

2!
+ . . . ) + i(x− x3

3!
+ . . . )

= cosx+ i sinx.

So, |eix| = 1 and we have something like we wanted in our picture above! Now
clearly, if I give you some real value random variable Y ,

E[eitY ] = E[cos(tY )] + iE[sin(tY )],

is always well defined and finite since sin and cos are bounded!

Success! Define the characteristic function as ϕY (t) = E[eitY ]. It satisfies both
our desiderata!

Proof: See Durrett. Based on the following idea: if I give you ϕ, you can
reconstruct Y via the formula

P(Y ∈ (a, b]) = lim
T→∞

∫ T

−T

e−ita − eitb
it

ϕ(t) dt.

6.20 Further properties of characteristic functions

Property P0: Xn
d−→ X ⇐⇒ ϕXn(t)→ ϕX(t).
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Property P1: ϕX(0) = 1

Property P2: |ϕX(t)| ≤ 1

Proof: complex version of Jensen. If g is convex, then g(EX) ≤ E[g(X)]. Take
g(x) = |x|.
Property P3: ϕX(t) is always continuous (viewed as a function of t).

Proof: take tn → t.

=⇒ itnX → itX a.s.,

=⇒ exp(itnX)→ exp(itX) a.s.,

Where the last implication follows by continuity of exp. Finally,

ϕX(tn) = E[eitnX ]
a.s.−→ E[eitX ] = ϕX(t),

by using DCT with |eitnX | = 1.

Property P4: If E|X| <∞, then ϕX(t) has a derivative and

d

dt
ϕX(t) =

d

dt
E[eitX ]

= E[
d

dt
eitX ] (will use our earlier swap result)

= E[iXeitX ],

and in particular,

EX =
ϕX(0)

i
.

Proof: we use the result in Section 6.8, which we copy here for convenience.

Theorem for swaps: suppose

1. g(·, θ) is integrable for all θ ∈ [a, b],

2. g(x, θ) is differentiable for all x and θ,

3. there is an integrable envelope h(x) such that |dg(x, θ)/dθ| ≤ h(x) for all
x and θ,

then both sides of the equation below are well defined and equal:

d

dθ

∫
g(x, θ)µ( dx) =

∫
d

dθ
g(x, θ)µ( dx).

Back to proof: we use our earlier result with x = ω, θ = t,

g(ω, t) = eitX(ω),

and envelope
h(ω) = |X(ω)|.
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For condition 1, we have

∫
|g(ω, t)|P( dω) =

∫
1P( dω) = 1.

For condition 2, we have indeed that eitx = cos(tx) + i sin(tx) is continuous for
all x and t. For condition 3, we have E|X| <∞ by assumption.

Property P5: more generally, if E[|Xk|] <∞,

ϕ(k)(t) = E[(iX)keitX ].

As a consequence, we get the following important special case: if EX2 < ∞,
then by Taylor’s Theorem (Peano form) applied around zero, there exists a
function h such that h(t)→ 0 as t→ 0 with:

ϕ(t) = 1 + itEX − 1

2
t2E[X2] + h(t)t2.

Factoid: the characteristic function of a standard normal distribution is

ϕ(t) = e−
1
2 t

2

.

This will be the last ingredient needed for proving the CLT. This from should
not be a surprise given the closely related form for the MGF. However proving
this is surprisingly tricky (requires contour integration methods from complex
analysis).

6.21 Proof of basic CLT

Theorem: if X1, X2, . . . are idd with EX2
1 = 1 and EX1 = 0, then:

X1 + · · ·+Xn√
n

d−→ Y,

where Y is a standard normal.

Proof: let us fix an arbitrary t, and start by looking at only one variable X1.
We have, by P5, that

ϕX1
(t) = 1− 1

2
t2 + h(t)t2,

where all we know about h is that h(t)→ 0 when t→ 0.

Trick: to look at a normalized sum, note

ϕaX(t) = E[eit(aX)]

= E[ei(at)X ]

= ϕX(at).
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Apply trick to proof: to get the characteristic function of Sn√
n

= X1+···+Xn√
n

,

ϕSn/
√
n(t) = (ϕX1

(t/
√
n))n

=

(
1− 1

2
(t/
√
n)2 + h(t/

√
n)(t/

√
n)2

)n

=

(
1− (−t2/2) + h(t/

√
n)t2

n

)n

From real analysis: ex = limn→∞(1 + x/n)n.

Extension: if xn → x, then ex = limn→∞(1 + xn/n)n.

Applying this to our setup:

x = −t2/2
xn = −t2/2 + h(t/

√
n)t2.

we get limn→∞ ϕSn/
√
n(t) = e−t

2/2.

Conclusion: by P0, it follows that

Sn/
√
n

d−→ Z,

where ϕZ(t) = e−t
2/2. By our characterization result and the factoid from last

section, it follows that Z is a standard normal random variable.

6.22 CLT: multivariate version

Setup: suppose now we have a sum of iid copies of a d-dimensional mean zero
random vector, X1 = (X1,1, X1,2, . . . , X1,d). The interesting bit is that we do
not assume independence across the d dimensions.

Goal: We are interested in approximating the distribution of the sum of vectors∑n
i=1Xi, where Xi = (X1,i, Xi,2, . . . , Xi,d). We assume Xi

d
= Xj for all i, j

and that the Xi are independent (across i ∈ {1, . . . , n}, but still allowing for
dependence within one vector across dimensions k ∈ {1, . . . , d}).
Assumption: we do need to assume some kind of second moment assumption.
In the vector context, this becomes E|X1,kX1,k′ | < ∞. This reduces to our
usual condition if d = 1, so no surprise here.

Theorem: under the above assumptions,

X1 +X2 + · · ·+Xn√
n

d−→ Z,

but this raises a few questions: (1) what does convergence in distribution mean
for random vectors? (2) what is the limiting random vector Z = (Z1, Z2, . . . , Zd),
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and (3) how does this limiting object takes into account the dependence struc-
ture within each Xi?

Convergence in distribution of random vectors: here the trick is to recall
that we have the following definition of univariate convergence in probability

(by Portmanteau): Yn
d−→ Y if

E[g(Yn)]→ E[g(Y )],

for all bounded continuous g. Note that this “univariate” definition actually
immediately generalizes verbatim to random vectors!

Limiting object: recall that a mean-zero normal can be thought of as a den-
sity proportional to exponentiating a polynomial of degree two (with leading
coefficient negative to ensure integrability):

f(x) ∝ exp(−ax2) = exp(−xax),

for a > 0. The density of the limiting object is a generalization of the above
given by

f(x) ∝ exp(−x′Ax),

where x′ is a transpose of dimension 1 by d, A is d by d, and x is d by 1, therefore
the product is a scalar. Here is what the density looks like:

To ensure integrability, we ask that the matrix A be such that x′Ax be positive
for all x ∈ Rd, a condition called positive definiteness. One fact we will assume
from linear algebra is that A being positive definite implies it is invertible.

Multivariate normal: it turns out the reparameterization Σ = 2A−1, called
the covariance matrix, is more interpretable, because then E[ZdZd′ ] = Σd,d′ .
Moreover, the normalization constant has a closed form, which yields the stan-
dard expression for the multivariate normal distribution:

f(x) =
1√

(2π)d|Σ|
exp

(
−1

2
x′Σ−1x

)
.

How to compute Σ in the multivariate CLT: E[ZdZd′ ] = E[X1,dX1,d′ ], i.e.
again we can just look at matching the first two moments of one random vector.

Proving tool: Cramér-Wold device. Let Y and Yn be any random vectors.

Then Yn
d−→ Y if and only if for all scalar v ∈ Rd, Y ′nv

d−→ Y ′v.
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6.23 CLT: self-centered version

So far we have assumed the Xi have zero mean. This can always be done without
loss of generality but it is often useful to memorize the formula that does that
for you: √

n(X̄n − µ)→ N(0,Σ),

where the d dimensional random vector X̄n is the empirical average, X̄n =
(X1 + X2 + · · · + Xn)/n, the d-dimensional vector µ is the mean, µ = E[X1],
and the matrix Σ is the covariance matrix, which in the non-centered case is
Σd,d′ = E[(X1,d − µd)(X1,d′ − µd′)].

6.24 Delta method

Motivation. Recall that the sample variance is given by

S2
n =

1

n

n∑

i=1

(Xi − X̄n)2

and has the property that S2
n

a.s.−→ VarX1. Can we use the CLT to justify a
normal approximation of the distribution of S2

n for n large? Convince yourself
that it does not “quite” fit the statement of the CLT.

Idea: start with a CLT on the 2-d vectors Yi = (Xi, X
2
i ):

√
n(Ȳn − µ)→ N(0,Σ),

where, using the shorthand αj = EXj
1 , µ = (α1, α2), Σ1,1 = α2 − α2

1, Σ1,2 =
Σ2,1 = α3 − α1α2, and Σ2,2 = α4 − α2

2. Then we will transform this CLT into
the convergence statement we want, using a differentiable function φ.

Example: S2
n = φ(Ȳn), where φ(x, y) = y − x2.

Goal: get a new asymptotic approximation on φ(Ȳn) given a known asymptotic
approximation on Ȳn. We already know from the continuous mapping theorem
that φ(Ȳn)

a.s.−→ φ(µ). This suggests looking at convergence in distribution of
√
n(φ(Ȳn)− φ(µ)). (7)

How to tackle the weak limit of this sequence of random variables?

Technique: Taylor expansion of φ around the mean µ,

φ(Ȳn) = φ(µ) + φ′(µ)(Ȳn − µ) + . . . .

Informally plugging the above into Equation (7), we get
√
n(φ(Ȳn)− φ(µ)) ≈ φ′(µ)(Ȳn − µ).

Theorem (delta method): if φ : Rk → Rm is differentiable at µ, and

√
n(Tn − µ)

d−→ T
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then √
n(φ(Tn)− φ(µ))

d−→ φ′(µ)T,

where φ′ is the m by k matrix of partial derivatives, φ′i,j = ∂iφj .

Proof: if assuming continuous differentiation, a simple application of the mean
value theorem, continuous mapping and Slutsky. See e.g. van der Vaart for the
full version.

Exercise: complete the motivation, showing that,

√
n(S2

n −VarX1)
d−→ Z,

where Z is a normal with mean zero and variance α4 − α2
2.

6.25 LLNs and CLTs under relaxed assumptions

Removing all independence assumptions: so far we have allowed depen-
dences between components of random vectors but not across separate random
vectors. This can be considerably relaxed. One of the most useful relaxation is
based on Markov chains. We sketch here the results in their simplest possible
form, and will talk in more depth later.

Markov chains, discrete case: consider a list of random variables X1, X2, . . .
with a distribution constructed as follows:

P(X1 = x) = vx,

where v = (v1, v2, . . . , vN ) is a known vector called a initial distribution, x ∈
{1, 2, . . . , N}, and

P(Xi = x′|Xi−1 = x) = Mx,x′ ,

where M = (Mx,x′) is a known N by N matrix called the transition matrix.

Theorem: if MN has no zero entries,12 there exists a distribution π such that
we have the following LLN:

1

n

n∑

i=1

f(Xi)
a.s.−→ µ =

∫
f(x)π( dx).

and CLT: √
n(X̄n − µ)

d−→ Z,

where Z ∼ N(0, σ2).

What is π? This time it is more complicated than the distribution of one of
the Xi’s, since the distributions are not identical! But it turns out we can still
get a lot of knowledge about π, called the stationary distribution. Similarly for
σ2, called the asymptotic variance. To be continued when we talk about Markov
chains in more depth.

12There are far more general conditions, but they need more setup. We will get to the more
general conditions later.
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6.26 Convergence in Lp

Definition: E|Xn − X|p → 0, denoted Xn
Lp−→ X. Special cases are called

“convergence in mean” (for p = 1) or “convergence in mean square” (for p = 2).

Exercise: show Xn
Lp−→ X implies Xn

P−→ X. Hint: use Markov’s inequality.

Exercise: the converse is not true. Hint: use the example from Section 3.10.

Hierarchy: This extends Section 6.13 into:

Partial converse: back to the relation between convergence in probability and

convergence in mean. For p = 1, we have Xn
P−→ X implies Xn

Lp−→ X if and
only if they are uniformly integrable, defined as: for all ε > 0, there is K > 0
such that supE[|Xn|1(|Xn| ≥ K)] ≤ ε.
Exercise: check that indeed the example from Section 3.10 is not uniformly
integrable.

7 Poisson theory

7.1 Poisson convergence

Motivation: consider the following historical dataset, containing the number
of accidental horse-kick deaths per year in the Prussian army in the 1881–1896
period: 7 deaths in 1881, 1 in 1882, 3, 2, 7, 6, 1, 3, 2, 2, 6, 4, 4, 1, 6, 2. Question:
can we approximate the probability that there are no deaths in 1897?

Proposition: if for some constant λ > 0, Xn ∼ Bin(n, λ/n) and X ∼ Poi(λ),

then Xn
d−→ X.

Proof: a short proof consists in using characteristic functions. As an exercise,
show that the characteristic functions of the binomial random variables in the

89



sequence are given by

ϕXn(t) =

(
1− λ

n
+
λ

n
eit
)n

,

and the characteristic function for the Poisson is given by:

ϕX(t) = exp(λ(eit − 1)).

It is easy to show that for all t, ϕXn(t)→ ϕX(t).

Exercise: show how to solve the motivation problem using this proposition.

Solution: for a Poisson distribution, the maximum likelihood and moment
matching coincide, so we can fit the parameter as follows λ̂ ≈ 1

16 (7+1+· · ·+2) =
3.5625. This yields

P(X = 0) = e−λ̂λ̂0/0! ≈ 2.8%.

Generalization using “triangular arrays:” let Xn,m denote an array with
the variables in each row being independent:

• X2,1, X2,2 are independent.

• X3,1, X3,2, X3,3 are independent.

• etc.

Assume Xn,j ∼ Bern(pn,j), where

1. we have convergence of row sums to λ: limn→∞
∑n
j=1 pn,j = λ,

2. and as we look at larger and larger row indices n the Bernoulli probabilities
become uniformly rare across the columns j: limn→∞maxj pn,j = 0.

Then: Sn = Xn,1 +Xn,2 + · · ·+Xn,n is such that Sn
d−→ X, where X ∼ Poi(λ).

Exercise: show that the earlier result is a special case of this one.

Proof: based on the Stein-Chen coupling method. See textbook p. 459.

7.2 Poisson processes: motivation, definition and construc-
tion

Prerequisite definition: a Radon-Nikodym derivative (RN) is like a density,
but where we build a measure instead of a probability measure. Compare:

• The probability measure ν has density f ≥ 0 with respect to a measure µ
if

ν(A) =

∫

A

f(x)µ( dx).
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• The measure ν has RN derivative f ≥ 0 with respect to a measure µ if

ν(A) =

∫

A

f(x)µ( dx).

Poisson process—motivation and connexion to Poisson convergence:13

• Let n denote the number of nucleotides in your genome (about 3e9 base
pairs).

• Say you are exposed to a small dose of radiation.

• Let Yi denote the indicator that nucleotide i in a cell mutates.

• Say Yi
iid∼ Bern(1e− 9), and let Sn = Y1 + Y2 + · · ·+ Yn.

• By the Poisson convergence section, Sn is approximately Poisson dis-
tributed, with rate parameter λ.

• Now let us view the genome as one line segment [0, 3] (a continuous ap-
proximation of the discrete DNA strand).

• What is the approximate probability of the number of mutation in the
first half of the genome? Last quarter? Are those independent?

Poisson distribution vs. process: the distribution only keeps track of the
total number of mutation, while the process keeps track of where they occur
(equivalently, the number in any subset of genome).

Notation:

• X : the space in which each point sits in (for example, the interval [0, 3]
approximating the genome).

• For A ⊂ X , let NA denote the random number of points that fall in A.

13Reference for the Poisson process: the best reference in my opinion for this part of the
material is the beautiful short monograph by Kingman (1993), “Poisson Processes.”
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From the motivating example: we are interested in cases where:

1. A ∩B = ∅ =⇒ NA and NB are independent.

2. NA ∼ Poi(length of A). Let us denote the length of A by µ(A).

Recall: a nice property of these random variables is:

NAtB = NA +NB ∼ Poi(µ(A) + µ(B))︸ ︷︷ ︸
µ(AtB)

Note: this is an instance of what is called Kolmogorov consistency.

Example 2: random positions of animals in the forest X = [0, 1] × [0, 1],
µ = µ2. Exercise: what are the assumptions we implicitly make if we say the
animal positions are distributed according to a Poisson process?

Assumptions in above example:

1. Solitary animals.

2. Do not avoid each other.

3. No food/water source attracting animals.

We will next discuss how to relax the last assumption, in the context of another
1d example.

Example 3: customers entering a store. Here, X = [0,∞) represents time.
Problem: same expected number of customers between 1am–2am and 1pm–
2pm. Solution? Non-uniform µ, defined via a RN derivative.
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Compute the intensity via

µ(A) =

∫

A

fµ(x) dx.

Then as before,
NA ∼ Poi(µ(A)).

Next: a formal definition of Poisson processes.

Assumptions on µ, called the intensity measure:

1. A measure on (X ,FX ),

2. Can be broken into a countable collection of finite measure segments:
exists countable partition Ai of X such that µ(Ai) <∞ (this property is
called “µ is σ-finite”).

3. The intensity measure is non-atomic: for all x ∈ X , µ({x}) = 0.

Formal definition of a Poisson Process (PP): under the above assumption,
the collection of random variables {NA : A ∈ FX } is called a Poisson process
with intensity µ if:

1. A ∩B = ∅ =⇒ NA and NB are independent.

2. NA ∼ Poi(µ(A)).

Constructive definition:

1. Simulate the point for one of the block Ai at the time:

(a) Simulate the number of points in Ai, NAi ∼ Poi(µ(Ai)).

(b) For j = 1, . . . , NAi :

i. Xi,j is sampled independently according to µ restricted to Ai and
renormalized in order to form a probability distribution, i.e.:

P(Xi,j ∈ B) =
µ(B ∩Ai)
µ(Ai)

.

(c) The random set of points in Ai is Si = {X1, . . . , XNAi
}

2. Return the union S of the points over all the Si’s
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Proof sketch: the distribution of the algorithm satisfies our two defining ax-
ioms.

Lemma: the distribution of S does not depend on the choice of partition {Ai}.
Proof of lemma: consider two partitions {Ai} and {Bi}. We want to show

S{Ai}
d
= S{Bi}. Build a new partition as we did in exercise 4.7

{Ci,j = Ai ∩Bj}.

Show
S{Ai}

d
= S{Ci,j}

and
S{Bi}

d
= S{Ci,j},

where we S{Ai} denote the output of the above algorithm using partition {Ai}.
The key point in the argument is that

NAi
d
=
∑

j

NCi,j ,

which holds by combining additivity of measures

µ(Ai)
d
=
∑

j

µ(Ci,j),

and “additivity” of Poisson distributions,

Xi
iid∼ Poi(λi) =⇒

∑

i

Xi ∼ Poi

(∑

i

λi

)
.

Back to proposition: given the two set A and B in the axiom, just pick
A1 = A and A2 = B, the proof then follows directly from the lemma.

Counts and sets: two equivalent views. The algorithm shows that the PP
can be viewed as a random set of points, denoted S ∼ PP(µ). With a slight
abuse of notation, if µ has RN density fµ, we might also write S ∼ PP(fµ).

7.3 Poisson process with constant intensity on the real
line

Special case: linking our definition of PP to the undergraduate definition.
Assume:

• X = [0,∞)

• µ = uniform.
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Let T1, T2, . . . denote the arrival times, i.e. T1 = inf{t : N[0,t] ≥ 1}, and more
generally, Tk = inf{t : N[0,t] ≥ k}. Then:

P(T1 > t) = P(N[0,t] = 0) (8)

=
et−0(t− 0)n

n!
with n = 0 (9)

= 1− CDF of an exponential (10)

Similarly, each inter-arrival times Ti − Ti−1 are also exponential(1).

7.4 Superposition

Motivation: consider the example concerned with animals in the forest. What
if we consider two species simultaneously, assuming they do not interact?

Proposition (superposition): let {Si}ni=1 denote a collection of PPs, Si ∼
PP(µi), where the intensity measures are defined on a common space, µi : FX →
[0,∞). Then S := ∪iSi ∼ PP(

∑
i µi).

Exercise: prove this using the algorithmic construction and the fact that the
sum of Poissons is Poisson.

Note: this can be generalized to countable unions of PPs, provided that the
sum of intensities is still σ-finite.

7.5 Thinning

Definition (thinning). Let S = {X1, X2, . . . } ∼ PP(µ), Yi
iid∼ Bern(p). We

define the thinned process by using the iid coin flips Yi to decide, for each point
in S, whether we keep this point or not: T := {Xi ∈ S : Yi = 1}.
Proposition (thinning). The random set T defined above by the thinning
procedure is a Poisson process, and its intensity is obtained by scaling down the
original intensity µ: T ∼ PP(pµ), where (pµ)(A) := pµ(A).

Proof: will be easier once we talk about conditioning next week.

Thinning for densities. Suppose now the intensity measure has a RN deriva-
tive, S = {X1, X2, . . . } ∼ PP(fµ). We can let the coin flips be non-identical:
given a position of a point x, let us say we use for the corresponding Y a coin with
success probability p(x) for some p : X → [0, 1]. Then T := {Xi ∈ S : Yi = 1}
is again a PP, this time with intensity RN given by the pointwise product
f(x) = p(x)fµ(x).

Powerful computational trick: let us say you have a complicated intensity
function with RN f from which you would like to simulate a PP. If f is bounded
by M , then you can use the following recipe:
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1. Let fµ = M , the uniform density scaled by M . Note: f(x) = p(x)fµ(x)
for some function p : X → [0, 1], namely

p(x) =
f(x)

fµ(x)
=
f(x)

M
.

2. Simulate S = {X1, X2, . . . } ∼ PP(fµ) which is trivial to do.

3. For each Xi, simulate a Bernoulli Yi with success probability p(Xi).

4. Return T := {Xi ∈ S : Yi = 1}. By the second thinning theorem, this is
distributed according to a PP with intensity f as hoped.

Exercise: generalize this recipe to fµ(x) being some non-constant upper-bound
on f .

7.6 Mapping

Motivation: consider the animals in the forest example. What is the distribu-
tion of the x-coordinates of the random animal locations?

More general setup: suppose we have a mapping φ : X → X ′.
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Exercise: write the projection example using the framework of a mapping φ.

Solution: In the above example, X = [0, 1]2, X ′ = [0, 1], and φ(x, y) = x.

Proposition: Let S ∼ PP(µ). Assume µ?(A) := µ(φ−1(A)) has no atom and
is σ-finite. Then φ(S) ∼ PP(µ?).

7.7 Compound PP

Observation: let us view the collection of random variable NA differently,
writing it as N(·) instead. What is this? A random measure! Now let us fix a
real-valued function f : X → R. We can then define the random integral:

Y =

∫
f dN =

∑

X∈S
f(X).

Definition: Y is called a compound Poisson process.

Next: we would like to gain information about the distribution of Y . We will
see that we can compute its characteristic function:

E
[
eitY

]
= exp

{∫ (
eitf(x) − 1

)
µ( dx)

}
.

Proof: start with f simple:

f =
∑

j

ajδAj .

Let λj = µ(Aj), Nj ∼ Poi(λj), and

Y =
∑

j

ajNj .

We now compute the characteristic function as follows:

E[eitY ] =
∏

j

E[eitajNj ]

=
∏

j

eλj(e
itaj−1)

= exp


∑

j

λj(e
itaj − 1)




= exp

(∫
(eitf(x) − 1)µ( dx)

)
.

Next, for arbitrary f , use DCT to obtain:

E[eitY ] = exp

(∫
(eitf(x) − 1)µ( dx)

)
.
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8 Conditioning

8.1 Background: σ-algebra and information

It will be useful for you to review Section 2.27 before reading this chapter.

8.2 Conditioning on an event

Motivation: a couple has two children. You would like to predict the sex of
the second (youngest) child. Your initial beliefs over the sex of that second child
is 1/2 boy, 1/2 girl. You get one piece of information: at least one of the two
children is a girl. What is the optimal way of updating your beliefs?

Conditioning on an even: consists in an operator that takes as an input:

1. some a priori beliefs (a probability distribution P(·)),

2. as well as an observed event E.

The interpretation of E is that you know the true outcome is somewhere in E,
but you still do not know which outcome in E. The output of conditioning on
an event: a new, updated belief, denoted P(·|E). The optimal value for this
updated belief, for any query set A, is given by:

P(A|E) =
P(A ∩ E)

P(E)
.

Example. In the motivation at the beginning of the section, we are interested in
A andA{, whereA = {(g, g), (b, g)}. The observation is E = {(b, g), (g, b), (g, g)},
hence the updated belief for the motivation question is P(A|E) = 2/3,P(A{|E) =
1/3.

8.3 Conditioning on a random variable

Interpretation: let X and Y be two random variables defined on the same
probability space:

• Y is observed, (e.g. Y = 1E in the motivating example)

• X is the variable you would like to predict (e.g. X = 1A in the motivating
example).

The conditional expectation of X given Y is a new estimator random variable
δ = f(Y ), which can be interpreted as the “best” estimator of X based on Y .
Notation: this random variable δ is denote by E[X|Y ].

Notion of optimality: consider the optimization program

minimize E(f(Y )−X)2,
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where minimization is performed over functions f (technically, over measurable
functions). If a function f∗ maximizes this program and give a finite value to
the objective function, then E[X|Y ] := f∗(Y ).

Exercise: show that in the two children problem, you obtain:

f∗(y) =





0 if y = 0
2/3 if y = 1
any value otherwise.

Solution: we have:

E(f(Y )−X)2 =
1

4

[
(f(0)− 0)2 + (f(1)− 1)2 + (f(1)− 0)2 + (f(1)− 1)2

]

=
f(0)2 + 3f(1)2 − 4f(1) + 2

4
,

hence we see right away that f(0) = 0 and that the values of f are unimportant
except at y = 0 and y = 1. To find f1 = f(1), we compute the derivative with
respect to f1 and get

d

df1

(
3f2

1 − 4f1 + 2

4

)
=

3

2
f1 − 1,

hence finding the root we get indeed f1 = 2/3.

Note: by the discussion in Section 8.1, note that we only used Y via σ(Y ). For
this reason, we can define the notion of conditioning on a σ-algebra F , denoted
E[X|F ], in the same way as we did above.

Notation: ‖X‖2 :=
√

E[X2], L2 := {r.v. X : ‖X‖2 <∞}.
Note: we will see that the above definition always works when Y ∈ L2. To
generalize this to Y ∈ L1, we will make use of a generalization of a property
which is itself very important in practice: the law of total expectation.

8.4 The law of total probability and expectation

Useful property: the law of total expectation:

E[X] = E[E[X|Y ]],

and its associated law of total probability, a special case where X = 1A:

P(X ∈ A) = E[P(X ∈ A|Y )].

Example/exercise: suppose that

U ∼ Unif(0, 1)

X|U ∼ Bin(n,U),
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Show that P(X = i) = 1/(n + 1) using the law of total probability. Hint: use
the Beta function, defined for x > 0 and y > 0:

B(x, y) =

∫ 1

0

ux−1(1− u)y−1 du =
Γ(x)Γ(y)

Γ(x+ y)
,

where Γ denotes the Gamma function, which for integer x satisfies Γ(x) =
(x− 1)!.

Notation used above: what do we need precisely by “X|U ∼ Bin(n,U)”?
More generally, suppose {Dy} is some collection of distribution indexed by a
parameter y (e.g. the Binomials indexed by their success probability parameter).
Then the notation “X|Y ∼ D(Y )” means that for all A, P(X ∈ A|Y ) = DY (A).

Solution: by the Law of Total Probability, P(X = i) = E[P(X = i|U)]. By the
distributional statement X|U ∼ Bin(n,U), and the fact that the Binomial dis-
tribution has a known probability mass function in which we plug in (compose)
with the random success probability parameter U :

P(X = i) = E[P(X = i|U)]

= E
[(
n

i

)
U i(1− U)n−i

]

=

(
n

i

)
E
[
U i(1− U)n−i

]
.

Now the last line is the expectation of a function g(u) = ui(1 − u)n−i of a
uniform random variable. Therefore we can compute as:

P(X = i) =

(
n

i

)
E
[
U i(1− U)n−i

]

=

(
n

i

)
B(i+ 1, n− i+ 1)

=
1

n+ 1
,

using the hint.

Discrete case: to get more intuition on the law of total expectation/proba-
bility, let us first assume that Y is simple, Y =

∑n
i=1 ai1Ai , where Ai forms a

partition. By simple set properties:

P(A) =

n∑

i=1

P(A ∩ (Y = ai))

=

n∑

i=1

P(A|Y = ai)P(Y = ai).

Now, let:

f(y) =

{
P(A|Y = y) if y ∈ {a1, . . . , an}
arbitrary, otherwise.

(11)
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Conditioning on a random variable can be thought as introducing a nice notation
for this identity, P(A|Y ) := f(Y ). This also provides a way to generalize to
conditioning into a non-discrete random variable.

Next: we first generalize the above to cases where we select only a subset of
the blocks in the partition. To formalize this, let B ⊂ {a1, . . . , an}, then a set
of blocks can be denoted as H := (Y ∈ B), i.e. H ∈ σ(Y ). With this notation,
show that:

P(A ∩H) = E[1HP(A|Y )].

Definition of conditional probability: we will use this property, which we
have shown to hold for simple Y , as the basis of our fully general definition
of conditional probability. Let Y ∈ L1. Then there exists a random variable,
denoted P(A|Y ), such that:

1. P(A|Y ) ∈ σ(Y ), (i.e. P(A|Y ) is an estimator based only on the information
offered by Y )

2. for all H ∈ σ(Y ), P(A ∩H) = E[1HP(A|Y )].

Moreover this random variable is almost sure unique.

Ingredient for the proof: Radon-Lebesgue-Nikodym theorem let (Ω,G)
denote a measurable space with two measures ν and µ. Then µ(A) = 0 ⇒
ν(A) = 0 (a property called “ν is absolutely continuous with respect to µ”,
denoted ν � µ), if and only if ν has a density with respect to µ, i.e. ν(A) =∫
A
f dν for some f ∈ G.

Proof of existence of conditional expectation: let G = σ(Y ), and define,
for all H ∈ G, ν(H) = P(A ∩ H) and µ(H) = P(H). Since µ(H) = 0 =⇒
ν(H) = 0, it follows by Radon-Lebesgue-Nikodym that there is a f ∈ G such
that ν(H) =

∫
H
f dµ. This yields the result with f = P(A|Y ).

Proof of uniqueness: suppose there are two random variables Z1 = P(A|Y )
and another one Z2 both satisfying the two conditions in the definition of con-
ditional probability. We have E[1HZ1] = P(A ∩ H) = E[1HZ2], therefore
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E[1H(Z1 − Z2)] = 0 for all H ∈ σ(Y ). Take H = (D > 0), we get by Cheby-
shev, E[1HD] = 0 =⇒ P(D > 0) = 0. By a symmetrical argument on Z2 − Z1,
P(D < 0) = 0.

Definition of conditional expectation: a generalization of the above yield
also the definition conditional expectation. Let X,Y ∈ L1 be defined on a com-
mon probability space. Then there exists a random variable, denoted E[X|Y ],
such that:

1. E[X|Y ] ∈ σ(Y ), (i.e. E[X|Y ] is an estimator of X based on Y )

2. for all H ∈ σ(Y ), E[1HX] = E[1HE[X|Y ]].

Moreover this random variable is almost sure unique.

8.5 Key properties

Important exercise: suppose (X,Y ) have joint density f(x, y). Then E[X|Y ] =
ψ(Y ), where

ψ(y) :=

{ ∫
xfX|Y (x|y) dx if fY (y) > 0

arbitrarily, otherwise,

fX|Y (·|y) ∝ f(·, y)

:=
f(·, y)

fY (y)

fY (y) :=

∫
f(x, y) dx.

Terminology: the function fY (·) is called the marginal density, and the func-
tion fX|Y (·|y), the conditional density. Note that these are indeed densities.

Property: when X, g(Y ) ∈ L1,

E[Xg(Y )|Y ] = g(Y )E[X|Y ].

Proof: we have to show that the RHS satisfies the two axioms of conditional
expectation. For (1), clearly it is of the form f(Y ). For (2), let H ∈ σ(Y ), and
suppose first that g(y) = 1B , implying that g(Y ) = 1G, G ∈ σ(Y ). We get:

E[1HX1G] = E[1H1GE[X|Y ]]⇔
E[1H′X] = E[1H′E[X|Y ]],

which is true since H ′ ∈ σ(Y ). Complete the proof using the DCT.
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8.6 Equivalence of the two definitions

So far, we have given two definitions of conditional expectations, one that works
for L2 only, and one that works for L1 and L2. Here we show that for the L2

setup, our new, general definition agrees with the L2 specific earlier definition:

E[(f(Y )−X)2] = E[E[(f(Y )−X)2|Y ]]

= E[E[f(Y )2|Y ]︸ ︷︷ ︸
(f(Y ))2

− 2E[f(Y )X|Y ]︸ ︷︷ ︸
2f(Y )E[X|Y ]

+E[X2|Y ]]

= E[(f(Y )− E[X|Y ])2

︸ ︷︷ ︸
≥0

+E[X2|Y ]− (E[X|Y ])2

︸ ︷︷ ︸
:=Var[X|Y ]

].

Note:

1. the RHS≥ E[Var[X|Y ]].

2. if f(Y ) = E[X|Y ] a.s., then RHS= E[Var[X|Y ]].

8.7 The Bayes estimator (a special case)

Motivation: a complete order over estimator.

Frequentist notion of optimality: since in the MLE (Maximum Likelihood
Estimation) framework we do not place a prior on θ = X, the performance of
an estimator δ depends on the true parameter θ:

MSEθ(δ) = Eθ[(δ − θ)2] = E[(δ − θ)2|θ].

The MLE mimizes this objective function.

Issue: the space of functions (of θ in this case) is not a complete order. There
is not a notion of an a.s. best estimator under the above criterion.

Solution: restrict the class of estimators, e.g. to unbiased ones.

Criticism: can be restrictive/artificially rule out good estimators.
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Bayesian alternative: average over θ, to get a real number summary of each
estimator:

mse(δ) = E[MSEθ(δ)].

Consequence: this yields a complete order over estimator. The name of the
best estimator is called the Bayes estimator, and corresponds to the posterior
mean E[θ|data] with our choice of loss function being the square difference.

Note: the Bayes estimator can be defined for other loss functions, in which case
it involves an optimization problem where the objective function is a conditional
expectation given the data.

8.8 Geometric view of expectation and further properties

Suppose in the remaining of the section that Y ∈ L2.

Recall:

• Real vector space: a set V of points in Rd and a + and · operations
such that a set of useful properties hold (associativity, v1 + (v2 + v3) =
(v1 + v2) + v3, distributivity a(v1 + v2) = av1 + av2, etc (see wikipedia)).

• Abstract vector space: a set of objects V with two operations satisfying
the same properties.

Example: V = L2 = {r.v. X : Ω → R,EX2 < ∞}. Easy exercise: read the
axioms on wikipedia and check they are satisfied with + denoting the addition
of functions and ·, the multiplication of a function by a constant.

Three important ideas from linear algebra.

1. Norm: ‖ · ‖ : V → [0,∞). Key defining property (see wiki for the other
ones): ‖v + w‖ ≤ ‖v‖+ ‖w‖ (triangle inequality).

Examples:

1. V = R2, ‖v‖2 =
√
v2

1 + v2
2 , triangle inequality is the Pythagorean theo-

rem.

2. V = L2, ‖X‖ =
√
EX2, triangle inequality is called Minkowski’s inequal-

ity, described in more detail shortly.

2. Subspace: a “closed” subset of a vector space, W ⊂ V , i.e. such that
v1, v2 ∈W ⇒ v1 + v2 ∈W .

Examples:

1. {points of the form (0, x)} ⊂ R2,

2. W = {Z ∈ L2 : Z ∈ σ(Y )} = {Z ∈ L2 : Z = f(Y ), f measurable}.
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3. Projection: of a point v into a subspace W . This projection is defined as:

argminw∈W ‖v − w‖.

Key example: when V = L2, W as point 2 above:

E[X|Y ] = argminZ∈W ‖Z −X‖
= projection of X into W .

Application: if F1 ⊂ F2, then:

E[E[X|F1]|F2] = E[E[X|F2]|F1]

= E[X|F1].

Proof sketch:

Last few properties of conditional expectations:

1. Linearity: E[aX + Y |F ] = aE[X|F ] + E[Y |F ].

2. Monotonicity.

3. Jensen’s inequality.

4. Chebyshev.

8.9 Geometric view: more details on triangle inequality

Minkowski inequality: is usually proven using Cauchy-Schwarz inequality,
which is a must-know itself.

Cauchy-Schwarz: |〈u, v〉| ≤ ‖u‖2‖v‖2, where 〈·, ·〉 denotes an inner product,
e.g. 〈X,Y 〉 = E[XY ]. This result should be pretty intuitive: suppose you have
two vectors u and v of fixed length and you want to maximize their dot product.
How to do this? Make them point in the same direction! In this case we actually
get equality. In the case of a real vector space, this is clear from the identity
〈u, v〉2 = (‖u‖2‖v‖2 cos θ)2 ≤ (‖u‖2‖v‖2)2, where θ is the angle between the two
vectors. See wikipedia for the general proof.
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Minkowski from Cauchy-Schwarz:

‖X + Y ‖22 = E|X + Y |2
≤ E[(|X|+ |Y |)|X + Y |]
= E[|X| × |X + Y |] + E[|Y | × |X + Y |]
≤ ‖X‖2‖X + Y ‖2 + ‖Y ‖2‖X + Y ‖2 (using Cauchy-Schwarz)

= (‖X‖2 + ‖Y ‖2)‖X + Y ‖2.

Finally, divide each side by ‖X + Y ‖2.

Generalizations: to go from L2 to Lp, p ≥ 1 is easy. Search Hölder’s inequality
and use that instead of Cauchy-Schwarz in the above argument.

8.10 Conditional independence

Conditional independence of events: events A and B are conditionally
independent given C, denoted A ⊥⊥ B|C, if

P(A ∩B|C) = P (A|C)P (B|C).

Notice this is just the standard notion of independence applied to a conditional
probability P(·|C).

Conditional independence of random variables: two random variables X
and Y are conditionally independent given Z, X ⊥⊥ Y |Z, if

E[g1(X)g2(Y )|Z] = E[g1(X)|Z]E[g2(Y )|Z]

for all bounded continuous g1, g2.

Exercise: independence does not imply conditional independence, and condi-
tional independence does not imply independence. Hint: consider the following

1. The random variables X1, X2, X3 corresponding to the position of a player
of ladders and snakes at turns one, two and three (ignore the snakes
and ladders for simplicity), X1 ∼ Unif(1, . . . , 6), Xi|Xi−1 ∼ Unif(Xi−1 +
1, . . . , Xi−1 + 6).

2. The random variable S = Y1 + Y2 where Y1 and Y2 correspond to the
throwing of two dice.

8.11 Directed graphical models

Generative model: a description of a joint distribution as a product of con-
ditional distribution. By the chain rule, this can always be done, but typically
we expect a generative model to be such that each conditional distribution can
be efficiently simulated from.
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Example: (made up)

X1 ∼ Unif(0, 1/2, 1)

X2|X1 ∼ Bern(X1)

X3|X1, X4 ∼ Poi(1 +X1 +X4)

X4 ∼ Bern(1/3)

X5|X3 ∼ Unif(0, .., X3)

X7 ∼ Geo(1/4)

X6|X4, X7 ∼ Unif(X4, X7)

X8 ∼ Norm(0, 1)

Motivation for directed graphical models: they help us address the fol-
lowing two problems:

1. Design an algorithm to sample from the joint distribution f(x1, x2, . . . , x8).

2. Efficiently establish some conditional independence relationships. For ex-
ample, do we have X4 ⊥⊥ X2|X1, X5, X6? We will cover this in the next
section.

First problem: sampling from the joint distribution. This task arises
when you need to generate “synthetic data” in a Bayesian context. This is also
called “forward sampling.” The basic problem is that if there are n variables,
the chain rule can be written in n! ways. Which one to pick? E.g.: compare
these three orders

1. f(x1, x2, . . . , x8) = f(x1)f(x2|x1)f(x3|x1, x2)f(x4|x1, x2, x3) . . . f(x8|x1, . . . , x7),
and order we denote by (1, 2, 3, 4, 5, 6, 7, 8),

2. order (1, 4, 7, 2, 3, 6, 5, 8),

3. order (8, 1, 2, 4, 3, 5, 7, 6).

It is much easier to simulate from order 2 than order 1. Why? At the same
time, order 2 is not unique: 3 would be just as efficient. Directed graphical
models will bring much clarity here:

Definition: a directed graphical model is a directed model where nodes are
variables and there is an edge from variable Xi to Xj if the conditional distri-
bution of Xj in the generative model depends on Xi.

Example. For the previous generative model, we obtain:

107



X1

X2 X3

X4

X5

X6

X7

X8

Forward sampling using graphical models: pick an order (i1, i2, . . . ) such
that the edges of the graphical model are respected, i.e. for all edge (ik → il),
the first end point appear earlier in the order compared to the second, k < l.
This is called a linearization of a partial order, and can be performed in linear
time in the size of the graph, via an algorithm called topological sorting.

8.12 Establishing (conditional) independence relations us-
ing directed graphical models

Establishing certain independence relations. Let us start with indepen-
dence, and do conditional independence after.

Idea: We can sometimes infer independence relationships just by looking at the
shape of the graphical model.

Example: using the same graphical model as before, suppose we want to find
if X4 is independent of X7.

Bayes ball algorithm for independence. The rules of this algorithm are as
follows:

1. Two nodes communicate if there is some path following the graphical rules
below. In this case we cannot say just from the graphical model if the
random variables are independent

2. If there are no such path, the nodes do not communicate. In this case we
can conclude the random variables are independent
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Exercise: In our usual example, which nodes are guaranteed to be independent
of X4?

Solution: X1, X2, X7, X8.

Conditional independence. Suppose now we want to find conditional inde-
pendence statements. We first extend our notion of graphical model:

Convention: shade in grey the random variables that we want to condition
upon.

Example. In our recurring model, let us condition on X1, X5, X6.

X1

X2 X3

X4

X5

X6

X7

X8

Bayes ball algorithm for independence. The algorithm works in the same
way but with the following extended rule set taking into account shaded nodes:

Example: From the usual graphical model, which of the white nodes14 are
guaranteed to be conditionally independent of X4 given the shaded nodes?

Solution: X2 and X8.

14Shaded nodes are always conditionally independent, since, for any events A, B, C:
P(AB|BC) = P(A|BC)P(B|BC) = P(A|BC).
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9 Markov chains

9.1 Basic definitions and examples

Informal: A sequence of random variables where the future is independent of
the past given the present.

From the graphical model point of view: a chain-shaped graphical model.

Formal: a sequence of random variables Xi : Ω → X is Markov if for all
A ∈ FX ,

P (Xn+1 ∈ A|X0, X1, . . . , Xn) = P(Xn+1 ∈ A|Xn).

Examples:

1. Let E denote a set of undirected edges over X . Define

P(Xn+1 = x|Xn) =
1

Z(Xn)
1[{x,Xn} ∈ E].

Note that the normalization Z(x) is given by the number of nodes con-
nected to x. For example Z(f) = 3 below:

To make this more interesting, consider the vertices of the graph given by
the location of a knight on a game of chess (8x8 square), and the edges
given by the moves allowed for the knight (L shaped moves moving by one
square in one axis, and 2 in the other axis).

2. The Wright-Fisher model: suppose that N bacteria can live in a Petri
dish. There are two species, blue and green bacteria. In the first day,
there are X1 green and N −X1 blue bacteria. In the next day, there are
still N bacteria, the descendants from the previous generation. The parent
of each of the N in day 2 are selected independently and uniformaly from
those in day 1. The color is inherited without mutation. This mean:

P(Xn = k|Xn) =

(
N

k

)(
Xn

N

)k (
1− Xn

N

)N−k
.

Note that Xn = 0 ⇒ Xn+1 = 0, and Xn = N ⇒ Xn+1 = N . These are
called absorbing states.
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9.2 Representation under the homogeneity condition

Note: from the previous part on conditioning, we have that P(Xn+1 = y|Xn) =
f(Xn) for some f(x). In fact, this function will also depend on y and n. We
denote it by pn(x→ y) and call it the transition probability.

Definition: a Markov chain is homogeneous is pn(x → y) = pn+1(x → y) for
all n, x, y. We denote it by p(x→ y).

Visualization: of p(x → y) via a state diagram. Consider a directed graph
where the nodes are the points in X and where the is an edge (x → y) ∈ E if
and only if p(x → y) > 0. Informally, this encodes the sparsity patterns of the
transition probabilities.

Note: if Xn is finite and homogeneous, it is characterized by 2 objects:

1. the transition probabilities, p = pn,

2. an initial distribution with pmf µ, P(X = x) = µ(x).

Notation: it is often useful to have the initial distribution put all the mass on
a single point x, in which case we write Px. E.g. Px(X1 = y) = p(x→ y).

9.3 First connection with linear algebra: Chapman-Kolmogorov
equation

Matrix notation for transition probabilities: to create connections with
linear algebra, it will be useful to organize the transition probabilities into a
matrix (assuming without loss of generality that X = {1, 2, . . . ,K}): Mx,y =
p(x→ y).

Vector notation for pmfs over the states: if µ is a pmf over X (for example,
an initial distribution), we can view it as a vector, µ = (µ(1), µ(2), . . . , µ(K)).

How to find the 2-step transition, i.e. P(Xn+2 = y|Xn = x)? As usual we
reintroduce the random variable Xn+1 using marginalization/the law of total
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probability:

P(Xn+2 = y|Xn = x) =
∑

z∈X
P(Xn+2 = y,Xn+1 = z|Xn = x)

=
∑

z∈X
P(Xn+1 = z|Xn = x)P(Xn+2 = y|Xn = x,Xn+1 = z) (chain rule)

=
∑

z∈X
P(Xn+1 = z|Xn = x)P(Xn+2 = y|Xn+1 = z) (Markov assumption)

=
∑

z∈X
p(x→ z)p(z → y)

= (M2)x,y.

Exercise: show that more generally,

µMn = (P(Xn = 1),P(Xn = 2), . . . ,P(Xn = K)).

9.4 Hitting probabilities

Setup: suppose we have an homogeneous finite state Markov chain Xn with
exactly two absorbing states, denoted x1 and x2.

Example/exercise: create a state space to model two-players snakes and lad-
ders. The interpretation of x0 is that the first player wins, and x1, that the
second player wins.

Definition: a hitting time Tx is the first time (possibly infinity) that a state x
is reached, i.e. Tx = inf{n : Xn = x}.
Idea: solve a bigger problem! What are the hitting probability for all start-
ing points, i.e. computing h(x) = Px(Tx1 < Tx2). This allows us to build a
recurrence between these problems.

Some easily obtained constraints on h:

1. h(x1) = 1 and h(x2) = 0.

2. 0 ≤ h ≤ 1.

3. Exercise (using an argument similar to the one used for the Chapman-
Kolmogorov equation):

h(x) =
∑

y∈X
p(x→ y)h(y).
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Main result: these constraints can be used to find the numerical value of
h(x). More precisely, h(x) is the minimum function satisfying the above three
conditions.

9.5 Asymptotic behavior: overview

Assumptions: In the following, we will:

• always assume homogeneity,

• start by assuming finite X , then relax later on.

We will cover two main results, used in different contexts:

1. The law of large number for Markov chains. Informally, that sums con-
verge to a constant:

1

N

N∑

n=1

f(Xn)
a.s.−→ c,

where this constant is obtained by an expectation, c = E[f(X∞)], and
π(x) = P(X∞ = x) is called the stationary distribution. This is used for
example in the context of Markov chain Monte Carlo (MCMC), covered
next week. This only requires a simple condition called irreducibility in
our setup.

2. Convergence of marginals:

P(Xn = x)→ P(X∞ = x),

used for example to determine how many times you need to shuffle a deck
of cards. It uses a second condition called aperiodicity in addition to the
irreducibility condition mentioned above.

9.6 Law of large number for Markov chains

Definition: a directed path x; y in the state diagram of a Markov chain is a
list of connected edges x = x1 → x2 → · · · → xn = y where (xi → xi+1) ∈ E.

Definition: a Markov chain is irreducible if there is a directed path between
each ordered pair of states.

Example: which of those Markov chains are irreducible, if any?

Solution: the middle one only, M ′′.

Theorem: if Xn is:
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1. Markov,

2. homogeneous,

3. finite,

4. irreducible,

then

1

N

N∑

n=1

f(Xn)
a.s.−→ E[f(X∞)],

where

π(x) = P(X∞ = x) =
1

ExTx
.

This is true for any initial distribution µ.

Examples:

1. Consider the famous board game Monopoly. What is the fraction of the
rounds where there is a player at one of the squares, say Park Place? In
this example, f(x) = 1[x = Park Place].

2. Justification that Markov chain Monte Carlo algorithms can provide arbi-
trarily good approximations if the user is patient enough, without having
to resort to thinning/restarts/burn-in!

Proof idea: i-block, which is a subset of the Markov chain trajectory from
one visit to a fixed arbitrary state i to the next visit to i. We will related the
average length of these blocks to the inverse of the expected time spent at i.
Now these blocks are iid, which will allow us to use the LLN.

Lemma/exercise: E[Ti] < ∞ since the chain is finite and irreducible (recall
that Tx is a hitting time, defined in the previous section).

Main steps of the proof of LLN:

1. It is enough to show the theorem is true for the test function

f(x) = 1[x = i]

for some fixed reference state i.
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2. Define Nn =
∑n
j=1 1[Xj = i], the number of visits to i in the first n steps.

We will show that 1
nNn → 1/Ex[Tx], almost surely.

3. Define R(k) = inf{n : Nn = k}, the time of the k-th return at i.

4. Note: is we let |Bj | denote the length of the j-th i-block, R(k) = |B1| +
|B2|+ · · ·+ |Bk−1|.

5. Hence, by the LLN, R(k)/(k − 1)→ Ex[Tx] almost surely.

6. Note: R(Nn) ≤ n ≤ R(Nn + 1). For example, in

we have
R(Nn)︸ ︷︷ ︸
R(2)=7

≤ n︸︷︷︸
10

≤ R(Nn + 1)︸ ︷︷ ︸
R(3)=13

7. Dividing everything in the above inequalities by Nn, we get 1
nNn →

1/Ex[Tx], almost surely.

CLT exercise: a similar argument yield a CLT! Under the same conditions as
the previous theorem (note we are still in finite state space, so existence of all
moments is guaranteed): there exists a constant c such that

√
n(X̄n − µ)

d−→ Z,

where Z ∼ N(0, c).

9.7 Extension to countably infinite spaces

The main difficulty is that the fact that F is countable and Xn is irreducible
does not imply that ExTx <∞.

Counter-example: from earlier in the course, a drunk bird might not return
home. Recall, using BC 1, if we let An = (Xn = (0, 0, 0)), then P(An i.o.) = 0,
implying that Px(Tx =∞) > 0, so that ExTx =∞.

Solution: add an assumption. We say that a state is positive recurrent if
ExTx < ∞. With this additional assumption, the LLN holds in countably
infinite spaces.

Note on terminology: why “positive” recurrent? To differentiate from a
weaker condition, just called “recurrence”, defined by ExNx = ∞. Now this
is subdivided into two sub-cases, positive recurrent, defined above, and null
recurrent, where ExTx = ∞ but ExNx = ∞. Finally, the opposite of recurrent
is transient.
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Exercise: find an example which is null recurrent. Hint:

9.8 Convergence of the marginals and coupling

Now, we would like to investigate the convergence of the marginals, which, using
our linear algebra, boils down to investigating limn→∞Mn (note that we get
back to the finite case for now).

Problem: just the conditions we used for the LLN are not enough! Counter
example:

Note: we have a LLN,

1

N

N∑

n=1

1[Xn = a]
a.s.−→ 1

2
,

but the marginals alternate between two matrices:
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Solution: add an assumption, aperiodicity. To define it, we will need a few
definitions.

Definition: the period of x ∈ X is defined as dx = gcd{n : (Mn)x,x > 0}.
Definition: a state is aperiodic if dx = 1. A chain is aperiodic if all states are
aperiodic.

Examples:

Note that for the first example, we write the gcd relative to two different start
states but get the same results. This will always hold in general.

Theorem: if Xn is:

1. Markov,

2. homogeneous,

3. finite,

4. irreducible,

5. aperiodic,

P(Xn = x)→ P(X∞ = x),

for any initial distribution µ.

Other notation for the result: the above means that limn→∞Mn exists and
is composed of identical rows. Let us denote this limit by L. Let us denote its
identical rows by π.
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Note: this means that L = LM , i.e. π = πM , or

π(y) =
∑

x∈X
π(x)p(x→ y).

This is called the stationary equation or global balance equation.

Application: debugging of MCMC algorithms (more on this later).

Note: this provide another connection with linear algebra, namely that the
stationary equation is an eigenvector of MT .

Proof idea for the convergence of the marginals: coupling.

1. We build two chains Xn and Yn. Marginally, both have transition proba-
bilities p(x→ y).

2. X0 ∼ π, while Y0 ∼ µ.

3. Xn and Yn make their transitions independently until they meet for the
first time, at which point they stay together forever.

4. Note: X0 ∼ π ⇒ Xn ∼ π for all n.

5. Let T denote the time the two chains meet: T = inf{n : Xn = Yn}.
6. It is therefore enough to show that the two chain meet “quickly,” formally

that P(T > n) → 0. This is where aperiodicity is used! What happens if
not irreducible? Consider counter example at the beginning of the section
to understand the importance of irreducibility.

7. To conclude the argument, note first that

P(Xn = y, T ≤ n) =

n∑

m=1

∑

x

P(T = m,Xm = x,Xn = y)

=

n∑

m=1

∑

x

P(T = m,Xm = x)P(Xn = y|T = m,Xm = x) (chain rule)

=

n∑

m=1

∑

x

P(T = m,Ym = x)P(Xn = y|T = m,Xm = x) (by def. of T )

=

n∑

m=1

∑

x

P(T = m,Ym = x)P(Yn = y|T = m,Ym = x) (by homogeneity)

= P(Yn = y, T ≤ n)

which implies

|P(Xn = y)− P(Yn = y)| = |(P(Xn = y, T ≤ n) + P(Xn = y, T > n))

− (P(Yn = y, T ≤ n) + P(Yn = y, T > n))|
= |P(Xn = y, T > n)− P(Yn = y, T > n)|
≤ P(Xn = y, T > n) + P(Yn = y, T > n),
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hence, summing over y,

∑

y

|P(Xn = y)− P(Yn = y)| ≤
∑

y

(P(Xn = y, T > n) + P(Yn = y, T > n))

= 2P(T > n).

Definition: the quantity 1
2

∑
y |p(y) − q(y)| obtained by rearranging the last

inequality in the proof is called the total variation distance between distributions
p and q.

10 Application: MCMC

10.1 Motivation

Setup: let y denote an observation and x denote an unknown quantity (param-
eter and/or future or interpolated observation, discrete latent variables, etc).

Two approaches:

1. In practice, at the core of maximum likelihood approaches, a key operation
consists in maximizing a likelihood, x∗ = argmax pY |X(y|x), often via
some optimation tools.

2. In practice, at the core of most practical Bayesian approaches, a key opera-
tion consists in sampling from a posterior distribution x(i) ∼ pX(x)pY |X(y|x),
often via an approximate sampling method such as MCMC (Markov chain
Monte Carlo) or SMC (sequential Monte Carlo).

Cases where the second method is advantageous:

1. Obtaining uncertainty estimates over combinatorial structures. In this
case, typical method to get confidence intervals around maximum likeli-
hood estimate either fail (e.g. those based on CLT), or are very inefficient
(e.g. the bootstrap).

2. Cases where the maximum of a density is not a good summary. This can
arise in situations from partial unidentifiability and stochastic processes
for example.

10.2 How to use posterior samples

Let us say we are given x(1), x(2), · · · ∼ pX(x)pY |X(y|x). How should these be
used? There is often something more optimal than say taking the sample with
highest posterior (something beginners often resort to).

Bayesian recipe: the Bayesian framework specifies a 3-steps recipe to ap-
proach this question.
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1. Specify a loss function L over the possible output (decisions/things you
are trying to predict). Example: rand loss over clusterings.

2. Compute the posterior distribution. In practice, this is done using an
approximate method such via samples x(1), x(2), . . . coming from MCMC.

3. Minimize the posterior expected loss:

argminxE[L(x,X)|Y ] ≈ argmin

N∑

i=1

L(x, x(i)).

Note that we are optimizing, but not a density as in maximum likelihood,
rather we are optimizing an integrated loss function. Example/exercise:
write the objective function in the case of a rand loss on clusterings.

Pros:

• Statistical efficiency (admissibility, asymptotic efficiency, etc).

• Can be automated via probabilistic programming.

• Combinatorial latent variables supported.

• Correct behavior under partial unidentifiability.

Con: the main con is computational. Many sampling problems have been
shown to belong to a provably computationally difficult class of problems called
“#P hard problems” (a trickier version of NP hard problems).

10.3 Examples of MCMC algorithms on Ising models

Motivation: computer vision, spatial statistics (see lecture slides for some
visualizations).

Basic model: consider a 3x3 grid with each node representing a binary variable.
The state space is X = +1,−13·3. Notation: if x ∈ X , we write xi,j for the
value of the variable at node at row i and column j in the grid. We write
(i, j) ∼ (i′, j′) if two nodes (i, j) and (i′, j′) are immediate neighbors, i.e. if
|i− i′|+ |j − j′| = 1. Define the following distribution:

π(x) = P(X = x) =
1

Z
exp


 ∑

(i,j)∼(i′,j′)

xi,jxi′,j′


 . (12)

Note: Z can quickly become very hard to compute as the grid gets larger. We
have:

Z =
∑

x∈X
exp


 ∑

(i,j)∼(i′,j′)

xi,jxi′,j′


 ,
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and just for a 100x100 grid, this means we would have to sum over 210000
vectors!

Example of query: what is P(X1,1 = +1) = E[1[X1,1 = +1]]. Here the “test
function” is g(x) = 1[x1,1 = +1].

Idea:

1. Build/simulate a Markov chainX(1), X(2), . . . whereX(t) is a vectorX(t) =

(X
(t)
1 , . . . , X

(t)
9 ) taking values in X , and such that the stationary distribu-

tion is equal to Equation (12).

2. Use the Law of large numbers for Markov chain!

Challenge: how to create a Markov chain with a prescribed stationary distri-
bution? We will cover two methods (in the analysis, we will reveal that the first
is actually a special case of the second):

1. Gibbs sampling.

2. Metropolis-Hastings (MH) algorithms.

10.4 Gibbs sampling

Gibbs algorithm:

1. Initialize the 3x3 grid x(0) arbitrarily.

2. Loop i = 1, 2, 3, . . . , N (until enough samples are produced):

(a) x(i) ← copy of x(i−1)

(b) Sample one of the 9 variable indices uniformly, (i∗, j∗) ∼ Uni((1, 1), (1, 2), . . . , (3, 3))

(c) Sample a new value x′i∗,j∗ ∈ {−1,+1} for X
(i)
i∗,j∗ by sampling from:

P(Xi∗,j∗ = x′i∗,j∗ |Xi,j = x
(i)
i,j for all (i, j) 6= (i∗, j∗)). (13)

3. Estimate the expectation(s) of interest using:

1

N

N∑

i=1

g(x(i)).

Note: by Bayes rule, Equation (13) is proportional to π(x′)1[x′ ∈ N(x(i−1))],
where N(x) = Ni∗,j∗(x) denotes the set of configurations x′ in X that can be
reached from x by changing only variable i∗, j∗. Formally: N(x) = {y ∈ X :
xi,j = yi,j for all (i, j) 6= (i∗, j∗)}.
Exercise: compute Equation (13) for the Ising example.

Analysis: we will now analyze the behavior of this algorithm as a Markov chain
with transitions denoted by p.
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• State space: X . Too large to build the transition matrix Mx,y = p(x→ y)
explicitly! But note that we do not have to if we just want to simulate.
Key: each row is sparse. Why?

• Simplification: to start with assume we are always picking a fixed node,
say (2, 2), in step 2b of the Gibbs algorithm, instead of picking it from a
uniform distribution. We will relax this simplifying assumption soon.

• Under this simplification, the form of p(y → x) is just:

p(y → x) =
π(x)1[x ∈ N(y)]∑

x′∈N(y) π(x′)
.

• Goal: to show that p(x→ y) satisfies the stationary equation, i.e. that if p
is as the previous bullet point and π as specified by our target distribution,
Equation (12), then we have π(x) =

∑
y∈X π(y)p(y → x).

Now we have:

∑

y∈X
π(y)p(y → x) =

∑

y∈X
π(y)

π(x)1[x ∈ N(y)]∑
x′∈N(y) π(x′)

= π(x)
∑

y∈X
π(y)

1[x ∈ N(y)]∑
x′∈N(y) π(x′)

= π(x)

∑
y∈X π(y)1[y ∈ N(x)]∑

x′∈N(y) π(x′)
(Note that y ∈ N(x)⇔ x ∈ N(y))

= π(x).

10.5 Metropolis-Hastings (MH) algorithms

Limitations of Gibbs: it may be difficult to sample from Equation (13) in
certain problems.

MH inputs:

1. A target distribution π that we can evaluate pointwise.

2. A proposal distribution/transition q(x → y) from which we can simulate
q(x→ ·) and evaluate pointwise.

3. A test function g.

MH algorithm:

1. Initialize:

(a) x(0) arbitrarily,

(b) F ← 0
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2. Loop i = 1, 2, 3, . . . , N (until enough samples are produced):

(a) Propose a new state, x′ ∼ q(x(i−1) → ·)
(b) Compute:

A(x(i−1) → x′) = min

{
1,

π(x′)q(x′ → x(i−1))

π(x(i−1))q(x(i−1) → x′)

}
.

(c) Let A(i) ∼ Bern(A(x(i−1) → x′))

i. If A(i) = 1, then x(i) ← x′

ii. If A(i) = 0, then x(i) ← x(i−1)

(d) F ← F + f(x(i))

3. Return F/N

Note: the density π always appears in a ratio in the MH algorithm, therefore
we do not need to know the normalization constant Z:

π(x′)

π(x)
=
γ(x′)/Z

γ(x)/Z
=
γ(x′)

γ(x)
.

Practical note: it is often preferable to compute the numerator and denomi-
nator in log-scale and exponentiate only after taking the ratio.

Special cases:

• When q is symmetric (for example, an isotropic normal), the q’s cancel
out in the ratio.

• When q(x → x′) is independent of x, the algorithm is called an inde-
pendence chain. Note however that the behavior of the algorithm is still
dependent on the previous state because of the accept reject step.

Analysis: we will now analyze the behavior of this algorithm as a Markov chain
with transitions denoted by p.

Assume: first that x 6= y. What is p? To move from x to y, the chain needs
to propose y, and then accept it:

p(x→ y) = q(x→ y)A(x→ y).

Note: make sure you understand the difference between the proposal q and the
Markov chain p used to analyze the algorithm.

Lemma: detailed balance, π(x)p(x → y) = π(y)p(y → x) for all x, y ∈ X
implies global balance, π(x) =

∑
y∈X p(y → x)π(y).

Proof of lemma: sum over y on both sides of the detailed balanced equation.
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Proof of MH π-invariance: if x 6= x′, we have

π(x)p(x→ x′) = π(x)q(x→ x′)A(x→ x′)

= min{π(x)q(x→ x′), π(x′)q(x′ → x)}
= min{π(x′)q(x′ → x), π(x)q(x→ x′)}
= π(x′)q(x′ → x)A(x′ → x)

= π(x′)p(x′ → x).

Finally, if x = x′, the result holds by inspection.

Exercise: show that if q is a conditional distribution of the target distribution,
the acceptance ratio is one. Conclude that the Gibbs sampler is a special case
of the MH algorithm.

10.6 Irreducibility of MCMC algorithms

Several of the samplers we have defined so far (in particular, the Gibbs sampler)
satisfy the global balance equation (i.e. are π-invariant), but they do not have a
LLN. Why? Because they are not irreducible. Fortunately, it is easy to restore
irreducibility. This is done via combinations of MCMC kernels.

Combination of MCMC kernels. Let us denote a collection of π-invariant
kernels by p1, p2, . . . , pL. For example in the Gibbs sampler over a M -by-M
grid, we would have one of these kernels for each of the L = M2 nodes. We can
combine them using the following methods:

Mixture: where at each step we first pick one of the L kernels and do one
MCMC iteration with it. Formally, this create a MCMC kernel given by

pmix(x→ x′) =
∑

l

1

L
pl(x→ x′).

Non-uniform distributions over the L kernels could also be used.

Alternation: apply the first kernel, then the second one, then the third one,
.., the L-th one, and loop back to the first one. Formally, this create a
MCMC kernel given by

palt(x→ x′) =
∑

x1∈X

∑

x2∈X
· · ·

∑

xl−1∈X
p1(x→ x1)p2(x1 → x2) · · · pL(xl−1 → x′).

Randomized alternation: first, sample a permutation of {1, 2, . . . , L}, sec-
ond, do one round over all kernels in the order specified by the first step.

Proposition: if each kernel pl is π-invariant, then the three combinations de-
scribed above are also π-invariant.
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Proof for the mixture:

∑

y

π(y)pmix(y → x) =
∑

y

π(y)
∑

l

1

L
pl(y → x) (14)

=
∑

l

1

L

∑

y

π(y)pl(y → x) (15)

=
∑

l

1

L
π(x) (16)

= π(x). (17)

Exercise: prove that the other combination schemes are also π-invariant.

Exercise: conclude that the Ising Gibbs sampler is irreducible and hence that
the LLN holds.
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