
Stat 547 — Assignment 2

Release Date: Wednesday March 31, 2011
Due Date: Wednesday, April 14 (possible extension TBA)

You should submit a written report under my office door (LSK 330) as well as
a zipped file by email containing the “answer” and “src” folders (do not include
the other directory to avoid email quotas problems). The report should contain
your work for the written questions as well as a summary of what worked/did
not work in your experiments.

1 Getting the code and data

First, make sure as early as possible that you can access the course materials.

http://www.stat.ubc.ca/~bouchard/pri/stat547-assignment2.zip

The authentication restrictions are due to licensing terms. The username and
password have been announced in class (same as assignment 1), but if for any
reason you did not get it, please let me know by email.
Unzip the downloaded file to your local working directory. It contains both the
data that you will need, some evaluation code, and some harness code that will
help you do the assignment.

2 Technical stuff

Use the same procedure as assignment 1 to get the code harness setup. Create
a new, fresh project. You will probably not need the code from the first assign-
ment in this assignment, but you can always copy contents from the previous
assignments manually later on (if you copy files into a project, you might need
to refresh it by right-clicking and selecting refresh on the project).

3 Dirichlet process (DP) mixtures

In this question, after going over some written questions about properties of
Dirichlet distributions and Dirichlet processes, we will use the Dirichlet process
mixture model to do density estimation.
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3.1 Theory on DPs

We start by looking at some basic properties of Dirichlet processes:

Part A

Suppose G ∼ DP(α0, G0), and let A,B ∈ FΩ be disjoint measurable sets. Eval-
uate E[G(A)G(B)].

Part B

Recall that two simple lemmas on Dirichlet distributions were a key ingredient
in the proof of equivalence of the stick breaking and Kolmogorov consistency
definitions of DPs. Refer to lemma 2.11 and 2.12 in the lecture notes, part 2.
Prove both results. Note that you should not have to use multivariate changes of
variable. Hints: For 2.11, all you need is to represent the Dirichlet distributions
as gamma random variables. For 2.12, use dirichlet-multinomial conjugacy and
the law of total probabilities.

3.2 DP mixture models in practice

In this section, we are going to implement a Dirichlet process mixture model
with a normal likelihood function. You will need R 2.2.12 installed on your
machine (probably other versions work as well, but I haven’t tested). Java will
call R for you to create plots. Important note for windows user: the path to R
should not have spaces in it. This means that if your current R distribution is
in ‘Program File’, the simplest will be to install another R in a path without
spaces (you can always erase it after doing the assignment).
Similarly, your ‘workspace’ folder (the one in which the project sits) should be in
a path that does not contain spaces (e.g. ‘My Documents’ will cause problems).
After installing R, set the variable ‘pathToR’ in the file ‘src/dp/DPMixtureTest’
to the executable you would call from the command line to launch R (be care-
ful about case sensitiveness with linux/mac, e.g. r vs. R). In mac or linux,
type ‘which r’ or ‘which R’ in the command line to find out (often, it will be
‘/usr/bin/r’); on windows, this is the file ‘R.exe’ usually in a subfolder bin of
the R folder.

Part A

Run DPMixtureTest, which is in the directory ‘src/dp/’. It generates data using
a synthetic mixture distribution; if you are curious, you can look at the function
that generates each data point in ‘sampleSyntheticData()’, but it’s probably
simpler to visualize in the output of the program. Each time DPMixtureTest
is started, it create a new execution subfolder in ‘state/execs’. When you are
happy with the answer of one question, copy the x.exec folder over, renaming
it into a section.subsection.part format (e.g. 3.2.A for this question). Inside
the execution subfolder, open ‘true-clusters.pdf’. This is the points that we
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will approximate a density from. After a few seconds, more files will appear
in the execution subdirectory. The files ‘cluster-<iteration#>.pdf’ show the
current clustering of the points, and the files ‘pred-<iteration#>.pdf’ show
the predictive density corresponding to the current sample. The results are
pretty bad so far, simply because there are some parts of the code that need to
completed.
The first part that needs to be completed is the core of the collapsed Gibbs sam-
pler. Open ‘DPState.java’, still in the folder ‘src/dp’. This class is responsible
for keeping track of the current state of the sampler (one cluster indicator for
each datapoint/customer), and to resample customer’s tables, one at the time.
Look at the function ‘doSamplePoint()’, which I have written for you. First,
‘doSamplePoint()’ takes out one customer from its table (since the sufficient
statistics considered here,

∑
xi,

∑
xix

T
i , are linear, this is done by subtracting

the sufficient statistic of the customer from the sum of the sufficient statistic
for the table). Second, ‘doSamplePoint()’ computes an unnormalized condi-
tional probability for each possible operations (inserting at one existing table,
or creating a new table). Finally, ‘doSamplePoint()’ normalizes the multinomial
distribution, sample from it, and apply the selected operation to the datastruc-
tures keeping track of cluster allocations.
Your task will be to implement the second step, which is done by calling
‘logUnnormalizedPrJoinTable()’ and ‘logUnnormalizedPrCreateTable()’, which
respectively compute the unnormalized log probability of joining a table and
creating a table. You will find the following functions useful:

marginalLogLikelihood(y) =
∫

l(y|θ)G0( dθ)

predictiveLogLikelihood(ypred|ycond) =
∫

l(ypred|θ)G0( dθ|ycond),

where l is the likelihood model, and G0 is the base measure. Again, note that
points are represented by their sufficient statistics, which by definition is all we
need to perform these computations.
Once you have filled these functions, you should get a predictive density in
‘pred-<iteration#>.pdf’ that looks like this:
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This is better, but still not quite what we would like: note that a very large
number of clusters is needed to get this fit. We will address this problem in the
next question.

Part B

The high number of clusters in the first part is caused by a restriction in the
current code for the likelihood model. Under this restriction, θ only contains a
prior for the mean of normal distributions, and the variance if fixed:

µd ∼ N(0, 1) d ∈ {0, 1}
θ = (µ1, µ2)

y|θ ∼ N(θ, I),

where I is the identity matrix.
We will use a more flexible likelihood model in this section, based on Normal-
Inverse-Wishart distributions (NIW) to address the problem with the large num-
ber of clusters. NIW distributions are priors distribution on both mean vectors
and covariance matrices, and are conjugate with a multivariate normal likeli-
hood models:

θ = (µ,Σ) ∼ NIW
y|µ,Σ ∼ N(µ,Σ).

See the following references for more background information on Normal-Inverse-
Wishart: Erik Sudderth’s thesis, section 2.1.4:

http://www.cs.brown.edu/~sudderth/papers/sudderthPhD.pdf

and this tech report, written by Kevin Murphy, page 19:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.126.4603

Your task will be to compute the marginal likelihood of (sufficient statistics of)
observations, and is greatly simplified by the fact that I have written the code
that computes the posterior of a Normal-Inverse-Wishart given (sufficient statis-
tics of) observations, as well as evaluation of normal and normal-inverse-wishart
densities. If you start writing complicated matrix expression, think a little bit
more about a trick we covered in class! Open ‘normalmodel/MargMultGaussian.java’,
which is responsible of computing marginals in a multivariate gaussian model.
See ‘margLogLikelihood()’ for hints and the location where you should write
this piece of code.
Once you are done with implementing this, run ‘dp/TestDistrib.java’. In the
execution folder, the file ‘predictive-density.pdf’ should look like
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The final step is to re-run the DP mixture model with this likelihood model.
This is done by setting the variable ‘useNormalInverseWishartModel’ in ‘DP-
MixtureTest.java’ to true. You should get something like this now:
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Part C (Optional)

Apply the code to a real dataset of your choice. Contact me for help on how to
load the data into the DP mixture model. Some standard sources of datasets:

http://archive.ics.uci.edu/ml/
http://mlcomp.org/

4 Beyond DPs

In this question, we will look at models beyond simple Dirichlet processes. To
begin with, we will revisit some of the exchangeability claims and prove them
formally:
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4.1 Theory

Part A

Prove directly (that is without invoking the existence of the stick breaking
prior) that the Pitman-Yor (PY) version of the chinese restaurant process is ex-
changeable. Hint: A useful fact from group theory: any permutation (bijection
between {1, . . . , N} to itself) can be written as the composition of transpositions
(permutation that leave all the elements fixed except for two elements).

Part B

Prove that the Indian Buffet Process is exchangeable as well.

4.2 Practice

In this question, we will apply a hierarchical DP to a language modeling task.
Start by running ‘LanguageModelEvaluation.java’ in the package hpd. It loads
training and test sentences (the same as previous assignment, without using the
POS information this time), trains language models on the training section, and
evaluates them on the test sentences. Evaluation is done using the perplexity
metric:

http://en.wikipedia.org/wiki/Perplexity

Also check in the execution folder, each time the code is ran, text is generated
at random from the model into files called ‘*.generated’, which can sometimes
lead to funny sentences.

Part A

Open the file ‘hdp/DP.java’, this is where the sampler takes out customers and
reinsert them at random. Note that following work by Blunsom et al, we use a
sampler that maintains only an histogram over table sizes for each word (this
is a sufficient statistic for the sampler at hand):

http://www.aclweb.org/anthology/P/P09/P09-2085.pdf

The book-keeping of this histogram is done for you in ‘Restaurant.java’. Your
task will be to do part of the Gibbs step. This is similar to the Gibbs step in the
previous question, but simpler in some aspects (we do not have to worry about
likelihood models), but slightly more complicated in other aspects (we have a
hierarchy of priors now).
The missing key is ‘addCustomerAtRandom()’, which assumes that the cus-
tomer has been taken out at random (by takeOneRandomCustomerOut()), and
now needs to be reinserted. See in this function for hints.
Once it is implemented, change the variable ‘addDPLanguageModel’ to true in
‘LanguageModelEvaluation.java’. You should get a much lower (better) per-
plexity now, around 158. Also look in the file ‘HDPLanguageModel.generated’,
you will see slightly more (locally) realistic looking sentences.
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Part B

Do a few experiments with the current model. Some examples: scaling the
training size (can be controlled with LanguageModelEvaluation.nTrainWords),
the order of the language model (lmOrder), changing the number of Gibbs scan,
α0, or size of testing set. Plot the performance as a function of at least one of
these quantities. What is the main limitation(s) of this model in your opinion?

Part C (Optional)

Extend the model in one or several ways. Examples include: transforming
the model into a PY process, learning or resampling the hyper-parameters (see
dp.Concentration for an implementation of resampling α0), or scaling it to a
larger dataset (the data to load is controlled by pathToData—see data/POS for
an example of the format (note that POSs can be filled by arbitrary strings)).
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