
Stat 547 — Assignment 3

Release Date: Saturday April 16, 2011
Due Date: Wednesday, April 27, 2011 at 4:30 PST

Note that the deadline for this assignment is one day before the final project
deadline, and both are hard deadline; I will not accept assignments past Wednes-
day, April 27, 2011 at 4:30 PST. You should submit a written report under my
office door (LSK 330) as well as a zipped file by email containing the “answer”
(in which you should copy one exec folder for each experimental question) and
“src” folders (do not include the other directory to avoid email quotas prob-
lems). The report should contain your work for the written questions as well as
a summary of what worked/did not work in your experiments.

1 Getting the code and data

First, make sure as early as possible that you can access the course materials.

http://www.stat.ubc.ca/~bouchard/pri/stat547-assignment3.zip

The authentication restrictions are due to licensing terms. The username and
password have been announced in class (same as assignment 1 and 2), but if for
any reason you did not get it, please let me know by email.
Unzip the downloaded file to your local working directory. It contains both the
data that you will need, some evaluation code, and some harness code that will
help you do the assignment.

2 Technical stuff

Use the same procedure as assignment 1 and 2 to get the code harness setup.
Create a new, fresh project and close the previous projects (right-click in eclipse
and pick ‘close project’). If you need code from the previous assignments or
solutions in this assignment, copy contents from the previous assignments man-
ually later on (if you copy files into a project, you might need to refresh it by
right-clicking and selecting refresh on the project).
Important: Make sure the libraries were imported properly. This should be
automatic, but double-check by right clicking on the project (left hand side part
of the window), select project properties, then java build path, then libraries,
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then click on add external jars. Use this button as many times as needed to get
all the jar files in the lib folder of the project directory imported.

3 Phylogenetic inference

In this question, we are going to use molecular data from twelve modern primate
species to infer the phylogenetic relationships between them. Open the file
‘data/primates.msf’. It contains mitochondrial DNA that has been aligned for
you. For background information, refer to:

http://en.wikipedia.org/wiki/Mitochondrial_DNA
http://en.wikipedia.org/wiki/Multiple_sequence_alignment

The names used in the first column correspond to abbreviations of the scientific
names of the species under consideration. We show some examples here, for
information on the other species, refer to

http://tolweb.org/tree/

Pan troglodytes Homo Sapiens Pongo borneo
Chimpanzee Human Orangutan

3.1 Phylogenetic inference: theory

In the next few questions, we will develop the theory behind the standard model
in Bayesian phylogenetic: non-clock unrooted phylogenetic trees.
A (non-clock, unrooted) phylogenetic tree t is specified by a connected acyclic
graph (V,E) (an undirected tree), called the topology, and a positive number
associated with each edge, called a branch length: b : E → (0,∞). Nodes at the
periphery of the graph (leaves) represent modern species, points inside the tree
represent ancestral species, bifurcation represent speciation events, and branch
lengths specify the amount of evolution between species (as measured by the
amount of molecular change on the sequences). We also assume that we have
a bifurcating tree, in which all nodes in V have either one or three neighbors
(corresponding to the case of leaves and internal nodes respectively).
We will consider a simple prior over such trees: a uniform distribution over
topologies, and an independent exponential distribution for each branch length
(note that there are always the same number of internal branches for a fixed
number of leaves in a bifurcating tree).
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Part A

Given such a tree, we then define a process that generate a DNA sequence
s ∈ Σ∗ = {A,C,G,T}∗ for each species (both internal and at the periphery).
The process is parameterized by a rate matrix Q, which we assume is symmetric
in this problem set. We will denote the marginal transitions of Q by Pt.
The process proceeds as follows: first, a sequence length is picked according to a
geometric distribution. Next, the first symbol of each sequence will be generated,
then the second symbol of each sequence, etc. The n-th symbol of each sequence
are called the n-th site. Our process generates each site independently.
The symbols in one site are generated as follows. First, pick a node arbitrarily
in V (this is an instance of what is called rooting a tree). Second, generated a
character from Σ for that node using the stationary distribution of P1. Third,
a CTMC is used to generate in preorder all the other symbols for this site.
In this question, you have to show that this process is well-defined: i.e. given
a tree, the root placement does not change the distribution over the random
sequences generated by this process.

Part B

We will denote the internal nodes by z, the nodes at the leaves by y, and the
process described in the previous question by P( dy, dz|t). Show how your result
in question 3.1 of the first assignment can be used to compute P( dy|t) when the
tree has the following imbalanced form:

A

B

C

D

E
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Part C (Optional)

Generalize the equations of question 3.1.B to compute efficiently P( dy|t) for any
phylogenetic tree t.

Part D

While P( dy|t) is tractable, P( dy) is not, so we will resort to MCMC sampling
to compute the posterior over trees. The simplest irreducible chain has two
moves: one move that proposes a local change in the topology, called a nearest
neighbor interchange (NNI), and one that proposes a change to a single branch
length. NNI works as follows:

where the start state has the topology on the top, and one of the three topologies
shown in the figure is proposed uniformly at random.
For the branch lengths, one of the edges is picked at random, and its current
value is multiplied by a random number distributed uniformly in [ 1a , a] for some
fixed parameter a > 1 (controlling how bold the move is).
Derive the MCMC acceptance ratio for such a proposal.

3.2 Phylogenetic inference: implementation

Launch ‘PhyloMain.java’. This simulates a Markov chain over phylogenetic
trees. You will see a summary of the current loglikelihood (P( dy|t)), and of the
acceptance ratio of each move (sNNI stands for stochastic NNI, and MB, for
multiplicative branch length proposals). You can ignore the lines that start by
‘Estimate of posterior’ for now, we will come back to it in Part C. Currently,
the chain is not ergodic and gets stuck at the same state. We will make the
chain stationary in this question.
You can still look in ‘state/execs’, where the output of each execution is recorded
in numbered folders. The MAP (maximum a posteriori) tree is periodically
recorded. Use the following tool, archaeopteryx, to visualize them:

http://www.phylosoft.org/archaeopteryx/
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Part A

The first step is to implement the Metropolis-Hastings correction. Open the file
‘PhyloMCMC.java’. Look at the hints in the function ‘sample()’, and implement
it.
Once this is done, use archaeopteryx to create a pdf of the estimated tree and
include it in your report after hiding the internal nodes and rerooting it such
that it is more or less balanced.
The tree should be more reasonable now, for example Chimpanzees and Humans
should form a clade (a clade is a subset of the leaves of a tree that can be obtained
as follows: note that removing a single edge in a tree creates a bipartition of
the leaves, the set of all the blocks of these bipartition, ranging over all edges is
the set of all clades induced by a tree).

Part B

The tree is still imperfect though, because we are not yet resampling branch
lengths. Open the file ‘MultiplicativeBranchProposal.java’. The function ‘pro-
pose()’ should do two things: sample a proposed new value for the random edge,
and compute the log of the proposal ratio. Use your result of 3.1.D to complete
this function.
After filling in this gap, you should get a tree similar to the following tree (up
to rerooting):
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Tarsius_syrichta

Lemur_catta

Homo_sapiens

Pan

Gorilla

Pongo

Hylobates

Macaca_fuscata

M_mulatta

M_fascicularis

M_sylvanus

Saimiri_sciureus

Part C (Optional)

Suppose now that we only care about the question of whether Chimpanzees and
Humans form a clade. What is the Bayes estimator for this decision assuming
zero-one loss? Implement in ‘CladePosterior.posteriorPanHSapiensClosestCousins()’
an estimator for the posterior probability of this event.

4 Advanced topics in non-parametric Bayesian
statistics

In this question, we explore some of the more advanced topics covered in the
non-parametric Bayesian section of this course.

Part A

Show, using Campbell’s theorem, that the Lévy process Γt with compensator

P0(A×B) = G0(B)
∫

A

1
z
e−z dz

has Gamma finite-dimensional marginals.
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Part B

Prove or disprove; or test empirically, the following claims:

1. A random transition matrix (equivalently, Markov chain model) sampled
from the Infinite HMM is positive recurrent.

2. A random transition matrix (equivalently, Markov chain model) sampled
from the Dependent Dirichlet Process is positive recurrent.

Part C (Optional)

Open-type question: construct a non-trivial distribution over (countably) infi-
nite transition matrices such that some non-trivial expectations with respect to
the random stationary distribution can be computed analytically.

Part D (Optional)

Open-type question: revisit question 3.2 of the first assignment using the Infinite
HMM or a state-split Infinite HMM.
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