Statistical modeling with stochastic processes

Alexandre Bouchard-Côté Winter 2011

Plan for today

- Motivating applications and examples
 - 'Obvious' suspects: time series & spatial statistics
 - Classical problems (with a twist): density estimation, regression, classification
 - Hot topics: Natural Language Processing (NLP), Phylogenetics, Transfer/multi-task learning
- Overview of what will be covered in the course
 - Bayesian nonparametric statistics
 - Random combinatorial objects
 - Approximate inference: Monte Carlo and variational

Background

Stochastic processes

'A collection of random variables indexed by an arbitrary set S'

Note 1: if *S* if finite, then back to an 'undergrad' random variable, so we concentrate on *S* uncountable

Note 2: *S* is not necessarily the real line

Example: distribution over functions

Samples: functions $f: \mathbb{R}^2 \rightarrow \mathbb{R}$

'Obvious' suspects

Time series:

- Economic/financial indicators
- Frequency of the population having a certain genetic mutation
- Global weather/climate observations

Example: distribution over functions

Samples: functions $f: \mathbb{R}^2 \rightarrow \mathbb{R}$

'Obvious' suspects

Spatial statistics:

- Epidemic outbreak intensity
- Ecological measurements
- Intensity of the cosmic background radiation

Example: distribution over distributions

Why would we need distributions over distributions?

De Finetti theorem: a compelling motivation for priors on parameters...

Suppose: we agree that if our data x_i are reorder, it doesn't matter (exchangeability), e.g.

$$(x_1, x_2, x_3, \dots) \stackrel{d}{=} (x_3, x_1, x_2, \dots)$$

Then: there exists a random variable θ and distributions F_{θ} such that:

$$x_i|\theta \sim F_\theta$$

De Finetti theorem

In other words: if you assert exchangeability, it is reasonable to act as if there is:

- an underlying parameters,
- a prior on that parameter, and
- the data is generated independently conditionally on that parameter

Note: the theorem would not be true if we limited ourselves to random variables θ with domain \mathbb{R}^n In particular, we need to allow to have distributionvalued random variables θ , hence we need priors over distributions!

Stochastic processes can sneak out in any inference problem, not only in the standard stochastic process application 'niches' (i.e. time series and spatial statistics)

Example: density estimation

Input/observations: Samples of UBC students' heights *x_i*

Examples of inferential problems:

What is the mean height of the UBC student population? What is the most 'atypical' height among the samples x_i ?

Method 1 (Normal density estimation): Find a normal density ϕ_{μ,σ^2} that best fits the data

Bayesian normal density estimation

Input/observations: Samples of UBC students' heights *x_i*

Bayesian way: Treat the unknown quantity ϕ_{μ,σ^2} as random. Equivalently: treat the parameters $\mu \in \mathbb{R}$ and $\sigma^2 > 0$ as random.

Output: Posterior over densities / the parameters of a normal distribution

Details of the model: Not critical for now, but will be needed later...

Bayesian normal density estimation

Limitation: fails to model that men and women have different height distributions!

Solution: use a *mixture model* with two mixture components, each one assumed to be normal

Density estimation of normal mixtures

But we did not recorded the male/female information when we collected the heights!

Expensive fix: Do the survey again, collecting the male/ female information

Cheaper fix: Let the model guess, for each datapoint, from which *cluster* (group, mixture component) it comes from.

Bayesian way: Treat the parameters of each cluster as random: $\mu_c \in \mathbb{R}$ and $\sigma_c^2 > 0$, $c \in \{1,2\}$

The variables $z_i \in \{1,2\}$ indicate which cluster observation *i* belongs to (cluster membership indicator). Treat them as random as well.

The parameters π_c are priors over the cluster indicators (fraction of male vs. female at UBC). Treat them as random.

Closely related to: unsupervised learning

There are still limitations to this model:

Height distribution also depends on the age of the student
Height distribution also depends on the ethnicity of the student

. . .

Idea: Use more than two mixture components!

Using more mixture components

Should we make the number of clusters as large as possibles?

Using more mixture components

- Should we make the number of clusters as large as possibles?
- How many clusters should we use?
 - Methods you are familiar with: using cross validation, AIC, BIC, etc.
 - Another route: non parametric Bayesian priors
- Rough idea of non parametric Bayesian statistics
 - Prior allowing a countably infinite number of clusters while giving protection against over-fitting
 - Claim: this prior takes the form of a distribution over distributions...

Example: distribution over distributions

Samples: distributions $\lambda : \sigma(\Theta) \rightarrow [0,1]$ $(s, Y_s(\omega))$ $Y_s(\omega) =$ $\lambda(s)$ 0.5 $\left(\right)$ $S = \sigma(\Theta)$ (No topology on this axis this time...)

Applications in Natural Language Processing

Language models

Shannon's game: guess the next word...

Application: finding which sentence is more likely

Example: Speech recognition

Language models: first approach

Fix a certain prefix length, and estimate one categorical distribution for each prefix from a text dataset (*n*-gram)

Problem with the maximum likelihood estimator?

Language models: second approach

Some prefixes are rare. Is that a problem?

. . .

Language models: third approach

Monday, February 28, 2011

Language models: fourth and fifth approaches

Why stop at prefixes of length 1?

Why stop at prefixes of a bounded length?

Machine translation

Ultimate goal: Pairs of Chinese-English sentences

((to build 500 gas stations, 建立500个加油站), ...)

Inferential problems: Given a new Chinese sentence, translate it to English

Machine translation: Intermediate goal

Input/observations: Pairs of Chinese-English sentences

((to build 500 gas stations, 建立500个加油站), ...)

Word Alignment Models are Too Simple Inferential proplems. Segment and align

Degeneracy of previous maximum likelihword Alighina 1068 els are Too Simple

Maximum likelihood

Non parametric Bayesian prior

Parts of speech

Shannon's game: guess the next word...

That's something I _____.

Part of speech: a category of words defined by how the word behave in the sentence.

Examples: verbs, nouns, adjectives, adverbs, etc.

Classification problem: predicting the part-of-speech

Input/observations: Annotated sentences

NOUN	VERB	ADJ	NOUN
Alex	likes	red	apples
VERB	ADV	VERB	ADV
Talk	faster,	eat	slower

Inferential problem 1: find the part of speech of the last word in a sentence

Predicting the parts-of-speech: cues

NOUN VERB ADJ ???? Alex likes big houses

What is the part-of-speech (POS) of 'houses'?

Two cues: What POSs can follow an adjective (ADJ)? ADJ, NOUN, but probably not VERB

What POSs can be assigned to houses? VERB, NOUN, but probably not ADJ

Method: Hidden Markov models...

Sequential prediction

Input/observations: Annotated sentences

VERB	ADV	VERB	ADV
Talk	faster,	eat	slower

Inferential problem 2: find all the parts of speech of a new sentence

Sequential clustering

Input/observations: Annotated sentences

Inferential problem 3: find all the 'parts of speech' (clusters) of a new sentence

Sequential clustering: how many clusters?

Can use methods similar to the earlier density estimation example

Twist:

Earlier: A prior over countably infinite distributions vs. Now: A prior over countably infinite transition matrices

Also useful when supervision (annotation) is available, each class (POS) is expressed as its own infinite mixture (*state splitting*)

Choice models

Input: Number of times people chose the row object over the column object.

	Phone 1	Phone 2	Phone 3	7 people chose
Phone 1	-	2	7	Phone Lover
Phone 2	6	-	7	Dhana 2
Phone 3	1	1	-	Filone 5

Desired output: latent features governing these choices

	Phone	Camera	Internet	Flip-phone	Cheap
Phone 1	\checkmark	\checkmark	\checkmark		
Phone 2	\checkmark	\checkmark			\checkmark
Phone 3	\checkmark		\checkmark	\checkmark	

Slide from Kurt Miller

Applications in Phylogenetic Inference

Non-Bayesian application: phylogenetic inference

Scientific applications: biology, anthropology, linguistics

Engineering applications: domain adaptation, multi-task learning amazon.com

Shop All Departments	
Unlimited Instant Videos Prime members only	>
Books	≻
Movies, Music & Games	>
Digital Downloads	>

Interpretation:

- I. there was a group P of people ancestral to both Oc., Am. and E.A. populations.
- 2. a separation of this population into subpopulations S_1, S_2
- 3. second: a further subdivision of the S_2 population into T_1, T_2

Simplified example

Data: first type

Model I:Wright-Fisher

Model I:Wright-Fisher

Model I:Wright-Fisher

Martingale

Martingale

If the allele frequency is 0.5 initially, what is the probability distribution over allele frequencies after 100 generations?

If the allele frequency is 0.5 initially, what is the probability distribution over allele frequencies after 100 generations?

If the allele frequency is 0.5 initially, what is the probability distribution over allele frequencies after 100 generations?

Doing the same thing, but with the other tree gives us P(Data | H2) Oceanic populations American populations E.Asiatic populations

Simplified example

