Statistical modeling with stochastic processes

Alexandre Bouchard-Côté Lecture 10, Wednesday March 30

Program for today

- Assignment/logistics
- Applications
 - NLP: language modelling, segmentation, alignment
- Extensions
 - Hierarchies and sequences
 - Pitman-Yor & Beta processes

Assignment/logistics

After class: office hours

Tonight: Solutions to the implementation questions will be posted at the same time as **assignment 2**

Due dates:

- Assignment 2: April 13 (end of the day)

- Assignment 3 and project: April 22 (end of the day)

Important: Recall that if you do a final project, you need to do only 2 assignments. If you do a literature review, do all 3.

Assignment/logistics

Assignment 1:

- We will go over some of the solutions for the written questions now, the rest will be posted tomorrow
- You will get back your copy next Monday

Lecture notes:

- Those related to assignment 2 be posted tomorrow as well
- The other ones will follow as soon as I get the latex files from the scribes

Consider the graphical model we used in the previous question, and assume that there is a Dirichlet prior on the parameters. Describe two MCMC moves: one that samples all the sentences at once conditioning on the parameters, and one that samples a single word but collapses the parameters.

Sampling sentence at once: direct from Q.1.1

Collapsing/marginalizing parameters: two methods...

Question 4.1.A

Collapsing/marginalizing parameters: two methods...

Let's forget about the observations for simplicity

First method: direct marginalization

Question 4.1.A: Exchangeability trick

Idea: the *states* visited are not exchangeable (they are Markovian), but the *transitions* are exchangeable

(modulo a base measure that is equal to one or zero)

Question 4.1.A: Exchangeability trick

Resampling one state will change at most two of these variables

Pretend they are the last two ones

Consider a different prediction problem for part D of the previous question: finding the number of distinct contiguous alpha-beta blocks. For example, in the sequence:

"NNYYNYYYNYYYYYNNNN",

the correct answer would be 3. Suppose the loss is the absolute value between the prediction and the truth. How would you approximate the Bayes estimator in this case?

Deterministic auxiliary variable: number of contiguous 'Y' blocks in the current state

Hierarchical models: review and big picture

Language models

Shannon's game: guess the next word...

Application: finding which sentence is more likely

Example: Speech recognition

Problem...

Some prefixes are rare. Is that a problem?

. . .

Solution: hierarchical model

Sunday, April 3, 2011

Applies: whenever we are doing estimation on related (or not so related) sub-problems.

For today: assume we know the hierarchy

Assumption: each model has shared hyper-parameters λ (parameters of the distribution of the priors *z*)

Ideas: make the hyper-parameters λ random (1) and shared by all tasks (2). This binds all the tasks/subproblems.

Hierarchies with DPs

Hyper-parameter: α_0 , G_0

Hierarchies with DPs

What distribution to put *G*₀?

Distribution on *G*₀

What distribution to put G_0 ?

First try: a continuous distribution, e.g. normal with random mean

$$\mu \sim N(0, 1)$$
$$G_0 = N(\mu, 1)$$

This does not work!

Distribution on G₀

Problem: with probability one, no atoms will be shared by $G^{(1)}$ and $G^{(2)}$: this means there will be no sharing of dishes across tasks/sub-problems

Distribution on G₀

What distribution to put G_0 ?

A correct choice: a Dirichlet process !

 $G_0 \sim DP(\alpha_0, H)$ $G^{(j)}|G_0 \sim DP(\alpha'_0, G_0)$

Pitman-Yor process

Another problem...

In some real-world datasets, Dirichlet processes do not have the right tail behavior!

Empirical observation: number of unique words (word types observed) in a natural language corpus containing *n* words tokens is $O(n^s)$ for $s \in [1/2, 1)$

Fact about DPs (proven last time): there are $O(\log n)$ tables in *n* draws from a DP

Note: DPs will still assign positive probability to $O(n^s)$ tables, might discourage it too much in practice

Solution: a generalized process

Pitman-Yor process: Start with the CRP, and boost the probability of table creation while preserving exchangeability

The Pitman-Yor (PY) process

Exchangeability: we have shown last time an example where the seating plan is exchangeable, you will prove it in full generality in the assignment

Asymptotic number of tables: $O(n^s)$

De Finetti representation?

PY: stick breaking construction

Dirichlet process: defined $G = f(\beta, \theta)$ for an iid sequence of $\theta_i \sim G_0$ and:

 $\beta_i \sim \text{Beta}(1, \alpha_0),$

Pitman-Yor: Same but now beta's are not identically dist.:

$$\beta_i \sim \text{Beta}(1 - d, \alpha_0 + i d)$$

Other stick breaking constructions?

Yes: For example as long as there is an epsilon > 0 s.t.,

$$\sum_{j=1}^{\infty} \mathbb{P}(\beta_j > \epsilon) = \infty$$

we get sticks with lengths that sum up to one

But: These are not all exchangeable! In fact the β_i 's have to be of the form Beta $(1 - d, \alpha_0 + i d)$ to have exchangeability!

Infinite HMM

Next topic: infinite HMMs

Motivation: state splitting in Markov chains

Setup: annotated sequence data, where we don't believe the annotation actually makes the chain Markovian

Example:

Noun	Adv	Verb	Noun
He	really	likes	swimming
Noun	Adv	Verb	Noun
I	really	like	swimming

Next topic: infinite HMMs

Solution: adding annotation on the hidden state

Example: an annotation -3PS when the sentence is 3th person singular

Noun-3PS	Adv-3PS	Verb-3PS	Noun
He	really	likes	swimming
Noun	Adv	Verb	Noun
I	really	like	swimming

State splitting: learn annotations (state splits) automatically from the training data. **How many splits?**

Motivation: an HMM without a bound on the number of hidden states

Infinite HMMs:

Infinite HMMs: connection with the Hierarchical Dirichlet process

Computing the posterior: as usual, both a collapsed Gibbs sampler and a slice sampler are available

State splitting and iHMM

Limitation of iHMMs/DPs

There are many useful splits. Examples:

-3PS : when the sentence is 3th person singular -INT : when the sentence is interrogative -PAS : when the sentence is in the passive voice

Problem: representing the parameters of *N* splits takes $O(2^N)$ memory

Solution: feature-based representations

. . .

Feature based representations

How many features? Will see soon a solution: Beta process

Another motivation

Input: Number of times people chose the row object over the column object.

	Phone 1	Phone 2	Phone 3	7 people chose
Phone 1	-	2	7	Phone I over
Phone 2	6	-	7	
Phone 3	1	1	-	Phone 3

Desired output: latent features governing these choices

	Phone	Camera	Internet	Flip-phone	Cheap
Phone 1	\checkmark	\checkmark	\checkmark		
Phone 2	\checkmark	\checkmark			\checkmark
Phone 3	\checkmark		\checkmark	\checkmark	

Slide from Kurt Miller

Instead of a sit-down^{z_6} with infinite sequence of dishes θ_i sampled by customers

Obvious: order of the columns not important/exchangeable (because the θ_i 's will be generated iid)

Less obvious: how to make the order of the rows exchangeable

Instead of a sit-down^{z_6} with infinite sequence of dishes θ_i sampled by customers

Obvious: order of the columns not important/exchangeable (because the θ_i 's will be generated iid)

Less obvious: how to make the order of the rows exchangeable

Predictive distribution: restaurant metaphor

(Example on the board)

Slide from Kurt Miller