Statistical modeling with stochastic processes

Alexandre Bouchard-Côté
Lecture I0,Wednesday March 30

Program for today

- Assignment/logistics
- Applications
- NLP: language modelling, segmentation, alignment
- Extensions
- Hierarchies and sequences
- Pitman-Yor \& Beta processes

Assignment/logistics

After class: office hours

Tonight: Solutions to the implementation questions will be posted at the same time as assignment 2

Due dates:

- Assignment 2: April 13 (end of the day)
- Assignment 3 and project: April 22 (end of the day)

Important: Recall that if you do a final project, you need to do only 2 assignments. If you do a literature review, do all 3.

Assignment/logistics

Assignment 1:

- We will go over some of the solutions for the written questions now, the rest will be posted tomorrow
- You will get back your copy next Monday

Lecture notes:

- Those related to assignment 2 be posted tomorrow as well
- The other ones will follow as soon as I get the latex files from the scribes

Question 4.1.A

Consider the graphical model we used in the previous question, and assume that there is a Dirichlet prior on the parameters. Describe two MCMC moves: one that samples all the sentences at once conditioning on the parameters, and one that samples a single word but collapses the parameters.

Question 4.1.A

Sampling sentence at once: direct from Q.1.1

Question 4.1.A

Collapsing/marginalizing parameters: two methods...

Question 4.1.A

Collapsing/marginalizing parameters: two methods...
Let's forget about the observations for simplicity

First method: direct marginalization

Question 4.1.A: Exchangeability trick

Idea: the states visited are not exchangeable (they are Markovian), but the transitions are exchangeable

First transition Second transition

$$
x_{1} \rightarrow x_{2}
$$

$$
x_{2} \rightarrow x_{3}
$$

Last transition

$$
x_{T} \rightarrow x_{T+1}
$$

(modulo a base measure that is equal to one or zero)

Question 4.1.A: Exchangeability trick

First transition Second transition

Last transition

$$
x_{T} \longrightarrow x_{T+1}
$$

Resampling one state will change at most two of these variables

Pretend they are the last two ones

Question 4.1.A

Consider a different prediction problem for part D of the previous question: finding the number of distinct contiguous alpha-beta blocks. For example, in the sequence:

"NNYYNYYYNYYYYYYYNNNN",

the correct answer would be 3. Suppose the loss is the absolute value between the prediction and the truth. How would you approximate the Bayes estimator in this case?

Question 4.1.A

Deterministic auxiliary variable: number of contiguous ' Y ' blocks in the current state

Hierarchical models: review and big picture

Language models

Shannon's game: guess the next word...

I have lived in San \qquad

I am not going to go
there or their?

Application: finding which sentence is more likely
Example: Speech recognition

Problem...

Prior for prefix $1 \quad$ Prior for prefix 2

Distribution over what follows after the prefix

Fix

Guess	Pr
a	0.92
\ldots	\ldots
\ldots	\ldots

Distribution over what follows after the prefix

a	
Guess	Pr
certain	0.46
text	0.46
\ldots	\ldots

Some prefixes are rare. Is that a problem?

Solution: hierarchical model

 Hyper-prior over words---not specific to a prefix

Important idea: hierarchical Bayesian models

Applies: whenever we are doing estimation on related (or not so related) sub-problems.

For today: assume we know the hierarchy

Eg: Dist. of word after 'Fix __' Progression of HIV in patient 1 Progression of HIV in patient 2

Important idea: hierarchical Bayesian models

Assumption: each model has shared hyper-parameters λ (parameters of the distribution of the priors z)

Eg: Dist. of word after 'Fix __' Progression of HIV in patient 1 Progression of HIV in patient 2

Important idea: hierarchical Bayesian models

Ideas: make the hyper-parameters λ random (1) and shared by all tasks (2). This binds all the tasks/subproblems.

Important idea: hierarchical Bayesian models

Hierarchies with DPs

Hyper-parameter: $\alpha_{0}, \boldsymbol{G}_{\mathbf{0}}$

Hierarchies with DPs

What distribution to put $\boldsymbol{G}_{\mathbf{0}}$?

Distribution on G_{0}

What distribution to put \boldsymbol{G}_{0} ?

First try: a continuous distribution, e.g. normal with random mean

$$
\begin{aligned}
\mu & \sim \mathrm{N}(0,1) \\
\mathrm{G}_{0} & =\mathrm{N}(\mu, 1)
\end{aligned}
$$

This does not work!

Distribution on G_{0}

Problem: with probability one, no atoms will be shared by $G^{(1)}$ and $G^{(2)}$: this means there will be no sharing of dishes across tasks/sub-problems
G_{0}
$G^{(1)}$

$G^{(2)}$

Distribution on G_{0}

What distribution to put \boldsymbol{G}_{0} ?
A correct choice: a Dirichlet process !

$$
\begin{aligned}
\mathrm{G}_{0} & \sim \mathrm{DP}\left(\alpha_{0}, H\right) \\
\mathrm{G}^{(j)} \mid G_{0} & \sim \mathrm{DP}\left(\alpha_{0}^{\prime}, G_{0}\right)
\end{aligned}
$$

Pitman-Yor process

Another problem...

In some real-world datasets, Dirichlet processes do not have the right tail behavior!

Empirical observation: number of unique words (word types observed) in a natural language corpus containing n words tokens is $\mathrm{O}\left(n^{s}\right)$ for $s \in[1 / 2,1)$

Fact about DPs (proven last time): there are $\mathrm{O}(\log n)$ tables in n draws from a DP

Note: DPs will still assign positive probability to $\mathrm{O}\left(n^{s}\right)$ tables, might discourage it too much in practice

Solution: a generalized process

Pitman-Yor process: Start with the CRP, and boost the probability of table creation while preserving exchangeability

This has the sam
normalization as the
DP: $\alpha_{0}+n$

$$
\propto n_{1}-d
$$

Join table \#1, with already n_{1} people sitting there

New customer

$$
\propto n_{t}-d
$$

$$
\propto \alpha_{0}+t d
$$

Join table \# t, with already n_{t} people sitting there

Create a new table

Discount: $d \in[0,1]$

The Pitman-Yor (PY) process

Exchangeability: we have shown last time an example where the seating plan is exchangeable, you will prove it in full generality in the assignment

Asymptotic number of tables: $\mathrm{O}\left(n^{s}\right)$
De Finetti representation?

PY: stick breaking construction

Dirichlet process: defined $G=f(\beta, \theta)$ for an iid sequence of $\theta_{i} \sim G_{0}$ and:

$$
\beta_{i} \sim \operatorname{Beta}\left(1, \alpha_{0}\right)
$$

Pitman-Yor: Same but now beta's are not identically dist.:

$$
\beta_{i} \sim \operatorname{Beta}\left(1-d, \alpha_{0}+i d\right)
$$

Other stick breaking constructions?

Yes: For example as long as there is an epsilon >0 s.t.,

$$
\sum_{j=1}^{\infty} \mathbb{P}\left(\beta_{j}>\epsilon\right)=\infty
$$

we get sticks with lengths that sum up to one
But: These are not all exchangeable! In fact the β_{i} 's have to be of the form $\operatorname{Beta}\left(1-d, \alpha_{0}+i d\right)$ to have exchangeability!

Infinite HMM

Next topic: infinite HMMs

Motivation: state splitting in Markov chains
Setup: annotated sequence data, where we don't believe the annotation actually makes the chain Markovian

Example:

Noun He Adv really Verb likes Noun swimming Noun I Adv really Verb like Noun swimming

Next topic: infinite HMMs

Solution: adding annotation on the hidden state

Example: an annotation -3PS when the sentence is 3th person singular

$$
\begin{array}{cccc}
\text { Noun-3PS } & \text { Adv-3PS } & \text { Verb-3PS } & \text { Noun } \\
\text { He } & \text { really } & \text { likes } & \text { swimming }
\end{array}
$$

Noun	Adv	Verb	Noun
I	really	like	swimming

State splitting: learn annotations (state splits) automatically from the training data. How many splits?

The infinite HMM

Motivation: an HMM without a bound on the number of hidden states

Recall: finite HMMs

Emission parameters

The infinite HMM

Infinite HMMs:

The infinite HMM

Infinite HMMs: connection with the Hierarchical Dirichlet process

The infinite HMM

Computing the posterior: as usual, both a collapsed Gibbs sampler and a slice sampler are available

Aux. vars:

State splitting and iHMM

Limitation of iHMMs/DPs

There are many useful splits. Examples:
-3PS : when the sentence is 3th person singular -INT : when the sentence is interrogative -PAS : when the sentence is in the passive voice

Problem: representing the parameters of N splits takes $\mathrm{O}\left(2^{N}\right)$ memory

Solution: feature-based representations

Feature based representations

State-split

Feature

How many features? Will see soon a solution: Beta process

Another motivation

Input: Number of times people chose the row object over the column object.

	Phone 1	Phone 2	Phone 3
Phone 1	-	2	7
Phone 2	6	-	7
Phone 3	1	1	-
Phone I over			
Phone 3			

Desired output: latent features governing these choices

	Phone	Camera	Internet	Flip-phone	Cheap
Phone 1	\checkmark	\checkmark	\checkmark		
Phone 2	\checkmark	\checkmark			\checkmark
Phone 3	\checkmark		\checkmark	\checkmark	

Slide from Kurt Miller

Beta process

Cluster index c

Mixture
indicator
priors:
Mixture
indicator
priors:
Mixture
indicator
priors:

Feature index c
Feature indicator priors:

Datapoint index

Predictive distribution: restaurant metaphor

Instead of a sit-down restaurant, think of a buffet with an infinite sequence of dishes θ_{i} sampled by customers

Obvious: order of the columns not important/exchangeable (because the θ_{i} 's will be generated lid)

Less obvious: how to make the order of the rows exchangeable

Predictive distribution: restaurant metaphor

Instead of a sit-down restaurant, think of a buffet with an infinite sequence of dishes θ_{i} sampled by customers

Obvious: order of the columns not important/exchangeable (because the θ_{i} 's will be generated lid)

Less obvious: how to make the order of the rows exchangeable

Predictive distribution: restaurant metaphor

First customer:

Sample a Poisson (α) number of dishes.

Fourth customer:

Sample previously tried dishes in proportion to the
number of people who have previously tried them.

