Statistical modeling with stochastic processes

Alexandre Bouchard-Côté Lecture II, Monday April 4

Program for today

- Beta, Poisson and Gamma processes
- DDP and sequence memoizer

Pitman-Yor process

Pitman-Yor process: Start with the CRP, and boost the probability of table creation while preserving exchangeability

PY: stick breaking construction

Dirichlet process: defined $G = f(\beta, \theta)$ for an iid sequence of $\theta_i \sim G_0$ and:

 $\beta_i \sim \text{Beta}(1, \alpha_0),$

Pitman-Yor: Same but now beta's are not identically dist.:

$$\beta_i \sim \text{Beta}(1 - d, \alpha_0 + i d)$$

The infinite HMM

Infinite HMMs:

Feature based representations

How many features? Will see soon a solution: Beta process

Instead of a sit-down^{z_6} infinite sequence of dishes θ_i sampled by customers

Obvious: order of the columns not important/exchangeable (because the θ_i 's will be generated iid)

Less obvious: how to make the order of the rows exchangeable

Predictive distribution: restaurant metaphor

(Example on the board)

Slide from Kurt Miller

Beta process: stick breaking representation

Interpretation of the sequence of sticks $(\pi_j)_{j=1..\infty}$ π_j is the prior probability of picking row j

Consequence: the sticks no longer sum to one!

Construction (will come back to it later):

Beta process:Cf.: Dirichlet process
$$\beta_k \sim$$
Beta $(1, \alpha)$ $\beta_k \sim$ Beta $(1, \alpha)$ $\pi_k =$ $\prod_{l=1}^{k} (1 - \beta_l)$ $\pi_k =$ $\beta_k \prod_{l=1}^{k-1} (1 - \beta_l)$

Poisson processes

Poisson processes

Another random discrete measure, but unnormalized:

Let P_0 be a distribution on a sample space Ω (the base distribution) and $(A_1, ..., A_k)$ be a partition of Ω . We say

 $P \sim \mathrm{PP}(P_0)$

i.e., *P* is a Poisson Process, if $P(A_1) \stackrel{\text{ind.}}{\sim} \operatorname{Poi}(P_0(A_1))$

for all partitions and all k.

Cf: Dirichlet Process

Let G_0 be a distribution on a sample space Ω (the base distribution) α_0 be a positive real number (the concentration), and $(A_1, ..., A_k)$ be a partition of Ω . We say

 $G \sim \mathrm{DP}(\alpha_0, G_0)$

i.e., G is a Dirichlet Process, if

 $(G(A_1),\ldots,G(A_k)) \sim \operatorname{Dir}(\alpha_0 G_0(A_1),\ldots,\alpha_0 G_0(A_k))$

for all partitions and all k.

Consistency/existence

Let P_0 be a distribution on a sample space Ω (the base distribution) and $(A_1, ..., A_k)$ be a partition of Ω . We say

 $P \sim \mathrm{PP}(P_0)$

i.e., *P* is a Poisson Process, if $P(A_1) \stackrel{\text{ind.}}{\sim} \operatorname{Poi}(P_0(A_1))$

for all partitions and all k.

Campbell's theorem

Assume P_0 is a probability measure, f is bounded, and $P \sim PP(P_0)$.

Let also: $\Sigma = \sum_{X \in P} f(X)$

Then:
$$\mathbb{E}\left[e^{it\Sigma}\right] = \exp\left\{\int_{\Omega} (e^{itf(x)} - 1)P_0(dx)\right\}$$

Sequence memoizer

Back to hierarchical models

More elaborate example

Marginalization

Analytic marginalization

Condition for analytic marginalization

