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Program for today

 Beta, Poisson and Gamma processes

 DDP and sequence memoizer
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Pitman-Yor process

Pitman-Yor process: Start with the CRP, and boost the 
probability of table creation while preserving exchangeability

New customer

Join table #1, with 
already n1 people 

sitting there

Join table # t, with 
already nt people 

sitting there

Create a new 
table

...

∝ n1 - d ∝ nt - d ∝ α0 + t d

Discount: d ∈ [0, 1]

This has the same 
normalization as the 

DP:  α0 + n
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PY: stick breaking construction

Dirichlet process: defined G = f(β, θ) 
for an iid sequence of θi ~ G0  and:

βi ~ Beta(1, α0), 

Pitman-Yor: Same but now beta’s are not 
identically dist.:

βi ~ Beta(1 - d, α0 + i d)
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The infinite HMM

Infinite HMMs:

πx

θxEmission 
parameters

Transition 
parameters

x1

y1 y2 y3

x2 x3

x=1..∞

π
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Feature based representations

State-split Feature

yi

xi

yi

xi

xi

xi

(1)

(2)

(F)

...
2F states

2 states

2 states

2 states

How many features?  Will see soon a solution: Beta process
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Beta process

Mixture 
indicator 

priors:

Latent Feature Models

DP:

· · ·
z1

z2

z3

z4

z5

z6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

Desired:

· · ·
z1

z2

z3

z4

z5

z6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 92

Cluster index c

Feature 
indicator 

priors:

Latent Feature Models

DP:

· · ·
z1

z2

z3

z4

z5

z6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

Desired:

· · ·
z1

z2

z3

z4

z5

z6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 92

Datapoint 
index

Datapoint 
index

Feature index c

Beta process

Dirichlet process;
Pitman-Yor process
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Predictive distribution: restaurant metaphor

Instead of a sit-down restaurant, think of a buffet with an 
infinite sequence of dishes θi sampled by customers

θ1

Latent Feature Models

DP:

· · ·
z1

z2

z3

z4

z5

z6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

Desired:

· · ·
z1

z2

z3

z4

z5

z6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 92

θ2θ3θ4 ...
Customer #1
Customer #2

...

Obvious: order of the columns not important/exchangeable 
(because the θi’s will be generated iid)

Less obvious: how to make the order of the rows exchangeable
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Predictive distribution: restaurant metaphor

Latent Feature Models

The Indian Buffet Process (IBP)
How do we generate Zi without generating π first?

For the first customer:

...

Sample a Poisson(α) number of dishes.

For the ith customer:

→ ...

Sample a Poisson(α/i) number of new dishes.
Sample previously tried dishes in proportion to the
number of people who have previously tried them.

The IBP defines a prior p(Z) on infinite binary matrices.
(Griffiths and Ghahramani, 2005)

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 102

Latent Feature Models

The Indian Buffet Process (IBP)
How do we generate Zi without generating π first?

For the first customer:

...

Sample a Poisson(α) number of dishes.

For the ith customer:

→ ...

Sample a Poisson(α/i) number of new dishes.
Sample previously tried dishes in proportion to the
number of people who have previously tried them.

The IBP defines a prior p(Z) on infinite binary matrices.
(Griffiths and Ghahramani, 2005)

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 102

Slide from Kurt Miller

First customer:

Fourth customer:

(Example on the board)
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Beta process: stick breaking representation

Interpretation of the sequence of sticks (πj)j=1..∞

πj is the prior probability of picking row j

Consequence: the sticks no longer sum to one!

Construction (will come back to it later):

Latent Feature Models

Stick-Breaking Process for the BP

Special relationship between the stick-breaking process for the BP and
the DP.

DP:

βk ∼ Beta(1,α)

πk = βk

k−1∏

l=1

(1− βl)

BP:

βk ∼ Beta(α, 1)

πk =
k∏

l=1

βl

or equivalently

βk ∼ Beta(1,α)

πk =
k∏

l=1

(1− βl)

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 100

Latent Feature Models

Stick-Breaking Process for the BP

Special relationship between the stick-breaking process for the BP and
the DP.

DP:

βk ∼ Beta(1,α)

πk = βk

k−1∏

l=1

(1− βl)

BP:

βk ∼ Beta(α, 1)

πk =
k∏

l=1

βl

or equivalently

βk ∼ Beta(1,α)

πk =
k∏

l=1

(1− βl)

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 100

Beta process: Cf.: Dirichlet process
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Poisson processes
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P (A1) ∼ Poi(P0(A1))

Poisson processes

Let P0 be a distribution on a sample space Ω (the base 
distribution) and (A1, ..., Ak) be a partition of Ω.  We say

i.e., P is a Poisson Process, if

for all partitions and all k.

P ∼ PP(P0)

A1

A2

Another random discrete measure, but unnormalized:

ind.
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Cf: Dirichlet Process

Let G0 be a distribution on a sample space Ω (the base 
distribution) α0 be a positive real number (the concentration), 
and (A1, ..., Ak) be a partition of Ω.  We say

i.e., G is a Dirichlet Process, if

for all partitions and all k.

G ∼ DP(α0, G0)

(G(A1), . . . , G(Ak)) ∼ Dir(α0G0(A1), . . . ,α0G0(Ak))
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P (A1) ∼ Poi(P0(A1))

Consistency/existence
Let P0 be a distribution on a sample space Ω (the base 
distribution) and (A1, ..., Ak) be a partition of Ω.  We say

i.e., P is a Poisson Process, if

for all partitions and all k.

P ∼ PP(P0)

A1

A2

ind.

B1

B2

B3
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Campbell’s theorem

Σ =
∑

X∈P

f(X)

Assume P0 is a probability measure, f is bounded, and 
P ~ PP(P0).

Let also:

Then: E
[
eitΣ

]
= exp

{∫

Ω
(eitf(x) − 1)P0( dx)

}
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Sequence memoizer
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Back to hierarchical models

Distribution over what follows 
after the prefix 

a ___ 
...

Hyper-prior over words---not specific to a prefix
Distribution over words 

in a text dataset

Distribution over what follows 
after the prefix 

fix a ___ 

Distribution over what follows 
after the prefix 

Fix ___ 

... ...
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More elaborate example

G[oacac]

G[acac]

G[cac]

G[ac]

G[c]

G[ ]

G[a] G[o]

G[ca]
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G[oaca]

G[oa]
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c

a
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c
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o

o
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o
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o
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(a) Prefix trie for oacac.
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G[ ]

G[a] G[o]
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(b) Prefix tree for oacac.

G[ ]

G[a]

G[oaca]

G[oa]

a c o

1 1 1

d0:0

c

c

1

c

1

d2:4

d2:2

d1:1

11

(c) Initialisation.

Figure 1. (a) prefix trie and (b) corresponding prefix tree for the string oacac. Note that (a) and (b) correspond to the
suffix trie and the suffix tree of cacao. (c) Chinese restaurant franchise sampler representation of subtree highlighted in
(b).

of branches descending from each node is given by the
number of elements in Σ.

The hierarchical Pitman-Yor process (HPYP) with
finite depth has been applied to language models
(Teh, 2006), producing state-of-the-art results. It has
also been applied to unsupervised image segmentation
(Sudderth & Jordan, 2009). Defining an HPYP of un-
bounded depth is straightforward given the recursive
nature of the HPYP formulation. One contribution of
this paper to make inference in such a model tractable
and efficient.

A well known special case of the HPYP is the hierar-
chical Dirichlet process (Teh et al., 2006), which arises
from setting dn = 0 for n ≥ 0. Here, we will use a less-
well-known special case where cn = 0 for n ≥ 0. In this
parameter setting the Pitman-Yor process specializes
to a normalized stable process (Perman, 1990). We use
this particular prior because, as we shall see, it makes
it possible to construct representations of the posterior
of this model in time and space linear in the length
of a training observation sequence. The trade-off be-
tween this particular parameterization of the Pitman-
Yor process and one in which non-zero concentrations
are allowed is studied in Section 6 and shown to be in-
consequential in the language modelling domain. This
is largely due to the fact that the discount parameter
and the concentration both add mass to the base distri-
bution in the Pitman-Yor process. This notwithstand-
ing, the potential detriment of using a less expressive
prior is often outweighed when gains in computational
efficiency mean that more data can be modelled albeit
using a slightly less expressive prior.

3. Representing the Infinite Model

Given a sequence of observations x1:T we are interested
in the posterior distribution over {G[s]}s∈Σ∗ , and ulti-

mately in the predictive distribution for a continuation
of the original sequence (or a new sequence of obser-
vations y1:τ ), conditioned on having already observed
x1:T . Inference in the sequence memoizer as described
is computationally intractable because it contains an
infinite number of latent variables {G[s]}s∈Σ∗ . In this
section we describe two steps that can be taken to re-
duce the number of these variables such that inference
becomes feasible (and efficient).

First, consider a single, finite training sequence s con-
sisting of T symbols. The only variables that will
have observations associated with them are the ones
that correspond to contexts that are prefixes of s,
i.e. {G[π]}π∈{s1:i|0≤i<T}. These nodes depend only
on their ancestors in the graphical model, which cor-
respond to the suffixes of the contexts π. Thus, the
only variables that we need perform inference on are
precisely all those corresponding to contexts which are
contiguous subsequences of s, i.e. {G[sj:i]}1≤j≤i<T .

This reduces the effective number of variables to
O(T 2). The structure of the remaining graphical
model for the sequence s = oacac is given in Fig-
ure 1(a). This structure corresponds to what is known
as a prefix trie, which can be constructed from an input
string in O(T 2) time and space (Ukkonen, 1995).

The second marginalization step is more involved and
requires a two step explanation. We start by high-
lighting a marginalization transformation of this prefix
trie graphical model that results in a graphical model
with fewer nodes. In the next section we describe how
such analytic marginalization operations can be done
for the Pitman-Yor parameterization (cn = 0 ∀ n) we
have chosen.

Consider a transformation of the branch of the graph-
ical model trie in Figure 1(a) that starts with a. The
transformation of interest will involve marginalizing

END

Training: BEG  o a c a c END

G[BEG]

o
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Marginalization
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(a) Prefix trie for oacac.
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(b) Prefix tree for oacac.
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(c) Initialisation.

Figure 1. (a) prefix trie and (b) corresponding prefix tree for the string oacac. Note that (a) and (b) correspond to the
suffix trie and the suffix tree of cacao. (c) Chinese restaurant franchise sampler representation of subtree highlighted in
(b).

of branches descending from each node is given by the
number of elements in Σ.

The hierarchical Pitman-Yor process (HPYP) with
finite depth has been applied to language models
(Teh, 2006), producing state-of-the-art results. It has
also been applied to unsupervised image segmentation
(Sudderth & Jordan, 2009). Defining an HPYP of un-
bounded depth is straightforward given the recursive
nature of the HPYP formulation. One contribution of
this paper to make inference in such a model tractable
and efficient.

A well known special case of the HPYP is the hierar-
chical Dirichlet process (Teh et al., 2006), which arises
from setting dn = 0 for n ≥ 0. Here, we will use a less-
well-known special case where cn = 0 for n ≥ 0. In this
parameter setting the Pitman-Yor process specializes
to a normalized stable process (Perman, 1990). We use
this particular prior because, as we shall see, it makes
it possible to construct representations of the posterior
of this model in time and space linear in the length
of a training observation sequence. The trade-off be-
tween this particular parameterization of the Pitman-
Yor process and one in which non-zero concentrations
are allowed is studied in Section 6 and shown to be in-
consequential in the language modelling domain. This
is largely due to the fact that the discount parameter
and the concentration both add mass to the base distri-
bution in the Pitman-Yor process. This notwithstand-
ing, the potential detriment of using a less expressive
prior is often outweighed when gains in computational
efficiency mean that more data can be modelled albeit
using a slightly less expressive prior.

3. Representing the Infinite Model

Given a sequence of observations x1:T we are interested
in the posterior distribution over {G[s]}s∈Σ∗ , and ulti-

mately in the predictive distribution for a continuation
of the original sequence (or a new sequence of obser-
vations y1:τ ), conditioned on having already observed
x1:T . Inference in the sequence memoizer as described
is computationally intractable because it contains an
infinite number of latent variables {G[s]}s∈Σ∗ . In this
section we describe two steps that can be taken to re-
duce the number of these variables such that inference
becomes feasible (and efficient).

First, consider a single, finite training sequence s con-
sisting of T symbols. The only variables that will
have observations associated with them are the ones
that correspond to contexts that are prefixes of s,
i.e. {G[π]}π∈{s1:i|0≤i<T}. These nodes depend only
on their ancestors in the graphical model, which cor-
respond to the suffixes of the contexts π. Thus, the
only variables that we need perform inference on are
precisely all those corresponding to contexts which are
contiguous subsequences of s, i.e. {G[sj:i]}1≤j≤i<T .

This reduces the effective number of variables to
O(T 2). The structure of the remaining graphical
model for the sequence s = oacac is given in Fig-
ure 1(a). This structure corresponds to what is known
as a prefix trie, which can be constructed from an input
string in O(T 2) time and space (Ukkonen, 1995).

The second marginalization step is more involved and
requires a two step explanation. We start by high-
lighting a marginalization transformation of this prefix
trie graphical model that results in a graphical model
with fewer nodes. In the next section we describe how
such analytic marginalization operations can be done
for the Pitman-Yor parameterization (cn = 0 ∀ n) we
have chosen.

Consider a transformation of the branch of the graph-
ical model trie in Figure 1(a) that starts with a. The
transformation of interest will involve marginalizing

END

Training: BEG  o a c a c END

G[BEG]

o
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Gs|Gσ(s) ∼ PY(ασ(s)ds, ds)

Analytic marginalization

Training: BEG  o a c a c END

END

G[BEG]

o
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(a) Prefix trie for oacac.
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(b) Prefix tree for oacac.
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Figure 1. (a) prefix trie and (b) corresponding prefix tree for the string oacac. Note that (a) and (b) correspond to the
suffix trie and the suffix tree of cacao. (c) Chinese restaurant franchise sampler representation of subtree highlighted in
(b).

of branches descending from each node is given by the
number of elements in Σ.

The hierarchical Pitman-Yor process (HPYP) with
finite depth has been applied to language models
(Teh, 2006), producing state-of-the-art results. It has
also been applied to unsupervised image segmentation
(Sudderth & Jordan, 2009). Defining an HPYP of un-
bounded depth is straightforward given the recursive
nature of the HPYP formulation. One contribution of
this paper to make inference in such a model tractable
and efficient.

A well known special case of the HPYP is the hierar-
chical Dirichlet process (Teh et al., 2006), which arises
from setting dn = 0 for n ≥ 0. Here, we will use a less-
well-known special case where cn = 0 for n ≥ 0. In this
parameter setting the Pitman-Yor process specializes
to a normalized stable process (Perman, 1990). We use
this particular prior because, as we shall see, it makes
it possible to construct representations of the posterior
of this model in time and space linear in the length
of a training observation sequence. The trade-off be-
tween this particular parameterization of the Pitman-
Yor process and one in which non-zero concentrations
are allowed is studied in Section 6 and shown to be in-
consequential in the language modelling domain. This
is largely due to the fact that the discount parameter
and the concentration both add mass to the base distri-
bution in the Pitman-Yor process. This notwithstand-
ing, the potential detriment of using a less expressive
prior is often outweighed when gains in computational
efficiency mean that more data can be modelled albeit
using a slightly less expressive prior.

3. Representing the Infinite Model

Given a sequence of observations x1:T we are interested
in the posterior distribution over {G[s]}s∈Σ∗ , and ulti-

mately in the predictive distribution for a continuation
of the original sequence (or a new sequence of obser-
vations y1:τ ), conditioned on having already observed
x1:T . Inference in the sequence memoizer as described
is computationally intractable because it contains an
infinite number of latent variables {G[s]}s∈Σ∗ . In this
section we describe two steps that can be taken to re-
duce the number of these variables such that inference
becomes feasible (and efficient).

First, consider a single, finite training sequence s con-
sisting of T symbols. The only variables that will
have observations associated with them are the ones
that correspond to contexts that are prefixes of s,
i.e. {G[π]}π∈{s1:i|0≤i<T}. These nodes depend only
on their ancestors in the graphical model, which cor-
respond to the suffixes of the contexts π. Thus, the
only variables that we need perform inference on are
precisely all those corresponding to contexts which are
contiguous subsequences of s, i.e. {G[sj:i]}1≤j≤i<T .

This reduces the effective number of variables to
O(T 2). The structure of the remaining graphical
model for the sequence s = oacac is given in Fig-
ure 1(a). This structure corresponds to what is known
as a prefix trie, which can be constructed from an input
string in O(T 2) time and space (Ukkonen, 1995).

The second marginalization step is more involved and
requires a two step explanation. We start by high-
lighting a marginalization transformation of this prefix
trie graphical model that results in a graphical model
with fewer nodes. In the next section we describe how
such analytic marginalization operations can be done
for the Pitman-Yor parameterization (cn = 0 ∀ n) we
have chosen.

Consider a transformation of the branch of the graph-
ical model trie in Figure 1(a) that starts with a. The
transformation of interest will involve marginalizing

Analytically possible when:
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Condition for analytic marginalization
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(a) Prefix trie for oacac.

oac

ac

oac

G[oacac]

G[ac]

G[ ]

G[a] G[o]

G[oaca]

G[oa]

G[oac]

c

c

a

a

o

o

o

a

o

H

(b) Prefix tree for oacac.
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Figure 1. (a) prefix trie and (b) corresponding prefix tree for the string oacac. Note that (a) and (b) correspond to the
suffix trie and the suffix tree of cacao. (c) Chinese restaurant franchise sampler representation of subtree highlighted in
(b).

of branches descending from each node is given by the
number of elements in Σ.

The hierarchical Pitman-Yor process (HPYP) with
finite depth has been applied to language models
(Teh, 2006), producing state-of-the-art results. It has
also been applied to unsupervised image segmentation
(Sudderth & Jordan, 2009). Defining an HPYP of un-
bounded depth is straightforward given the recursive
nature of the HPYP formulation. One contribution of
this paper to make inference in such a model tractable
and efficient.

A well known special case of the HPYP is the hierar-
chical Dirichlet process (Teh et al., 2006), which arises
from setting dn = 0 for n ≥ 0. Here, we will use a less-
well-known special case where cn = 0 for n ≥ 0. In this
parameter setting the Pitman-Yor process specializes
to a normalized stable process (Perman, 1990). We use
this particular prior because, as we shall see, it makes
it possible to construct representations of the posterior
of this model in time and space linear in the length
of a training observation sequence. The trade-off be-
tween this particular parameterization of the Pitman-
Yor process and one in which non-zero concentrations
are allowed is studied in Section 6 and shown to be in-
consequential in the language modelling domain. This
is largely due to the fact that the discount parameter
and the concentration both add mass to the base distri-
bution in the Pitman-Yor process. This notwithstand-
ing, the potential detriment of using a less expressive
prior is often outweighed when gains in computational
efficiency mean that more data can be modelled albeit
using a slightly less expressive prior.

3. Representing the Infinite Model

Given a sequence of observations x1:T we are interested
in the posterior distribution over {G[s]}s∈Σ∗ , and ulti-

mately in the predictive distribution for a continuation
of the original sequence (or a new sequence of obser-
vations y1:τ ), conditioned on having already observed
x1:T . Inference in the sequence memoizer as described
is computationally intractable because it contains an
infinite number of latent variables {G[s]}s∈Σ∗ . In this
section we describe two steps that can be taken to re-
duce the number of these variables such that inference
becomes feasible (and efficient).

First, consider a single, finite training sequence s con-
sisting of T symbols. The only variables that will
have observations associated with them are the ones
that correspond to contexts that are prefixes of s,
i.e. {G[π]}π∈{s1:i|0≤i<T}. These nodes depend only
on their ancestors in the graphical model, which cor-
respond to the suffixes of the contexts π. Thus, the
only variables that we need perform inference on are
precisely all those corresponding to contexts which are
contiguous subsequences of s, i.e. {G[sj:i]}1≤j≤i<T .

This reduces the effective number of variables to
O(T 2). The structure of the remaining graphical
model for the sequence s = oacac is given in Fig-
ure 1(a). This structure corresponds to what is known
as a prefix trie, which can be constructed from an input
string in O(T 2) time and space (Ukkonen, 1995).

The second marginalization step is more involved and
requires a two step explanation. We start by high-
lighting a marginalization transformation of this prefix
trie graphical model that results in a graphical model
with fewer nodes. In the next section we describe how
such analytic marginalization operations can be done
for the Pitman-Yor parameterization (cn = 0 ∀ n) we
have chosen.

Consider a transformation of the branch of the graph-
ical model trie in Figure 1(a) that starts with a. The
transformation of interest will involve marginalizing

END

G[BEG]

o
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