Statistical modeling with stochastic processes

Alexandre Bouchard-Côté Lecture 12, Wednesday April 6

Program for today

- Dependent Dirichlet Processes
- CTMCs, trees and random hierarchies

Marginalization

Predictive distri $|_{z_4}^{z_3}$

Instead of a sit-down^{z_6} with infinite sequence of dishes θ_i sampled by customers

Poisson processes

Another random discrete measure, but unnormalized:

Let P_0 be a distribution on a sample space Ω (the base distribution) and $(A_1, ..., A_k)$ be a partition of Ω . We say

 $P \sim \mathrm{PP}(P_0)$

i.e., *P* is a Poisson Process, if $P(A_1) \stackrel{\text{ind.}}{\sim} \operatorname{Poi}(P_0(A_1))$

for all partitions and all k.

From PP to Gamma Process to DP

Campbell's theorem

Assume P_0 is a probability measure, f is bounded, and $P \sim PP(P_0)$.

Let also: $\Sigma = \sum_{X \in P} f(X)$

Then:
$$\mathbb{E}\left[e^{it\Sigma}\right] = \exp\left\{\int_{\Omega} (e^{itf(x)} - 1)P_0(dx)\right\}$$

Dependent Dirichlet Processes

Desired model

But this time: a forgetful model, where

$$\lim_{t \to \infty} \mathbb{P}(z_{t+s} = i | z_s = i) = 0$$

Inspiration: AR models

 $G_1 \sim DP(\alpha_0, H)$ $G_{t+1} = w_t G_t + (1 - w_t)\epsilon_t$

Time continuous version?

First: continuous time, finite state space models (CTMCs)

CTMC

Example: Models for DNA evolution

CTMC: special case

Suppose: $q_{ij} = c$ for all $i \neq j$ and some constant c > 0

Then: the points of mutation are distributed according to a Poisson process:

$$\{\bigstar\} \sim \operatorname{PP}(c, \operatorname{Uni}(0, 4.1))$$

Application to DDP: make the location of insertion of sticks distributed according to a Poisson process

Time continuous version

Quick overview of phylogenetics

Applications

Evolution/ language change

Hierarchical models with random hierarchies

Random hierarchies: example

Suppose we want a model similar to IBP, but with hierarchical grouping on the customers

We need:

 A prior over trees (hierarchy structures)

- Given a tree, a likelihood model for the 'evolution' of feature indicators

Kingman's coalescent

Kingman's coalescent

Kingman's coalescent

Simulate iid exp(1) clocks, one for each pair of points

Kingman's coalescent

Kingman's coalescent

Likelihood model: examples

Continuous data: Brownian motion

Likelihood model: examples

Discrete data: CTMC

Likelihood model: examples

Infinite dimensional: Coagulation Pitman-Yor?

Lots of other interesting topics!

Other models: nested Dirichlet process, kernel stick breaking process, nested CRP, infinite PCFG, string-valued CTMCs, Gaussian processes, Cox processes, diffusion processes

More general theories: Levy processes, completely random measure, tail-free processes (e.g. Polya tree), neutral to the right

Theoretical issues: consistency, Robins-Ritov paradox, mixing of MCMC samplers

Practical issues: fast, large scale inference; diagnosis