
Statistical modeling with 
stochastic processes

Alexandre Bouchard-Côté
Lecture 12, Wednesday April 6

1Saturday, April 9, 2011



Program for today

 Dependent Dirichlet Processes

 CTMCs, trees and random hierarchies
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Marginalization
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(a) Prefix trie for oacac.
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(b) Prefix tree for oacac.

G[ ]

G[a]

G[oaca]

G[oa]

a c o

1 1 1

d0:0

c

c

1

c

1

d2:4

d2:2

d1:1

11

(c) Initialisation.

Figure 1. (a) prefix trie and (b) corresponding prefix tree for the string oacac. Note that (a) and (b) correspond to the
suffix trie and the suffix tree of cacao. (c) Chinese restaurant franchise sampler representation of subtree highlighted in
(b).

of branches descending from each node is given by the
number of elements in Σ.

The hierarchical Pitman-Yor process (HPYP) with
finite depth has been applied to language models
(Teh, 2006), producing state-of-the-art results. It has
also been applied to unsupervised image segmentation
(Sudderth & Jordan, 2009). Defining an HPYP of un-
bounded depth is straightforward given the recursive
nature of the HPYP formulation. One contribution of
this paper to make inference in such a model tractable
and efficient.

A well known special case of the HPYP is the hierar-
chical Dirichlet process (Teh et al., 2006), which arises
from setting dn = 0 for n ≥ 0. Here, we will use a less-
well-known special case where cn = 0 for n ≥ 0. In this
parameter setting the Pitman-Yor process specializes
to a normalized stable process (Perman, 1990). We use
this particular prior because, as we shall see, it makes
it possible to construct representations of the posterior
of this model in time and space linear in the length
of a training observation sequence. The trade-off be-
tween this particular parameterization of the Pitman-
Yor process and one in which non-zero concentrations
are allowed is studied in Section 6 and shown to be in-
consequential in the language modelling domain. This
is largely due to the fact that the discount parameter
and the concentration both add mass to the base distri-
bution in the Pitman-Yor process. This notwithstand-
ing, the potential detriment of using a less expressive
prior is often outweighed when gains in computational
efficiency mean that more data can be modelled albeit
using a slightly less expressive prior.

3. Representing the Infinite Model

Given a sequence of observations x1:T we are interested
in the posterior distribution over {G[s]}s∈Σ∗ , and ulti-

mately in the predictive distribution for a continuation
of the original sequence (or a new sequence of obser-
vations y1:τ ), conditioned on having already observed
x1:T . Inference in the sequence memoizer as described
is computationally intractable because it contains an
infinite number of latent variables {G[s]}s∈Σ∗ . In this
section we describe two steps that can be taken to re-
duce the number of these variables such that inference
becomes feasible (and efficient).

First, consider a single, finite training sequence s con-
sisting of T symbols. The only variables that will
have observations associated with them are the ones
that correspond to contexts that are prefixes of s,
i.e. {G[π]}π∈{s1:i|0≤i<T}. These nodes depend only
on their ancestors in the graphical model, which cor-
respond to the suffixes of the contexts π. Thus, the
only variables that we need perform inference on are
precisely all those corresponding to contexts which are
contiguous subsequences of s, i.e. {G[sj:i]}1≤j≤i<T .

This reduces the effective number of variables to
O(T 2). The structure of the remaining graphical
model for the sequence s = oacac is given in Fig-
ure 1(a). This structure corresponds to what is known
as a prefix trie, which can be constructed from an input
string in O(T 2) time and space (Ukkonen, 1995).

The second marginalization step is more involved and
requires a two step explanation. We start by high-
lighting a marginalization transformation of this prefix
trie graphical model that results in a graphical model
with fewer nodes. In the next section we describe how
such analytic marginalization operations can be done
for the Pitman-Yor parameterization (cn = 0 ∀ n) we
have chosen.

Consider a transformation of the branch of the graph-
ical model trie in Figure 1(a) that starts with a. The
transformation of interest will involve marginalizing

END

Training: BEG  o a c a c END

G[BEG]

o

Gs|Gσ(s) ∼ PY(ασ(s)ds, ds)

Analytically possible when:
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Predictive distribution: restaurant metaphor

Instead of a sit-down restaurant, think of a buffet with an 
infinite sequence of dishes θi sampled by customers

θ1

Latent Feature Models

DP:

· · ·
z1

z2

z3

z4

z5

z6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

Desired:

· · ·
z1

z2

z3

z4

z5

z6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 92

θ2θ3θ4 ...
Customer #1
Customer #2

...
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P (A1) ∼ Poi(P0(A1))

Poisson processes

Let P0 be a distribution on a sample space Ω (the base 
distribution) and (A1, ..., Ak) be a partition of Ω.  We say

i.e., P is a Poisson Process, if

for all partitions and all k.

P ∼ PP(P0)

A1

A2

Another random discrete measure, but unnormalized:

ind.
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From PP to Gamma Process to DP

infinitely exchangeable sequence can be written

P (Z1, . . . Zn) =
∫ [

n∏

i=1

P (Zi|B)

]
dP (B),

where B is the random element that renders the vari-
ables {Zi} conditionally independent and where we
will refer to the distribution P (B) as the “de Finetti
mixing distribution.” For the Chinese restaurant pro-
cess, the underlying de Finetti mixing distribution is
known—it is the Dirichlet process. As this result sug-
gests, identifying the de Finetti mixing distribution
behind a given exchangeable sequence is important; it
greatly extends the range of statistical applications of
the exchangeable sequence.

In this paper we make the following three contribu-
tions:

1. We identify the de Finetti mixing distribution be-
hind the Indian buffet process. In particular, in
Sec. 4 we show that this distribution is the beta
process. We also show that this connection mo-
tivates a two-parameter generalization of the In-
dian buffet process proposed in [3]. While the
beta process has been previously studied for its
applications in survival analysis, this result shows
that it is also the natural object of study in non-
parametric Bayesian factorial modeling.

2. In Sec. 5 we exploit the link between the beta
process and the Indian buffet process to provide
a new algorithm to sample beta processes.

3. In Sec. 6 we define the hierarchical beta process,
an analog for factorial modeling of the hierarchical
Dirichlet process [11]. The hierarchical beta pro-
cess makes it possible to specify models in which
features are shared among a number of groups.
We present an example of such a model in an
application to document classification in Sec. 7,
where we also explore the relationship of the hi-
erarchical beta process to naive Bayes models.

2 The beta process

The beta process was defined by Hjort [4] for appli-
cations in survival analysis. In those applications,
the beta process plays the role of a distribution on
functions (cumulative hazard functions) defined on the
positive real line. In our applications, the sample paths
of the beta process need to be defined on more general
spaces. We thus develop a nomenclature that is more
suited to these more general applications.

A positive random measure B on a space Ω (e.g.,
R) is a Lévy process, or independent increment pro-
cess, if the masses B(S1), . . . B(Sk) assigned to disjoint
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Figure 1: Top. A measure B sampled from a beta
process (blue), along with its corresponding cumula-
tive distribution function (red). The horizontal axis
is Ω, here [0, 1]. The tips of the blue segments are
drawn from a Poisson process with base measure the
Lévy measure. Bottom. 100 samples from a Bernoulli
process with base measure B, one per line. Samples
are sets of points, obtained by including each point ω
independently with probability B({ω}).

subsets S1, . . . Sk of Ω are independent1. The Lévy-
Khinchine theorem [5, 8] implies that a positive Lévy
process is uniquely characterized by its Lévy measure
(or compensator), a measure on Ω× R+.

Definition. A beta process B ∼ BP(c,B0) is a pos-
itive Lévy process whose Lévy measure depends on
two parameters: c is a positive function over Ω that
we call the concentration function, and B0 is a fixed
measure on Ω, called the base measure. In the special
case where c is a constant it will be called the concen-
tration parameter. We also call γ = B0(Ω) the mass
parameter.

If B0 is continuous, the Lévy measure of the beta pro-
cess is

ν(dω, dp) = c(ω)p−1(1− p)c(ω)−1dpB0(dω) (1)

on Ω× [0, 1]. As a function of p, it is a degenerate beta
distribution, justifying the name. ν has the following
elegant interpretation. To draw B ∼ BP(c,B0), draw
a set of points (ωi, pi) ∈ Ω× [0, 1] from a Poisson pro-
cess with base measure ν (see Fig. 1), and let:

B =
∑

i

piδωi (2)

where δω is a unit point mass (or atom) at ω. This
1Positivity is not required to define Lévy processes but

greatly simplifies their study, and positive Lévy processes
are sufficient here. On Ω = R, positive Lévy processes are
also called subordinators.
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(or compensator), a measure on Ω× R+.

Definition. A beta process B ∼ BP(c,B0) is a pos-
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are sufficient here. On Ω = R, positive Lévy processes are
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Campbell’s theorem

Σ =
∑

X∈P

f(X)

Assume P0 is a probability measure, f is bounded, and 
P ~ PP(P0).

Let also:

Then: E
[
eitΣ

]
= exp

{∫

Ω
(eitf(x) − 1)P0( dx)

}
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Dependent Dirichlet 
Processes
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lim
t→∞

P(zt+s = i|zs = i) = 0

Desired model

x1

y1 y2 y3

x2 x3

But this time: a forgetful model, where

Sequential (as infinite HMM)

9Saturday, April 9, 2011



Gt+1 = wtGt + (1− wt)εt

G1 ∼ DP(α0, H)

Inspiration: AR models

G1

y1 y2 y3

G2 G3
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Time continuous version?

G1

y1 y2 y3

G2 G3

G1

y1 y2 y3

G2 G3

0.9

1 1

3.2
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First: continuous time, 
finite state space 
models (CTMCs)
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CTMC

X0 X3.2 X4.1

Queried 
random 

variables

Changes can 
occur at 
points of the 
continuum 
between 
query nodes 
(want to 
marginalize 
over this)

s1

s2

s3

s4
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Example: Models for DNA evolution

Time t 

Nucleotides

A

C

G

T

Nucleotide at 
ancestral species

Nucleotide at 
modern species
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Generating random CTMC paths

Time t 

Nucleotides

Nucleotide at 
ancestral species

Nucleotide at 
modern species

?
s1

s2

s3

s4
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Generating random CTMC paths

Time t 

Nucleotides

Nucleotide at 
ancestral species

Nucleotide at 
modern species

?
τ1
τ2

τ4

s1

s2

s3

s4

16Saturday, April 9, 2011



Generating random CTMC paths

Nucleotides

Nucleotide at 
ancestral species

Nucleotide at 
modern species

s1

s2

s3

s4

τ

X
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Generating random CTMC paths

Nucleotides

Nucleotide at 
ancestral species

Nucleotide at 
modern species

s1

s2

s3

s4

τ

X
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Generating random CTMC paths

Nucleotides

Nucleotide at 
ancestral species

Nucleotide at 
modern species

s1

s2

s3

s4
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CTMC: special case

X0 X3.2 X4.1

Suppose: qij = c for all i ≠ j and some constant c > 0

Then: the points of mutation are distributed according to a 
Poisson process:

{    } ~ PP(c, Uni(0, 4.1))

Application to DDP: make the location of insertion of sticks 
distributed according to a Poisson process
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Time continuous version

G1

y1 y2 y3

G2 G3

G1

y1 y2 y3

G2 G3

0.9

1 1

3.2

+
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Quick overview of 
phylogenetics
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Applications

Evolution/
language 

change

Hierarchical 
models with 

random 
hierarchies

AC T A C

AC G

AA T A C

GC G

AC T A C

Datapoint 1 Datapoint 2
Datapoint 3

Prior

Hyper-prior
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Random hierarchies: example

(a)

...

γ1 γ2 γ3 ...

(b)

...

γ1 γ2 γ3 ...

Figure 1: The Phylogenetic Indian Buffet Process. (a)
A tree expresses dependencies among featural repre-
sentations of objects. (b) The Indian Buffet Process is
a special case of the pIBP where all branches meet at
the root.

account when computing posterior updates under the
pIBP prior.

The tree representation is a rich language for express-
ing non-exchangeability. In particular, factorial and
nested models of the kind used in experimental design
are readily expressed as trees. Group structure as used
in the hierarchical Dirichlet process (Teh et al., 2005)
and hierarchical beta process (Thibaux and Jordan,
2007) can also be expressed as trees, as can a vari-
ety of other partially exchangeable models (Diaconis,
1988). In biological data analysis we may be able to ex-
ploit known phylogenetic or genealogical relationships
among species or characters. More generally we may
have similarity data available for a set of objects that
can be used to build a tree representation. The pIBP
uses such representations to induce a prior on featural
representations such that objects that are related in
the tree will tend to share features (see Figure 1).

It is important to distinguish our approach from pre-
vious nonparametric Bayesian work based on random
trees (Neal, 2001; Teh et al., 2008). In that work,
trees are averaged over and objects remain exchange-
able. We are conditioning on a known, fixed tree and
our objects are not exchangeable.

While we develop the pIBP in the context of the IBP
for concreteness, the idea is actually much broader.
The key is that the use of a tree to express relationships
among non-exchangeable random variables allows us
to exploit the sum-product algorithm in defining the
updates for an MCMC sampler. This insight extends
the scope of nonparametric Bayesian models without
significantly increasing the computational burden as-
sociated with inference.

The paper is organized as follows. Section 2 presents
a short review of the IBP and then provides a detailed

description of the pIBP. Section 3 discusses MCMC
inference in models using the pIBP as a prior. Sec-
tion 4 presents an application of the pIBP to models
of human choice, and shows how combining nonpara-
metric methods with a tree-based prior improves per-
formance. Section 5 presents our conclusions.

2 THE PHYLOGENETIC INDIAN
BUFFET PROCESS

Griffiths and Ghahramani (2006) proposed the Indian
Buffet Process as a prior distribution on sparse binary
matrices Z, where the rows of Z correspond to objects
and the columns of Z correspond to a set of features
or attributes describing these objects. As with other
nonparametric Bayesian models, the IBP can be inter-
preted through a culinary metaphor. In this metaphor,
objects correspond to people and features correspond
to an infinite array of dishes at an Indian buffet. The
first person samples Poisson(α) dishes, where α is a
parameter. The ith customer then samples all previ-
ously sampled dishes in proportion to the number of
people who have already sampled those dishes, and
Poisson(α/i) new dishes. This process defines an ex-
changeable distribution on equivalence classes of Z,
the binary matrix with a one at cell (i, k) when the
ith customer chooses the kth dish. Figure 1(b) shows
a matrix generated from this process.

The IBP can be derived as the infinite limit of a beta-
Bernoulli model. Consider a finite model in which
there are K features, and let the probability that an
object possesses feature k be Bernoulli(πk). Endow-
ing πk with a Beta(α/K, 1) distribution, we obtain
the IBP in the limit as K → ∞. The Phylogenetic
Indian Buffet Process uses a similar construction. As
with the IBP, we will use the term “pIBP” to refer to
both the distribution on binary matrices as well as a
generative process which induces this distribution. We
first describe the distribution on finite matrices at the
heart of the pIBP, and then describe the process that
results by letting the number of features go to infinity.

2.1 A PRIOR ON FINITE MATRICES

We begin by defining a generative process for Z, an
N×K binary matrix, where N is the number of objects
and K is a fixed, finite number of features. We use the
following notation. Let zik denote the (i, k) entry of
Z, let zk be the kth column of Z, let z(−i)k denote
the entries of zk except zik, and let Z−(ik) denote the
entries of the full Z matrix except zik.

As in the IBP, we associate a parameter πk to each col-
umn, chosen from a Beta(α/K, 1) prior distribution,
where α is a hyperparameter. Given πk, the marginal

Suppose we want a model similar to IBP, but with 
hierarchical grouping on the customers

We need:

- A prior over trees 
(hierarchy structures)

- Given a tree, a 
likelihood model for 
the ‘evolution’ of 
feature indicators 
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Models over trees: example

Kingman’s coalescent
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Models over trees: example

Kingman’s coalescent
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Models over trees: example

Kingman’s coalescent

...
Simulate iid 

exp(1) clocks, 
one for each pair 

of points
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Models over trees: example

Kingman’s coalescent

Again, the winner 
determines the 

first merge 
(coalescent) 

event
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Models over trees: example

Kingman’s coalescent

Start again, with 
n-1 points now
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Models over trees: example

Until there is only 
one node left
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Likelihood model: examples

Continuous data: Brownian motion

Datapoint 1

Datapoint 2

Datapoint 3
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Likelihood model: examples

Discrete data: CTMC

Datapoint 1

Datapoint 2

Datapoint 3

Same value

Same value
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Likelihood model: examples

Infinite dimensional: Coagulation Pitman-Yor?
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(a) Prefix trie for oacac.
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(b) Prefix tree for oacac.
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(c) Initialisation.

Figure 1. (a) prefix trie and (b) corresponding prefix tree for the string oacac. Note that (a) and (b) correspond to the
suffix trie and the suffix tree of cacao. (c) Chinese restaurant franchise sampler representation of subtree highlighted in
(b).

of branches descending from each node is given by the
number of elements in Σ.

The hierarchical Pitman-Yor process (HPYP) with
finite depth has been applied to language models
(Teh, 2006), producing state-of-the-art results. It has
also been applied to unsupervised image segmentation
(Sudderth & Jordan, 2009). Defining an HPYP of un-
bounded depth is straightforward given the recursive
nature of the HPYP formulation. One contribution of
this paper to make inference in such a model tractable
and efficient.

A well known special case of the HPYP is the hierar-
chical Dirichlet process (Teh et al., 2006), which arises
from setting dn = 0 for n ≥ 0. Here, we will use a less-
well-known special case where cn = 0 for n ≥ 0. In this
parameter setting the Pitman-Yor process specializes
to a normalized stable process (Perman, 1990). We use
this particular prior because, as we shall see, it makes
it possible to construct representations of the posterior
of this model in time and space linear in the length
of a training observation sequence. The trade-off be-
tween this particular parameterization of the Pitman-
Yor process and one in which non-zero concentrations
are allowed is studied in Section 6 and shown to be in-
consequential in the language modelling domain. This
is largely due to the fact that the discount parameter
and the concentration both add mass to the base distri-
bution in the Pitman-Yor process. This notwithstand-
ing, the potential detriment of using a less expressive
prior is often outweighed when gains in computational
efficiency mean that more data can be modelled albeit
using a slightly less expressive prior.

3. Representing the Infinite Model

Given a sequence of observations x1:T we are interested
in the posterior distribution over {G[s]}s∈Σ∗ , and ulti-

mately in the predictive distribution for a continuation
of the original sequence (or a new sequence of obser-
vations y1:τ ), conditioned on having already observed
x1:T . Inference in the sequence memoizer as described
is computationally intractable because it contains an
infinite number of latent variables {G[s]}s∈Σ∗ . In this
section we describe two steps that can be taken to re-
duce the number of these variables such that inference
becomes feasible (and efficient).

First, consider a single, finite training sequence s con-
sisting of T symbols. The only variables that will
have observations associated with them are the ones
that correspond to contexts that are prefixes of s,
i.e. {G[π]}π∈{s1:i|0≤i<T}. These nodes depend only
on their ancestors in the graphical model, which cor-
respond to the suffixes of the contexts π. Thus, the
only variables that we need perform inference on are
precisely all those corresponding to contexts which are
contiguous subsequences of s, i.e. {G[sj:i]}1≤j≤i<T .

This reduces the effective number of variables to
O(T 2). The structure of the remaining graphical
model for the sequence s = oacac is given in Fig-
ure 1(a). This structure corresponds to what is known
as a prefix trie, which can be constructed from an input
string in O(T 2) time and space (Ukkonen, 1995).

The second marginalization step is more involved and
requires a two step explanation. We start by high-
lighting a marginalization transformation of this prefix
trie graphical model that results in a graphical model
with fewer nodes. In the next section we describe how
such analytic marginalization operations can be done
for the Pitman-Yor parameterization (cn = 0 ∀ n) we
have chosen.

Consider a transformation of the branch of the graph-
ical model trie in Figure 1(a) that starts with a. The
transformation of interest will involve marginalizing

G[BEG]

o
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Lots of other interesting topics!

Other models: nested Dirichlet process, kernel stick breaking 
process, nested CRP, infinite PCFG, string-valued CTMCs, 
Gaussian processes, Cox processes, diffusion processes

More general theories: Levy processes, completely random 
measure, tail-free processes (e.g. Polya tree), neutral to the 
right

Theoretical issues: consistency, Robins-Ritov paradox, mixing 
of MCMC samplers

Practical issues: fast, large scale inference; diagnosis
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