
Statistical modeling with 
stochastic processes

Alexandre Bouchard-Côté
Lecture 2, Wednesday March 2

1Thursday, March 3, 2011



Plan for today

 Finishing the applications/motivations overview

 Computational issues: overview

 Background
 Graphical models
 MCMC
 Bayesian decision theory
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Stochastic processes

‘A collection of random variables indexed by 
an arbitrary set S’

Note 1: if S if finite, then back to an ‘undergrad’ random 
variable, so we concentrate on S uncountable

Note 2: S  is not necessarily the real line
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Example: distribution over functions
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S = R

(s, Ys(ω) ) 

Samples: functions f : R ➛ R

Ys(ω) =  f(s)
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Example: distribution over distributions

S = F, a sigma-algebra (the set of events for λ)

0

1

0.5

(No topology on this axis this time...)

(s, Ys(ω) ) 
Samples: distributions λ : F ➛ [0,1]

Ys(ω) =  λ(s)
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xi|θ ∼ Fθ

Why would we need 
distributions over distributions?

De Finetti theorem: a compelling motivation for priors 
on parameters...

Suppose: we agree that if our data xi are reorder, it 
doesn’t matter (exchangeability), e.g.

(x1, x2, x3, ... ) = ( x3, x1, x2, ... )
d

Then: there exists a random variable θ and 
distributions Fθ such that:
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Non-Bayesian application: 
phylogenetic inference

Scientific applications: biology, anthropology, linguistics

Engineering applications: domain adaptation, multi-task 
learning
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ported in a microsatellite-based study of the same
panel (3). AtK = 6, the new component accounts
for a major portion of ancestry for individuals
from South/Central Asia, separating this region
from the Middle East and Europe. This result
differs from that in (3), where the sixth compo-
nent contained the Kalash individuals, but South/
Central Asia, the Middle East, and Europe were
not clearly distinguished unless analyzed sepa-
rately from the rest of the world. At K = 7, the
new component occurs at highest proportions in
the Middle Eastern populations, separating them
from European populations. In many popula-
tions, ancestry is derived predominantly from

one of the inferred components, whereas in
others, especially those in the Middle East and
South/Central Asia, there are multiple sources of
ancestry. For example, Palestinians, Druze, and
Bedouins have contributions from the Middle
East, Europe, and South/Central Asia. Burusho,
Pathan, and Sindhi have an East Asian contribu-
tion. Hazara and Uygur share a similar profile of
combined South/Central Asian, East Asian, and
European ancestry. In East Asia, only the Yakuts
share ancestry with both Europe and America,
although these contributions are small. Although
much of sub-Saharan Africa, Europe, and East
Asia appears to be homogeneous in Fig. 1A, finer

substructures can be detected when individual
regions are analyzed separately. For example, we
identified two components that separate the 16
East Asian populations and correspond to a north-
south genetic gradient (fig. S2A). Han Chinese
can be divided into a southern and a northern
group. A similar analysis for South/Central Asia
is shown in fig. S2B.

Mixed ancestries inferred from genetic data
can often be interpreted as arising from recent
admixture among multiple founder populations.
In the current setting, however, the estimated
mixed ancestry can be due either to recent ad-
mixture or to shared ancestry before the diver-

San
Mbuti Pygmies

Biaka Pygmies
Bantu

Mandenka
Yoruba

Mozabite
Bedouin
Palestinian

Druze
Tuscan

Sardinian
Italian
Basque

French
Orcadian

Russian
Adygei
Balochi
Brahui
Makrani
Sindhi
Pathan

Kalash
Burusho

Hazara
Uygur

Cambodian
Dai

Lahu
Miaozu
She

Tujia
Japanese

Han
Yizu

Naxi
Tu
Xibo

Mongola
Hezhen
Daur
Oroqen

Yakut
Colombian

Karitiana
Surui

Maya
Pima

Melanesian
Papuan

*

A

B

Africa EuropeMid.East C.S.Asia E.Asia

Oceania

America

Sa
n

M
bu

ti
Bl

ak
a

Yo
ru

ba
M

an
de

nk
a

Ba
nt

u
M

oz
ab

ite

Be
do

ui
n

Pa
le

st
in

ia
n

D
ru

ze

Ad
yg

el
Sa

rd
in

ia
n

Tu
sc

an
 

Ita
lia

n
Fr

en
ch

O
rc

ad
ia

n
Ba

sq
ue

R
us

si
an

M
ak

ra
ni

Ba
lo

ch
i

Br
ah

ui
Ka

la
sh

Bu
ru

sh
o

Pa
th

an
Si

nd
hi

H
az

ar
a

U
yg

ur
Ya

ku
t

M
on

go
la Tu

Xi
bo

O
ro

qe
n

H
ez

he
n

D
au

r
Ja

pa
ne

se
Yi

zu
N

ax
i

Tu
jia

N
or

th
er

nH
an H
an Sh
e

M
ia

oz
u

D
ai

La
hu

C
am

bo
di

an
M

el
an

es
ia

n
Pa

pu
an

M
ay

a
Pi

m
a

C
ol

om
bi

an
Ka

rit
ia

na
Su

ru
i

Fig. 1. Individual ancestry and population dendrogram. (A) Regional ancestry inferred with the
frappe program at K = 7 (13) and plotted with the Distruct program (31). Each individual is
represented by a vertical line partitioned into colored segments whose lengths correspond to his/
her ancestry coefficients in up to seven inferred ancestral groups. Population labels were added
only after each individual’s ancestry had been estimated; they were used to order the samples in
plotting. (B) Maximum likelihood tree of 51 populations. Branches are colored according to
continents/regions. * indicates the root of the tree, also where the chimpanzee branch is located.

www.sciencemag.org SCIENCE VOL 319 22 FEBRUARY 2008 1101
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Phylogenetic tree

The length of the 
branches is 

proportional to the 
amount of drift 

between the two nodes
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Data

Human Genome 
Diversity Panel

 ~1000 individuals from 
 ~50 populations

PMaya(A)
PMaya(B)
PMaya(C)
...

 

Compute 
allele 

frequency 
for each 

population

PHan(A)
PHan(B)
PHan(C)
...

Different 
because of 
finite pop., 

non-
uniform 
mixing
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Oceanic 
populations

American 
populations

E. Asiatic
populations
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Oceanic 
populations

American 
populations

E. Asiatic
populations

Doing the same thing, but with the 
other tree gives us P(Data | H2)
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Oceanic 
populations

American 
populations

E. Asiatic
populations

Doing the same thing, but with the 
other tree gives us P(Data | H2)
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Data: second type

2.4 Insertions, deletions and multiple sequence alignments

time

main

population

Figure 2.4. An example of the confounding effect of dialects and population structure on
phylogenetic inference.

verses this trend. Since language is generally acquired from more than one source,
dialect structure is also an important aspect of diachronic linguistics.

Hybridization and creoles In the extreme case, a new taxon can be created from two
parent taxa. This is known as hybridization in biology and creolization in linguistics.
This truly non-tree process is not as frequent as the previous two processes.

2.4 Insertions, deletions and multiple sequence align-
ments

Let us now look at the effect of insertions and deletions on sequence analysis. Consider
the following sequences:

C A T A C

C A G

A T C C

a:

b:

c:

While the sequences still have apparent similarities, insertion and deletions (indel) made
their lengths vary, shifting these similarities. We show an example of indel history in
Figure 2.5 that yields these sequences.

A convenient way of revealing the similarities between sequences is to determine their sets
of homologous characters. When we restrict our attention to three types of mutations
(substitution, insertions, deletions), these sets of homologous classes are called Multiple

10

Input: a sequence for each population (taxon)

Taxa

Output: phylogenetic tree (among other things)
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Type of process needed

Time t 

Sequence

A

C

G

T

AA

AC

...

String-valued stochastic process (instead of real-valued)
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Type of process needed

Time t 

Sequence

A

C

G

T

AA

AC

...

String-valued stochastic process (instead of real-valued)

What could be the 
marginals of such 

object?
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‘Engineering’/machine learning 
applications
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Slide from John Blitzer

Domain adaptation: doing the same task (for example sentiment 
analysis) over two domain (books, vs. kitchen appliances)

Output: NEGATIVE!

NEGATIVE!
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‘Engineering’/machine learning 
applications

Slide from John Blitzer

Multi-task learning: doing two tasks (sentiment analysis vs. 
predicting if a customer will ask for refund) over one domain

Output: NEGATIVE! Output: Will not ask 
for refund!
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Phylogenetic tree application

Task: doing classification over more than two domains or 
tasks

Latent variable: a tree mirroring how closely related tasks/
domain are

Domain adaptation example:

Table 1: Data set statistics for two DA problems and one MTL problem. The number of training and test
examples are averages across the K tasks and are presented with percentage standard deviation.

Model Dataset # Tasks # Features # Train # Test

DA Sentiment [3] 8 5964 9151±43% 2288±43%
Landmine detection [15] 29 9 409±17% 102±17%

MTL 20-newsgroups [13] 10 925 1127±8% 751±8%

app kitchen elec other musicbooks dvd video

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2: Coalescent tree obtained on sentiment data
just using the data points.

Figure 3, we show the results of the coalescent-based
model (with full covariance but without data: Full),
baselines, and comparison methods. As we can see, the
coalescent-based approach dominates, even with very
many data points (6400 per domain). In Table 2, we
see that moving from full to diagonal covariance does
not hurt significantly. Adding the data hurts perfor-
mance significantly, and brings the performance down
to the level of Data, the model that uses the data-based
tree. In comparison to previously published results on
this problem [3], our results are not quite as good.
However, prior results depend on a large amount of
prior knowledge in terms of “pivot features,” which
our model does not require, and also begin with a dif-
ferent feature representation.

In Figure 4, we show the trees after ten iterations of
EM. We can see a difference between these trees and
the tree built just on the data (cf., Figure 2). For
instance, the data tree thinks that “music” is more
like “appliances” than it is like “DVDs,” something
that does not happen in the EM tree.

In the next experiments, we select one task as the “tar-
get”. We use 6400 examples from all the “source”
tasks and vary the amount of labeled target data. We
perform an evaluation on four targets, the same as
those used previously [3]: books, DVD, electronics and
kitchen. These results are shown in Figure 5. Here,
we again see that the coalescent-based approach out-
performs the baselines. However, for many of these
per-target results, the feda baseline is the consistent-
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Figure 3: Accuracies on sentiment analysis data as
number of data points per domain increases (coal =
Full).

best alternative. One somewhat surprising result is
that adding more and more target data does not ap-
pear to help significantly for this problem.

4.2 DOMAIN ADAPTATION: LANDMINE
DETECTION

The second domain adaptation task we attempt is
landmine detection [15]. To conserve space, we only
present overall results and results for one subtask: the
last one. To uncrowd the figure, we also limit the base-
line models to a subset of approaches; recall that the
full results are shown in Table 2. These are shown in
Figure 6. Note that the performance measure here is
AUC: there are very few positives in this data (around
5%). Here, we see that on the target-based evaluation,
the coalescent-based approach dominates. For small
amounts of data it performs equivalently to indp, but
the gap increases for more data.

4.3 MULTITASK LEARNING:
20-NEWSGROUPS

Our final evaluation is on data drawn from 20-
newsgroups. Here, we construct 10 binary classifica-
tion problems, each of which is its own task. We use
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Computational Issues
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Lazy computation

We have introduced prior over infinite support distributions, 
transition matrices, feature vectors, etc. 
If we cannot even represent a single sample, how are we going 
to be able to do inference?

General principle: lazy computation.  Represent some parts 
of the samples implicitly.  If we can show that a part of the 
sample will not affect the answer, don’t store it in memory!

Does not mean we can replace these priors by finite support 
equivalents: we don’t know a priori which part of the sample we 
will be able to ignore.
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Easy example

Oceanic 
populations

American 
populations

E. Asiatic
populations
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Don’t need to keep track of the values between 
two nodes: the endpoints are marginally normal

Only marginal at the internal nodes need to be maintained;  Note: 
tree unknown, so we don’t know a priori what are the internal nodes
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Why do we know the marginals? 
By definition!

0 500 1000 1500 2000

0

0.2

0.4

0.6

0.8

1

S = R

What are the bare minimum conditions for λ to be marginals 
of Ys ?

s1 s2

A
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Why do we know the marginals? 
By definition!
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S = R

What are the bare minimum conditions for λ to be marginals 
of Ys ?

s1 s2

A

λs1(A) = λs1,s2(A,R) [marginalization]
λs1,s2(A1, A2) = λs2,s1(A2, A1) [perm]
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Why do we know the marginals? 
By definition!

What are the bare minimum conditions for λ to be marginals 
of Ys ?

λs1(A) = λs1,s2(A,R) [marginalization]
λs1,s2(A1, A2) = λs2,s1(A2, A1) [perm]

Kolmogorov: if these consistency conditions hold for any 
finite number of variables (not just a pair), then there is a 
stochastic process with these marginals.

Brownian motion: take λsi to be multivariate normal 
distributions with sparse covariance depending on {si}
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The Dirichlet Process Model

What is the Dirichlet Process?

Image from http://www.nature.com/nsmb/journal/v7/n6/fig tab/nsb0600 443 F1.html

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 34

Less obvious cases

In other cases, the original process definition might not be 
amenable to efficient inference.

Fortunately, many equivalent representation often exist

Slide from Kurt Miller
21Thursday, March 3, 2011



The Dirichlet Process Model

What is the Dirichlet Process?

(G(A1), . . . , G(An))
∼ Dir(α0G0(A1), . . . ,α0G0(An))

Kurt T. Miller SAIL - Nonparametric Bayesian Methods 35

Less obvious cases

In other cases, the original process definition might not be 
amenable to efficient inference.

Fortunately, many equivalent representation often exist

Slide from Kurt Miller

- Stick breaking
- Levy construction
- Chinese Restaurant
- Polya urn
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Approximations are often 
needed

 Monte Carlo
 MCMC (Markov Chain) and SMC (Sequential)
 Slice and other auxiliary variables, split-merge, 

type-level and collapsed samplers

 Variational
 Legendre-Fenchel transformation
 Standard relaxations

23Thursday, March 3, 2011
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Background: back to 
the game
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Distribution identity

If X, Y are independent Gamma’s with the same scale 
parameter, what is the distribution of X / (X + Y)

A   Uniform

B   Beta
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argminxL(x, E(X|Y ))

argminxE(L(x, X)|Y )

What a Bayesian would do if...

Y : Observations
X : Latent
L : Loss function 
(strictly convex say)

They would optimize...

A

B
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Explanation of the question

Task: given an observed random variable Y, what value 
should we guess for a related random variable X which is 
unobserved?

Example: Y are observed UBC students heights, 
assumed to be iid, and normally distributed with unknown 
mean X

Criterion: if we make a guess x and the real value is x*, 
we pay a cost of L(x,x*) --- this is called a loss function.
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The Bayesian choice

Task: given an observed random variable Y, what value 
should we guess for a related random variable X which is 
unobserved?

Criterion: if we make a guess x and the real value is x*, 
we pay a cost of L(x,x*) --- this is called a loss function.

In the Bayesian framework: you should answer

argminxE(L(x, X)|Y )
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Argument for and against using 
a Bayes estimator

Pros:
 Easy to create ‘good’ estimators handling missing data, 

prior knowledge 
 Automatic framework for shrinkage and regularization
 Certain optimality guarantees when the model is correct 

(consistency, admissibility)--more on that later
Cons:
 Can lack robustness to model misspecification 
 Often needs to be approximated, so sometimes it might 

be possible to exactly compute a statistically suboptimal 
estimator and get a better end result in practice

Pro and con:
 For large amount of data, prior is washed out.
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The Bayesian choice: examples

Example 1:  Suppose X is discrete, i.e. X ∈ {1, 2, ... N}

Computing the Bayes estimator:

.

E(L(1, X)|Y ) =
N∑

x=1

L(1, x)P(X = x|Y )

E(L(2, X)|Y ) =
N∑

x=1

L(2, x)P(X = x|Y )

E(L(N, X)|Y ) =
N∑

x=1

L(N, x)P(X = x|Y )
...

Return the 
index of 

the 
minimum 
of these 
numbers
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The Bayesian choice: examples

Model: Y are observed UBC students heights, assumed 
to be iid, and normally distributed with unknown mean X

Example 2:  Suppose L(x,x*) = (x - x*)2
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Computations

Discrete case: When X is discrete the posterior,

is often (but not always) the computational bottleneck 
when dealing with Bayes estimators.

Continuous case: When X is continuous and conjugate, 
computing the posterior can often (but not always) be 
done by computing the parameters of the posterior.

In both cases, computing the posterior can be intractable.
What’s next: how to compute and approximate posteriors

P (X = x|Y )
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Graphical models

Consider the following graphical model and conditional 
independence statement:

A

B

x y

v

w

‘Given w, x is indep. of y’

The statement is always true

The statement is not necessarily true
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Review: graphical models

Directed Undirected

What they are:  Graphs where nodes are random variables.  

What is their use:  A language for expressing conditional 
independence statements.  Formally: a graphical model 
corresponds to a family of probability distributions.

Two types:
X Y

V

W

X Y

V

W
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Directed Graphical Models

Basic fact: any joint density can be written as a product 
of conditional densities, one for each random variable.
Example: p(x,y,z) = p1(x)  p2(y|x)  p3(z|x,y) 

Sometimes: Some of the conditionals can be simplified
Example: p3(z|x,y) = p’3(z|y)    i.e.  X ⟂ Z | Y

Directed graphical model: for each conditional, add an 
edge between each variable we condition on into the 
current variable.
Example: X Y Z
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Directed Graphical Models

Example:  

Interpretation: the collection of all distributions that can 
be factorized as

p(x,y,z) = p1(x)  p2(y|x)  p3(z|y)

for some non-negative pi s such that for each w:

∫ pi(v|w) m(dv) = 1

X Y Z
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Directed graphical models: important examples

Mixture model: (UBC student height with 2 components) 
say we have only 3 observations

y1

x1

y2

x2

y3

x3µ(1)

µ(2)

π
1- Generate a male/female relative frequence
       π ~ Beta(male prior pseudo counts, female P.C)

2- Generate the sex of each student for each i
       xi  | π ~ Mult(π)

3- Generate the mean height of each cluster c
       µ(c) ~ N(prior height, how confident prior)

4- Generate student heights for each i
       yi  | xi, µ(1),  µ(2)  ~ N(µ(xi) ,variance)

Mean height 
for men

Mean height 
for women
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Plate notation

y1

x1

y2

x2

y3

x3µ(1)

µ(2)

π

Mean height 
for men

Mean height 
for women

µ(c)

c = 1,2

yi

xi

i = 1,2,3

π
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Directed graphical models: important examples

Hidden Markov Model (HMM) (two hidden states, discrete time)

y1

x1

y2

x2

y3

x3θ(c)

T(c)

1- Generate an initial distribution parameter
       π ~ Beta(first cluster’s P.C.,  other’s P.C)
2- Generate transition param.: the distribution 
over next hidden state for each hidden state c
      Tc ~ Beta(first cluster’s P.C.,  other’s P.C)
3- Generate the hidden states at each time i
       xi  | π, xi-1 ~ Mult(T(xi-1))
4- Generate the observation parameter: 
distribution over observations for each cluster c
       θ(c) ~ Beta(first observation’s P.C.,  other’s P.C)
5- Generate observation at each time i
       yi  | xi, θ(c)  ~ Mult(θ(xi))

Observation
parameters

π

Transition 
parameters

c = 1,2

c = 1,2
Initial 

distribution 
parameter
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Directed graphical models

Summary: directed graphical models are convenient to 
describe a model (a ‘generative story’)

Caveat: it takes more work to find what are the 
conditional independence statements implied by directed 
graphical models..
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Undirected Graphical Models

As in directed graphical models, we start by factorizing 
the joint density, but this time, the factors are not 
required to be conditional or marginal distributions.
Example: p(x,y,z) =  f1(x,y)  f2(y,z)

Undirected graphical model: for each factor, add a 
square connecting the variables appearing in this factor
Example:

X Y Z
f1 f2
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Undirected Graphical Models

Example:  

Interpretation: the collection of all distributions such 
that their density that can be factorized as

p(x,y,z) = f1(x,y)  f2(y,z)

for some non-negative fi

X Y Z
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Undirected Graphical Models

Notation: when a factor links only two nodes, we will not 
bother drawing it: 
Example: p(x,y,z) = f1(x,y)  f2(y,z)

Other times, the square will be useful:
Example: p(v,x,y,z) = f1(x,y,z)  f2(v)

X Y Z = X Y Z

X Y Z V
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Undirected Graphical Models

Finding conditional independence statement: easy in 
undirected graphical models

Example: do we have X ⟂ Z | V, W  for all distributions 
in the collection corresponding to the graphical model 
below?

X W

ZV
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Undirected Graphical Models

Example: do we have X ⟂ Z | V, W  for all distributions 
in the collection corresponding to the graphical model 
below?

First step: shade the node we are conditioning on

Second step: check if there is a path between the two 
query nodes (X and Z) that does not go a shaded node

X W

ZV
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Undirected Graphical Models
Example: do we have X ⟂ Z | V, W  for all distributions 
in the collection corresponding to the graphical model 
below?

First step: shade the node we are conditioning on
Second step: check if there is a path between the two 
query nodes (X and Z) that does not go a shaded node
If there are no such path: X ⟂ Z | V, W  for all 
distributions in the collection corresponding to the 
graphical model below
If there is such a path: there could be dependence
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Undirected graphical models

Summary: undirected graphical models take a bit more 
work to construct, but they are more useful at inference 
time (finding independence statement simplifies sums/
integrals)
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Connection between directed and undirected

Note: if you have a decomposition for directed models, 
you can use it to define an undirected model, but the 
undirected model will have more edges!

Example: 
p(x,y,v) = p1(x)  p2(y)  p3(z|x,y) 

Can be viewed as:
f ’(x,y,z) = f1(x)  f2(y)  f3(x,y,z)

(‘Moralization’)

X Y

V

X Y

V

f’ =f1 f2 f3

48Thursday, March 3, 2011



Where we are headed

Goal: computing the posterior distributions needed for 
the Bayes estimator

Often (but not always) they correspond to computing the 
posterior over a single node or a pair of nodes 
connected by an edge in a graphical model

Example:
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Where we are headed

Goal: computing the posterior distributions needed for the 
Bayes estimator

For now: assume that all the random variables are discrete 
(will relax this later)

Two cases: If the undirected graphical model...
1. ... is a tree, the posterior can be computed exactly in 

polynomial time
2. ... is not a tree, the posterior usually needs to be 

approximated using a MC or variational technique
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Exact inference and dynamic programming

Example: predicting part of speech (POS)

Alex      likes    big     houses
???        ???    ???    ??? Is ‘houses’ a NOUN  

or a VERB?

What we want to leverage: 
(1) some POS sequences (ngrams) are much more 
common than others (ADJ NOUN vs. ADJ VERB)
(2) each POS has a different distribution over associated 
words 

51Thursday, March 3, 2011



Exact inference and dynamic programming

y1

x1

y2

x2

y3

x3θ(c)

T(c)
π

c = 1,2

c = 1,2

Suppose: parameters are known, so we condition on them
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Exact inference and dynamic programming

Next step: turning the directed model into an undirected one

X Y

V

X Y

V

p =f1 f2 f3
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Exact inference and dynamic programming

Simplifying undirected models:
...

... ...

... ...

... ...

...
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Exact inference and dynamic programming

Simplifications:

55Thursday, March 3, 2011



P (X = x|Y = y0) =
f1(x)f ′

2(x)∑
x′ f1(x′)f ′

2(x′)

=
f1(x)f ′

2(x)
Z

Exact inference and dynamic programming

Consequence of simplification: renormalization needed

Example:

f2(y|x) = p2(y|x)

f1(x) = p1(x)

f’2(x) = p2(y0|x)

f1(x)

Bayes rule: can interpret Z 
as P(Y = y0)
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Further simplification

... ...

...

... ...

...
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P (X1 = x1, X2 = x2, X3 = x3|params, obs)

=
f1(x1, x2)f2(x2, x3)∑

x′
1

∑
x′
2

∑
x′
3
f1(x′

1, x
′
2)f2(x′

2, x
′
3)

∝ f1(x1, x2)f2(x2, x3)

=
f1(x1, x2)f2(x2, x3)

Z

Renormalization

NOUN NOUN NOUN

NOUN NOUN VERB

NOUN VERB ADJ

ADV VERB VERB
...

Note: Naive enumeration is expensive! 
There are 4 hidden possible POS in the 
three hidden states, so 4 x 4 x 4 = 64
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f ′(x) =
∑

y

f(x, y)

Another simplification/transformation

...

...

...

Suppose this variable 
has only one 
connection

...

...

...

f(x,y)X

Y
f’(x)

Note: still preserves Z and marginals

Needs NM operations, where N, M are 
the number of values for each variable
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Efficient inference: elimination algorithm

Consequence: for chains, efficient computation of Z and 
one-node or two-nodes marginals for tree-shaped 
undirected graphical models

4 x 4 operations 4 x 4 operations

Less operations than naive enumeration!
In general: if a chain has length T and N states, computing Z 
takes T N2 operations instead of NT

For tree-shaped models: same story!
For non-tree models: we need to figure out something else...
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Example of a non-tree model

Task: given some images (a 2D array of pixels), segment it 
into clusters of pixels

In general, there is an unknown number of clusters, so we will 
apply nonparametric priors, but for now, assume there are 
only ‘background’ and ‘people’ clusters
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... ...

Model for image segmentation

... ...

... ...

... ...

...

...

... ...Is this pixel part of 
‘background’ (B) or 

‘people’ (P) ? 

RGB value of the 
pixel

Potentials to 
encourage adjacent 
cluster indicators to 

have the same 
value, i.e. if x≠x’ 

f(x, x) > f(x, x′)

Note: we can also define models without bothering to normalize

For each cluster, 
there will be a 

different distribution 
over pixel colors
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After simplification

... ...

... ...

... ...

... ...

...
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MCMC methods

What it does: Same as the elimination algorithm 
(normalization and posterior), but not limited to trees.  

Con: approximate instead of exact

Output: a list of samples, i.e. the model with values for 
the hidden nodes filled in (imputed)

B
B

B

B
P

P P

P
P B

B

B

B
B

P P

P
B B

B

B

P
B

P P

P
B

...
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MCMC methods: how does it work?

Things to discuss: 

 How to compute posterior expectations from these 
samples (e.g. Bayes estimator)

 How to create the samples so that they are 
approximately distributed according to the posterior?

 How to compute Z from these samples

B
B

B

B
P

P P

P
P B

B

B

B
B

P P

P
B B

B

B

P
B

P P

P
B

...
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First item: Using the samples to 
compute posterior expectations

Task: given some images (a 2D array of pixels), segment it 
into clusters of pixels (‘background’ or ‘people’)

Loss function: Number of misclassified pixels

Example:

B
B

B

P
B

P P

P
B B

B

B

B
B

P B

P
B

True Guess
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Ef(X) ≈ 1
S

S∑

i=1

f(X(i))

Computing the posterior

B
B

B

B
P

P P

P
P B

B

B

B
B

P P

P
B B

B

B

P
B

P P

P
B

Samples:

X1,1
X1,3

Monte Carlo estimator:  for S samples

(1) (1)
X1,1

X1,3(3) (3)
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p(x′)q(x′ → x)
p(x)q(x→ x′)

p(x)q(x→ x′)
p(x′)q(x′ → x)

Second item: generating samples approximately 
distributed according to posterior

What is the Metropolis hasting acceptance ratio?

x’ : Proposed
x :  Current
p : Joint density
q(v --> w) density of 
proposing w from v

A

B
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Let’s start by an easy special 
case: ‘Naive’ Gibbs sampling

Init.: guess arbitrary values for the hidden nodes

B
B

B

B

P P

P
B

P

Idea: at each iteration, maintain a guess for all the hidden 
nodes
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Let’s start by an easy special 
case: ‘Naive’ Gibbs sampling

B
B

B

B

P P

P
B

P

Loop: pick one node (i,j)  at random, erase the contents of the 
guessed values in (i,j), freeze the value of the other nodes

B
B

B

B

P P

P
B

Then: resample a value for the node (i,j) conditioning on all the 
others, and write this to the current state at (i,j)

B
B

B

B

P P

P
B

Easy!
B

B
B

B

B

P

P
B

B

P
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Better Gibbs samplers

B
B

B

B

P P

P
B

P

Loop: pick a subset of nodes N  at random, erase the contents of 
the guessed values in N, freeze the value of the nodes not in N

B

B

B

P P

B

Then: resample a value for the nodes in N conditioning on all the 
others, and write this to the current state at N

B

B

B

P P

B

Easy?

B
P

B

B

P

P
B

P

P

P P P
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