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Plan for today

= Finishing the applications/motivations overview

= Computational issues: overview

= Background

= Graphical models
= MCMC
= Bayesian decision theory
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Stochastic processes

‘A collection of random variables indexed by
an arbitrary set S’

Note 1: if S'if finite, then back to an ‘undergrad’ random
variable, so we concentrate on S uncountable

Note 2: S is not necessarily the real line




Example: distribution over functions

Samples: functions /: R > R
(s, Ys(w)) Ys(w) = f(s)
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Example: distribution over distributions

Samples: distributions A : F > [0,1]

1 (s, Ys(w) )
\,\,/\\ / Yi(w) = Als)
N W~
0.5 |Ww
\~
0
e,

S = F, a sigma-algebra (the set of events for 1)

(No topology on this axis this time...)




Why would we need
distributions over distributions?

De Finetti theorem: a compelling motivation for priors
on parameters...

Suppose: we agree that if our data x; are reorder, it
doesn’'t matter (exchangeability), e.qg.

d
(X1, X2, X3, ... ) = ( X3, X1, X2, ... )

Then: there exists a random variable @ and
distributions Fy such that:




Non-Bayesian application:
phylogenetic inference

Scientific applications: biology, anthropology, linguistics

Engineering applications: domain adaptation, multi-task

learning amazoncom

B ]
Unlimited Instant Videos
Prime members only

Books

>
>
Movies, Music & Games >
>

Digital Downloads

Thursday, March 3, 2011



——Melanesian
Pima

Phylogenetic tree

Maya
Surui

Karitiana
Colombian

| 1=
(.
r N
The length of the —
branches is _B_Haﬁ;{gg“f
proportional to the Eparan
amount of drift 1=
between the two nodes - E
- Y, s
\/ L—Druze
Palestinian
—Moz;ﬁ)gdoum

Yoruba
. {L:Mandenka
Bantu

Biaka Pygmies
Mbuti Pygmies

San

Thursday, March 3, 2011



~

Compute
allele
frequency
for each

~

population|

-

~| 000 individuals from
~50 populations

-

Different
because of
finite pop.,

non-
uniform
mixing

—

Human Genome

Diversity Panel
J

Thursday, March 3, 2011



Oceanic
populations

American
populations

E. Asiatic
populations

Thursday, March 3, 2011

10



/

\_

Doing the same thing, but with the
other tree gives us P(Data | H2)
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Data: second type

Input: a sequence for each population (taxon)

a: CATAC
Taa |y A G
| ¢: ATCC

Output: phylogenetic tree (among other things)




Type of process needed

String-valued stochastic process (instead of real-valued)

AC S

AA
Sequence

> 0O O -

Time ¢




Type of process needed

String-valued stochastic process (instead of real-valued)

AC S

AA
Sequence

Jr 0O o -

" What could be the
marginals of such

L object? y Time /

Thursday, March 3, 2011



‘Engineering’/machine learning
applications

Domain adaptation: doing the same task (for example sentiment
analysis) over two domain (books, vs. kitchen appliances)

' amazon.com

— Running with Scissors Avante Deep Fryer; Black ?EB
=/ | Title: Horrible book, horrible. Title: lid does not work well... AN
—_ s
=1 | This book was horrible. | read half | love the way the Tefal deep fryer
suffering from a headache the entire cooks, however, | am returning my
time, and eventually i lit it on fire. 1 second one due to a defective lid | —
less copy in the world. Don't waste closure. The lid may close initially,
your money. | wish i had the time but after a few uses it no Ionger[ NEGATIVE’
spent reading this book back. It wasted stays closed. | won't be buying this -
:;Iﬁ my life one again. 25'
~ -
Output: NEGATIVE! Slide from John Blitzer
Thursday, March 3, 2011 13




‘Engineering’/machine learning
applications

Multi-task learning: doing two tasks (sentiment analysis vs.
predicting if a customer will ask for refund) over one domain

<

Running with Scissors

Title: Horrible book, horrible.

&

Running with Scissors

Title: Horrible book, horrible.

=) [
) [

This book was horrible. | read half, This book was horrible. | read half,

suffering from a headache the entire . suffering from a headache the entire

: ' g it on fire. 1 time, ary” ~N
[ OUtPUtI NEGATIVE! on't waste less cof OUtPUtZWi” not ask
}d the tme |y | your e for refund!
: spent reading this book back. It wasted " spent reen__ )
—| | my life 2] | mylife

Slide from John Blitzer

Thursday, March 3, 2011



Phylogenetic tree application

Task: doing classification over more than two domains or
tasks

Latent variable: a tree mirroring how closely related tasks/
domain are

Domain adaptation example

[ ]

app kitchen elec other musicbooks dvd video




Computational Issues




Lazy computation

We have introduced prior over infinite support distributions,
transition matrices, feature vectors, etc.

If we cannot even represent a single sample, how are we going
to be able to do inference?

General principle: lazy computation. Represent some parts
of the samples implicitly. If we can show that a part of the
sample will not affect the answer, don't store it in memory!

Does not mean we can replace these priors by finite support
equivalents: we don’t know a priori which part of the sample we
will be able to ignore.




Easy example

Don't need to keep track of the values between
(== two nodes: the endpoints are marginally normal

Oceanic
populations

American
populations

: ; 3 | E. Asiatic
3 ~ |populations

Only marginal at th’é internal nodes need to be maintained; Note:
tree unknown, so we don’t know a priori what are the internal nodes
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Why do we know the marginals?
By definition!

What are the bare minimum conditions for A to be marginals
of Y5 ?
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Why do we know the marginals?
By definition!

What are the bare minimum conditions for A to be marginals

of Y5 ? L
As; (A) = Ag, s, (A, R) [marginalization]
)\81 s S92 (A17 AQ) — )\82,81 (A27 Al) [perm]
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Why do we know the marginals?
By definition!

What are the bare minimum conditions for A to be marginals

of Y5 ? L
As; (A) = Ag, s, (A, R) [marginalization]
)\81 s S92 (A17 AQ) — )\82,81 (A27 Al) [perm]

Kolmogorov: if these consistency conditions hold for any
finite number of variables (not just a pair), then there is a
stochastic process with these marginals.

Brownian motion: take As; to be multivariate normal
distributions with sparse covariance depending on {s;}




Less obvious cases

In other cases, the original process definition might not be
amenable to efficient inference.

Fortunately, many equivalent representation often exist
EslE (k)

Slide from Kurt Miller

Image from http://www.nature.com/nsmb/journal /v7/n6/fig_tab/nsb0600_443_F1.html
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Less obvious cases

In other cases, the original process definition might not be
amenable to efficient inference.

Fortunately, quivalent representation often exist

- Stick breaking

- Levy construction

- Chinese Restaurant
- Polya urn

i

. P
NP e

i Slide from Kurt Miller

22
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Approximations are often
needed

Monte Carlo
MCMC (Markov Chain) and SMC (Sequential)

Slice and other auxiliary variables, split-merge,
type-level and collapsed samplers

Variational
Legendre-Fenchel transformation
Standard relaxations

Thursday, March 3, 2011
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http://en.wikipedia.org/wiki/Legendre-Fenchel_transformation

Background: back to
the game




Distribution identity

If X, Y are independent Gamma’s with the same scale
parameter, what is the distribution of X / (X + Y)

A Uniform

B Beta




What a Bayesian would do if...

They would optimize... Y - Observations

X : Latent
L : Loss function
(strictly convex say)

A argmin L(z,E(X|Y))

B argmin E(L(x, X)|Y)




Explanation of the question

Task: given an observed random variable Y, what value
should we guess for a related random variable X which is
unobserved?

Example: Y are observed UBC students heights,

assumed to be iid, and normally distributed with unknown
mean X

Criterion: if we make a guess x and the real value is x*,
we pay a cost of L(x,x*) --- this is called a loss function.




The Bayesian choice

Task: given an observed random variable Y, what value
should we guess for a related random variable X which is
unobserved?

Criterion: if we make a guess x and the real value is x*,
we pay a cost of L(x,x*) --- this is called a loss function.

In the Bayesian framework: you should answer

argmin_ E(L(z, X)|Y)




Argument for and against using
a Bayes estimator

Pros:

= Easy to create ‘good’ estimators handling missing data,
prior knowledge

=  Automatic framework for shrinkage and regularization

= (Certain optimality guarantees when the model is correct
(consistency, admissibility)--more on that later

Cons:
= (Can lack robustness to model misspecification

= Often needs to be approximated, so sometimes it might
be possible to exactly compute a statistically suboptimal
estimator and get a better end result in practice

Pro and con:
= For large amount of data, prior is washed out.

Thursday, March 3, 2011
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The Bayesian choice: examples

Example 1: Suppose X'is discrete, I.e. XeE 1,2, ... N}

Computing the Bayes estimator:

(1, X)|Y) L(1,z)P(X =x|Y
ML ) Z ¥) Return the
index of
(L2, X)|Y) = Z L(2,2)P(X = 2|V) the
=1 minimum
of these
N numbers

(L(N, X)[Y) =) L(N,z)P(X = z|Y)

r=1




The Bayesian choice: examples

Model: Y are observed UBC students heights, assumed
to be iid, and normally distributed with unknown mean X

Example 2: Suppose L(x,x*) = (x - x*)?




Computations

Discrete case: \When X Is discrete the posterior,
P(X =z|Y)

s often (but not always) the computational bottleneck
when dealing with Bayes estimators.

Continuous case: \WWhen X is continuous and conjugate,

computing the posterior can often (but not always) be
done by computing the parameters of the posterior.

In both cases, computing the posterior can be intractable.
What’s next: how to compute and approximate posteriors




Graphical models

Consider the following graphical model and conditional
iIndependence statement:

X\v /y
|

W

‘Given w, x Is indep. of y’

A The statement is always true

B The statement is not necessarily true




Review: graphical models

What they are: Graphs where nodes are random variables.

What is their use: Alanguage for expressing conditional
Independence statements. Formally: a graphical model

corresponds to a family of probabi

Two types: Directed
X\ Y
V‘/
l

/4

lity distributions.

Undirected

X Y
N,

/4




Directed Graphical Models

Basic fact: any joint density can be written as a product
of conditional densities, one for each random variable.

Example: p(x,y,z) = pi(x) p2(y|x) p3(z|x.y)

Sometimes: Some of the conditionals can be simplified
Example: p3(z|x,y) = p’s(z|y) 1e. XL Z|Y

Directed graphical model: for each conditional, add an
edge between each variable we condition on into the

current variable.
Example: X— Y— 7




Directed Graphical Models

Example: X— Y— 7/

Interpretation: the collection of all distributions that can
be factorized as

p(x.y.z) = pi(x) p2(y|x) p3(z|y)

for some non-negative p; s such that for each w:

I pitviw) m(dv) =1




Directed graphical models: important examples

Mixture model: (UBC student height with 2 components)
say we have only 3 observations

1- Generate a male/female relative frequence
T T ~ Beta(male prior pseudo counts, female P.C)

Mean height / \ 2- Generate the sex of each student for each i

for men
(1) \xl x> x3| Xi | 7T~ Mult(m)
3- Generate the mean height of each cluster ¢
e \\ N |
" HU(c) N(prior height, how confident prior)

Mean heigh
forwomen\;§v>: ;
I V2 V3|4- Generate student heights for each i

Vi | Xi, (1), ) ~ Ny variance)

37
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Plate notation

Mean height \ ’
for men v H(c)

H(1) \1 X2 X3
H2) k\

Mean height \\
for women — v
\,1\.y2 b
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Directed graphical models: important examples

Hidden Markov Model (HMM) (two hidden states, discrete time)

Transition
B parameters
Initial
distribution c=1.2

arameter
P T | 7 (C\)

Observation
parameters
M \/

Oic) x X1—> X2 —>X3

s \\
\s\

yioo»

%

1- Generate an initial distribution parameter

T ~ Beta(ﬁrst cluster’s P.C., other’s P.C)
2- Generate transition param.: the distribution
over next hidden state for each hidden state ¢
T c ™ Beta(ﬁrst cluster’s P.C., other’s P.C)
3- Generate the hidden states at each time i
Xi | 7, xi-1 ~ Mult(T(xi-1))
4- Generate the observation parameter:
distribution over observations for each cluster ¢
Q(C) ~ Beta(ﬁrst observation’s P.C., other’s P.C)
5- Generate observation at each time i

Vi | Xi, Oc) ~ Mult(0(x:))

Thursday, March 3, 2011
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Directed graphical models

Summary: directed graphical models are convenient to
describe a model (a ‘generative story’)

Caveat: it takes more work to find what are the
conditional independence statements implied by directed
graphical models..




Undirected Graphical Models

As in directed graphical models, we start by factorizing
the joint density, but this time, the factors are not
required to be conditional or marginal distributions.

Example: p(x.y,2) = fi(x.y) /2(y.2)

Undirected graphical model: for each factor, add a

square connecting the variables appearing in this factor
Example:

X2 Y B /

oo f




Undirected Graphical Models

Example: X = Y -m 7/

Interpretation: the collection of all distributions such
that their density that can be factorized as

px.yz) = fixy) L(0.2)

for some non-negative f;




Undirected Graphical Models

Notation: when a factor links only two nodes, we will not
bother drawing It:

Example: p(x.y.2) = fi(x.y) f2(».2)
XaY®Z = X—Y—7Z

Other times, the square will be useful:
Example: p(vx,v,z) = fi(x,y,2) f2(v)

A ]

X Y /




Undirected Graphical Models

Finding conditional independence statement: easy in
undirected graphical models

Example: dowe have X L Z | V, W for all distributions

in the collection corresponding to the graphical model
below?

X—W

V — 74




Undirected Graphical Models

Example: dowe have X L Z | V, W for all distributions

in the collection corresponding to the graphical model
below?

First step: shade the node we are conditioning on

N I

Second step: check if there is a path between the two
query nodes (X and Z) that does not go a shaded node




Undirected Graphical Models

Example: dowe have X L Z | ¥, W for all distributions
in the collection corresponding to the graphical model

below? C‘D—?
@O

First step: shade the node we are conditioning on
Second step: check if there is a path between the two
query nodes (X and Z) that does not go a shaded node

If there are no such path: X L Z | V, W forall

distributions in the collection corresponding to the
graphical model below

If there is such a path: there could be dependence




Undirected graphical models

Summary: undirected graphical models take a bit more
work to construct, but they are more useful at inference
time (finding independence statement simplifies sums/
integrals)




Connection between directed and undirected

Note: if you have a decomposition for directed models,
you can use it to define an undirected model, but the
undirected model will have more edges!

Example:
p(x,y,v) =pi(x) p2(y) p3(z|x.y)

Can be viewed as:

13z =h(X) L200) [(x..2)

(‘Moralization’)




Where we are headed

Goal: computing the posterior distributions needed for
the Bayes estimator

Often (but not always) they correspond to computing the
posterior over a single node or a pair of nodes
connected by an edge In a graphical model

Example:




Where we are headed

Goal: computing the posterior distributions needed for the
Bayes estimator

For now: assume that all the random variables are discrete
(will relax this later)

Two cases: If the undirected graphical model...
1. ...is atree, the posterior can be computed exactly in
polynomial time
2. ...is not a tree, the posterior usually needs to be
approxmated using a MC or variational technique




Exact inference and dynamic programming

Example: predicting part of speech (POS)

/

N
299 999 997 977 s ‘houses’ a NOUN
Alex likes big houses %’\ ora VERB?

J

What we want to leverage:
(1) some POS sequences (ngrams) are much more
common than others (ADJ NOUN vs. ADJ VERB)

(2) each POS has a different distribution over associated
words




Exact inference and dynamic programming

Suppose: parameters are known, so we condition on them

) T@\) °
Oc) x xll—ﬂgz—% } ?
01,2\\
ANNY

Yi V2 W3
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Exact inference and dynamic programming

Next step: turning the directed model into an undirected one

TN




Exact inference and dynamic programming

Simplifying undirected models:

<

> _&




Exact inference and dynamic programming

Simplifications:




Exact inference and dynamic programming

Consequence of simplification: renormalization needed

Example: fi(x) = pi(x) } éﬁ(x)

L2001x) = p2(y|x)

1 2(x) = p2(yo|x)

POC=5lY =) =

Bayes rule: can interpret 7 ~ _ 41(%)f2(2)
dS P(Y:y()) /




Further simplification

b oo




Renormalization

P(Xl — CEl,XQ — ZUQ,XS — x3|params, ObS)
_ fi(z1,22) fa(z2, T3)
_ f1($1,$2)f2(3?27373)
Z 9.:0..0

x fi(x1,x2) fo(xa, T3) NOUN NOUN NOUN
NOUN NOUN VERB

4 . : : :

Note: Naive enumeration is expensive! NOUN VERB  ADJ

There are 4 hidden possible POS inthe ) =77 5

_ three hidden states, so 4 x4 x 4 = 64

Thursday,



Another simplification/transformation

Suppose this variable

has onIy one Needs NM operat|ons where N, M are
connection the number of values for each variable

- J
Note: still preserves Z and marginals
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Efficient inference: elimination algorithm

Consequence: for chains, efficient computation of Z and

one-node or two-nodes marginals for tree-shaped
undirected graphical models

4 x 4 operations 4 x 4 operations

Less operations than naive enumeration!
In general: if a chain has length 7"and N states, computing Z

takes 7" N? operations instead of N*

For tree-shaped models: same story!
For non-tree models: we need to figure out something else...




Example of a non-tree model

Task: given some images (a 2D array of pixels), segment it
into clusters of pixels

In general, there is an unknown number of clusters, so we will
apply nonparametric priors, but for now, assume there are
only ‘background’ and ‘people’ clusters
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Model for image segmentation

4 )

|s this pixel part of

‘background’ (B) or

/

Potentials to
encourage adjacent
cluster indicators to

have the same
value, i.e. If x#x’

‘people’ (P) ? XA
_ A
®

RGB value of the

\

pixel

NS

flz,z) > f(z,2)

- J

N 4 )

"*| For each cluster,

J\‘ k‘ there will be a
different distribution
{P% % over pixel colors )

Note: we can also define models without bothering to normalize

Thursday, March 3, 2011
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After simplification

O
()
-/
()
\]/




MCMC methods

What it does: Same as the elimination algorithm
(normalization and posterior), but not limited to trees.

Con: approximate instead of exact

Output: a list of samples, i.e. the model with values for
the hidden nodes filled in (imputed)




MCMC methods: how does it work™?

Things to discuss:

= How to compute posterior expectations from these
samples (e.g. Bayes estimator)

= How to create the samples so that they are
approximately distributed according to the posterior?

= How to compute Z from these samples

Thursday, March 3, 2011

65



First item: Using the samples to
compute posterior expectations

Task: given some images (a 2D array of pixels), segment it
into clusters of pixels (‘background’ or ‘people’)

Loss function: Number of misclassified pixels

Example:




Computing the posterior

Samples:
(1)

(1) X13

Monte Carlo estimator: for .S samples

S
Lf(X) ~ 5 30 F(X0)
1=1




Second item: generating samples approximately
distributed according to posterior

What is the Metropolis hasting acceptance ratio?

X : Proposed

X . Current

p . Joint density
p(z)q(z — ') q(v -->w) density of

proposing w from v




Let's start by an easy special
case: ‘Naive’ Gibbs sampling

Idea: at each iteration, maintain a guess for all the hidden
nodes

Init.: guess arbitrary values for the hidden nodes




Let's start by an easy special

case: Naive Gibbs sampling

Loop: pick one node (7,;) at random, erase the contents of the
guessed values in (7,/), freeze the value of the other nodes

Then: resamp
others, and wr

e a value for the node (7,/) conditioning on all the
ite this to the current state at (7,/)




Better Gibbs samplers

Loop: pick a subset of nodes V' at random, erase the contents of
the guessed values in N, freeze the value of the nodes notin N

Then: resample a value for the nodes in NV conditioning on all the
others, and write this to the current state at N




