Statistical modeling with stochastic processes

Alexandre Bouchard-Côté
Lecture 2, Wednesday March 2

Plan for today

- Finishing the applications/motivations overview
- Computational issues: overview
- Background
- Graphical models
- MCMC
- Bayesian decision theory

Stochastic processes

'A collection of random variables indexed by an arbitrary set S '

Note 1: if S if finite, then back to an 'undergrad' random variable, so we concentrate on S uncountable

Note 2: S is not necessarily the real line

Example: distribution over functions

Samples: functions $f: \mathbf{R} \rightarrow \mathbf{R}$

Example: distribution over distributions

Samples: distributions $\lambda: \mathcal{F} \rightarrow[0,1]$

$$
\begin{aligned}
& \left(s, Y_{s}(\omega)\right) \\
& Y_{s}(\omega)=\lambda(s)
\end{aligned}
$$

$S=\mathcal{F}$, a sigma-algebra (the set of events for λ)
(No topology on this axis this time...)

Why would we need distributions over distributions?

De Finetti theorem: a compelling motivation for priors on parameters...

Suppose: we agree that if our data x_{i} are reorder, it doesn't matter (exchangeability), e.g.
$\left(x_{1}, x_{2}, x_{3}, \ldots\right) \stackrel{\mathrm{d}}{=}\left(x_{3}, x_{1}, x_{2}, \ldots\right)$
Then: there exists a random variable θ and distributions F_{θ} such that:

$$
x_{i} \mid \theta \sim F_{\theta}
$$

Non-Bayesian application: phylogenetic inference

Scientific applications: biology, anthropology, linguistics

Engineering applications: domain adaptation, multi-task learning amazon.com

Shop All Departments	
Unlimited Instant Videos Prime members only	$>$
Books	$>$
Movies, Music \& Games	$>$
Digital Downloads	$>$

Phylogenetic tree

Doing the same thing, but with the other tree gives us P(Data | H2)

Doing the same thing, but with the other tree gives us P(Data | H2)

Data: second type

Input: a sequence for each population (taxon)

$$
\text { Taxa } \left\lvert\, \begin{array}{llll}
a: & C \text { A T A C } \\
b: & \text { C A G } \\
c: & \text { A T C C }
\end{array}\right.
$$

Output: phylogenetic tree (among other things)

Type of process needed

String-valued stochastic process (instead of real-valued)

Time t

Type of process needed

String-valued stochastic process (instead of real-valued)

‘Engineering’/machine learning applications

Domain adaptation: doing the same task (for example sentiment analysis) over two domain (books, vs. kitchen appliances)

Running with Scissors
This book was horrible. I read half,
suffering from a headache the entire
time, and eventually i lit it on fire. 1
less copy in the world. Don't waste
your money. I wish i had the time
spent reading this book back. It wasted
my life

Output: NEGATIVE!

Slide from John Blitzer

‘Engineering’/machine learning applications

Multi-task learning: doing two tasks (sentiment analysis vs. predicting if a customer will ask for refund) over one domain

Slide from John Blitzer

Phylogenetic tree application

Task: doing classification over more than two domains or tasks

Latent variable: a tree mirroring how closely related tasks/ domain are

Domain adaptation example

Computational Issues

Lazy computation

We have introduced prior over infinite support distributions, transition matrices, feature vectors, etc.
If we cannot even represent a single sample, how are we going to be able to do inference?

General principle: lazy computation. Represent some parts of the samples implicitly. If we can show that a part of the sample will not affect the answer, don't store it in memory!

Does not mean we can replace these priors by finite support equivalents: we don't know a priori which part of the sample we will be able to ignore.

Easy example

Only marginal at the internal nodes need to be maintained; Note: tree unknown, so we don't know a priori what are the internal nodes

Why do we know the marginals? By definition!

What are the bare minimum conditions for λ to be marginals of Y_{s} ?

Why do we know the marginals? By definition!

What are the bare minimum conditions for λ to be marginals of Y_{s} ?

$$
\begin{aligned}
& \lambda_{s_{1}}(A)=\lambda_{s_{1}, s_{2}}(A, \mathbf{R}) \quad[\text { marginalization }] \\
& \lambda_{s_{1}, s_{2}}\left(A_{1}, A_{2}\right)=\lambda_{s_{2}, s_{1}}\left(A_{2}, A_{1}\right) \quad[\text { perm }]
\end{aligned}
$$

$S=\mathbf{R}$

Why do we know the marginals? By definition!

What are the bare minimum conditions for λ to be marginals of Y_{s} ?

$$
\begin{aligned}
& \lambda_{s_{1}}(A)=\lambda_{s_{1}, s_{2}}(A, \mathbf{R}) \text { [marginalization] } \\
& \lambda_{s_{1}, s_{2}}\left(A_{1}, A_{2}\right)=\lambda_{s_{2}, s_{1}}\left(A_{2}, A_{1}\right) \text { [perm] }
\end{aligned}
$$

Kolmogorov: if these consistency conditions hold for any finite number of variables (not just a pair), then there is a stochastic process with these marginals.

Brownian motion: take λs_{i} to be multivariate normal distributions with sparse covariance depending on $\left\{s_{i}\right\}$

Less obvious cases

In other cases, the original process definition might not be amenable to efficient inference.

Fortunately, many equivalent representation often exist

Slide from Kurt Miller

Less obvious cases

In other cases, the original process definition might not be amenable to efficient inference.

Fortunately, many equivalent representation often exist

Approximations are often needed

- Monte Carlo
- MCMC (Markov Chain) and SMC (Sequential)
- Slice and other auxiliary variables, split-merge, type-level and collapsed samplers
- Variational
- Legendre-Fenchel transformation
- Standard relaxations

Background: back to the game

Distribution identity

If X, Y are independent Gamma's with the same scale parameter, what is the distribution of $X /(X+Y)$

A Uniform

B Beta

What a Bayesian would do if...

They would optimize...
Y: Observations
X : Latent
L: Loss function
(strictly convex say)

A $\operatorname{argmin}_{x} L(x, \mathbb{E}(X \mid Y))$

B $\operatorname{argmin}_{x} \mathbb{E}(L(x, X) \mid Y)$

Explanation of the question

Task: given an observed random variable Y, what value should we guess for a related random variable X which is unobserved?

Example: Y are observed UBC students heights, assumed to be iid, and normally distributed with unknown mean X

Criterion: if we make a guess x and the real value is x^{*}, we pay a cost of $L\left(x, x^{*}\right)$--- this is called a loss function.

The Bayesian choice

Task: given an observed random variable Y, what value should we guess for a related random variable X which is unobserved?

Criterion: if we make guess x and the real value is x^{*}, we pay a cost of $L\left(x, x^{*}\right)$--- this is called a loss function.

In the Bayesian framework: you should answer

$$
\operatorname{argmin}_{x} \mathbb{E}(L(x, X) \mid Y)
$$

Argument for and against using a Bayes estimator

Pros:

- Easy to create 'good' estimators handling missing data, prior knowledge
- Automatic framework for shrinkage and regularization
- Certain optimality guarantees when the model is correct (consistency, admissibility)--more on that later

Cons:

- Can lack robustness to model misspecification
- Often needs to be approximated, so sometimes it might be possible to exactly compute a statistically suboptimal estimator and get a better end result in practice

Pro and con:

- For large amount of data, prior is washed out.

The Bayesian choice: examples

Example 1: Suppose X is discrete, i.e. $X \in\{1,2, \ldots N\}$
Computing the Bayes estimator:

$$
\begin{array}{rl|l}
\mathbb{E}(L(1, X) \mid Y) & =\sum_{x=1}^{N} L(1, x) \mathbb{P}(X=x \mid Y) & \begin{array}{c}
\text { Return the } \\
\text { index of }
\end{array} \\
\mathbb{E}(L(2, X) \mid Y) & =\sum_{x=1}^{N} L(2, x) \mathbb{P}(X=x \mid Y) & \begin{array}{c}
\text { mine }
\end{array} \\
& \vdots & \begin{array}{c}
\text { of these }
\end{array} \\
\text { numbers }
\end{array}
$$

The Bayesian choice: examples

Model: Y are observed UBC students heights, assumed to be iid, and normally distributed with unknown mean X

Example 2: Suppose $L\left(x, x^{*}\right)=\left(x-x^{*}\right)^{2}$

Computations

Discrete case: When X is discrete the posterior,

$$
P(X=x \mid Y)
$$

is often (but not always) the computational bottleneck when dealing with Bayes estimators.

Continuous case: When X is continuous and conjugate, computing the posterior can often (but not always) be done by computing the parameters of the posterior.

In both cases, computing the posterior can be intractable. What's next: how to compute and approximate posteriors

Graphical models

Consider the following graphical model and conditional independence statement:
'Given w, x is indep. of y '

A The statement is always true

B The statement is not necessarily true

Review: graphical models

What they are: Graphs where nodes are random variables.
What is their use: A language for expressing conditional independence statements. Formally: a graphical model corresponds to a family of probability distributions.

Two types:

Directed Graphical Models

Basic fact: any joint density can be written as a product of conditional densities, one for each random variable. Example: $p(x, y, z)=p_{1}(x) p_{2}(y \mid x) \quad p_{3}(z \mid x, y)$

Sometimes: Some of the conditionals can be simplified Example: $p_{3}(z \mid x, y)=p_{3}^{\prime}(z \mid y) \quad$ i.e. $X \perp Z \mid Y$

Directed graphical model: for each conditional, add an edge between each variable we condition on into the current variable.
Example:

$$
X \longrightarrow Y \longrightarrow Z
$$

Directed Graphical Models

Example: $\quad X \longrightarrow Y \longrightarrow Z$
Interpretation: the collection of all distributions that can be factorized as
$p(x, y, z)=p_{1}(x) \quad p_{2}(y \mid x) \quad p_{3}(z \mid y)$
for some non-negative $p_{i} \boldsymbol{s}$ such that for each w :

$$
\int p_{i}(v \mid w) m(\mathrm{~d} v)=1
$$

Directed graphical models: important examples

Mixture model: (UBC student height with 2 components) say we have only 3 observations

1- Generate a male/female relative frequence

$\pi \sim \operatorname{Beta}$ (male prior pseudo counts, female P.C)
2- Generate the sex of each student for each i $x_{i} \mid \pi \sim \operatorname{Mult}(\pi)$

3- Generate the mean height of each cluster c
$\mu_{(c)} \sim \mathrm{N}$ (prior height, how confident prior)
4- Generate student heights for each i
$y_{i} \mid x_{i}, \mu_{(1),} \mu_{(2)} \sim \mathrm{N}\left(\mu_{\left.\left(x_{i}\right), \text { variance }\right)}\right.$

Plate notation

Directed graphical models: important examples

Hidden Markov Model (HMM) (two hidden states, discrete time)

1- Generate an initial distribution parameter
$\pi \sim \operatorname{Beta}($ first cluster's P.C., other's P.C)
2- Generate transition param.: the distribution over next hidden state for each hidden state c

$$
T_{c} \sim \operatorname{Beta}(\text { first cluster's P.C., other's P.C) }
$$

3- Generate the hidden states at each time i

$$
x_{i} \mid \pi, x_{i-1} \sim \operatorname{Mult}\left(T\left(x_{i-1}\right)\right)
$$

4- Generate the observation parameter: distribution over observations for each cluster c
$\theta_{(c)} \sim \operatorname{Beta}$ (first observation's P.C., other's P.C)
5- Generate observation at each time i

$$
y_{i} \mid x_{i}, \theta_{(c)} \sim \operatorname{Mult}\left(\theta\left(x_{i}\right)\right)
$$

Directed graphical models

Summary: directed graphical models are convenient to describe a model (a 'generative story')

Caveat: it takes more work to find what are the conditional independence statements implied by directed graphical models..

Undirected Graphical Models

As in directed graphical models, we start by factorizing the joint density, but this time, the factors are not required to be conditional or marginal distributions.
Example: $p(x, y, z)=f_{1}(x, y) f_{2}(y, z)$
Undirected graphical model: for each factor, add a square connecting the variables appearing in this factor Example:

$$
X \underset{f_{1}}{-\square_{f_{2}}} Y-Z
$$

Undirected Graphical Models

Example: $\quad X-Y-Z$
Interpretation: the collection of all distributions such that their density that can be factorized as
$p(x, y, z)=f_{1}(x, y) f_{2}(y, z)$
for some non-negative f_{i}

Undirected Graphical Models

Notation: when a factor links only two nodes, we will not bother drawing it:
Example: $p(x, y, z)=f_{1}(x, y) f_{2}(y, z)$

$$
X-Y-\square-Z \quad=\quad X-Y-Z
$$

Other times, the square will be useful:
Example: $p(v, x, y, z)=f_{1}(x, y, z) f_{2}(v)$

Undirected Graphical Models

Finding conditional independence statement: easy in undirected graphical models

Example: do we have $X \perp Z \mid V, W$ for all distributions in the collection corresponding to the graphical model below?

Undirected Graphical Models

Example: do we have $X \perp Z \mid V, W$ for all distributions in the collection corresponding to the graphical model below?

First step: shade the node we are conditioning on

Second step: check if there is a path between the two query nodes (X and Z) that does not go a shaded node

Undirected Graphical Models

Example: do we have $X \perp Z \mid V, W$ for all distributions in the collection corresponding to the graphical model below?

First step: shade the node we are conditioning on Second step: check if there is a path between the two query nodes (X and Z) that does not go a shaded node If there are no such path: $X \perp Z \mid V, W$ for all distributions in the collection corresponding to the graphical model below If there is such a path: there could be dependence

Undirected graphical models

Summary: undirected graphical models take a bit more work to construct, but they are more useful at inference time (finding independence statement simplifies sums/ integrals)

Connection between directed and undirected

Note: if you have a decomposition for directed models, you can use it to define an undirected model, but the undirected model will have more edges!

Example:
$p(x, y, v)=p_{1}(x) p_{2}(y) p_{3}(z \mid x, y)$

Where we are headed

Goal: computing the posterior distributions needed for the Bayes estimator

Often (but not always) they correspond to computing the posterior over a single node or a pair of nodes connected by an edge in a graphical model

Example:

Where we are headed

Goal: computing the posterior distributions needed for the Bayes estimator

For now: assume that all the random variables are discrete (will relax this later)

Two cases: If the undirected graphical model...

1. ... is a tree, the posterior can be computed exactly in polynomial time
2. ... is not a tree, the posterior usually needs to be approximated using a MC or variational technique

Exact inference and dynamic programming

Example: predicting part of speech (POS)

What we want to leverage:
(1) some POS sequences (ngrams) are much more common than others (ADJ NOUN vs. ADJ VERB) (2) each POS has a different distribution over associated words

Exact inference and dynamic programming

Suppose: parameters are known, so we condition on them

Exact inference and dynamic programming

Next step: turning the directed model into an undirected one

Exact inference and dynamic programming

Simplifying undirected models:

Exact inference and dynamic programming

Simplifications:

Exact inference and dynamic programming

Consequence of simplification: renormalization needed
Example:

$$
\begin{aligned}
& \text { le: } \quad f_{1}(x)=p_{1}(x) \\
& \qquad f_{2}(y \mid x)=p_{2}(y \mid x) \\
& P\left(X=x \mid Y=y_{0}\right)=\frac{f_{1}(x) f_{2}^{\prime}(x)}{\sum_{x^{\prime}} f_{1}\left(x^{\prime}\right) f_{2}^{\prime}\left(x^{\prime}\right)} \\
& \text { e: can interpret } Z \quad=\frac{f_{1}(x) f_{2}^{\prime}(x)}{Z} \\
& P\left(Y=y_{0}\right)
\end{aligned}
$$

Bayes rule: can interpret Z

$$
\text { as } P\left(Y=y_{0}\right)
$$

Further simplification

Renormalization

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3} \text { |params, obs }\right) \\
& =\frac{f_{1}\left(x_{1}, x_{2}\right) f_{2}\left(x_{2}, x_{3}\right)}{\sum_{x_{1}^{\prime}} \sum_{x_{2}^{\prime}} \sum_{x_{3}^{\prime}} f_{1}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) f_{2}\left(x_{2}^{\prime}, x_{3}^{\prime}\right)} \\
& =\frac{f_{1}\left(x_{1}, x_{2}\right) f_{2}\left(x_{2}, x_{3}\right)}{Z} \\
& \propto f_{1}\left(x_{1}, x_{2}\right) f_{2}\left(x_{2}, x_{3}\right) \\
& \\
& \begin{array}{ll}
\text { Note: Naive enumeration is expensive! } \\
\text { There are } 4 \text { hidden possible POS in the } \\
\text { three hidden states, so } 4 \times 4 \times 4 \text { NOUN NOUN VERB } \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Another simplification/transformation

Efficient inference: elimination algorithm

Consequence: for chains, efficient computation of Z and one-node or two-nodes marginals for tree-shaped undirected graphical models

Less operations than naive enumeration!
In general: if a chain has length T and N states, computing Z takes $T N^{2}$ operations instead of N^{T}
For tree-shaped models: same story!
For non-tree models: we need to figure out something else...

Example of a non-tree model

Task: given some images (a 2 D array of pixels), segment it into clusters of pixels

In general, there is an unknown number of clusters, so we will apply nonparametric priors, but for now, assume there are only 'background' and 'people' clusters

Model for image segmentation

Note: we can also define models without bothering to normalize

After simplification

MCMC methods

What it does: Same as the elimination algorithm (normalization and posterior), but not limited to trees.

Con: approximate instead of exact
Output: a list of samples, i.e. the model with values for the hidden nodes filled in (imputed)

MCMC methods: how does it work?

Things to discuss:

- How to compute posterior expectations from these samples (e.g. Bayes estimator)
- How to create the samples so that they are approximately distributed according to the posterior?
- How to compute Z from these samples

First item: Using the samples to compute posterior expectations

Task: given some images (a 2D array of pixels), segment it into clusters of pixels ('background' or 'people')

Loss function: Number of misclassified pixels
Example:

Guess

Computing the posterior

Samples:

Monte Carlo estimator: for S samples

$$
\mathbb{E} f(X) \approx \frac{1}{S} \sum_{i=1}^{S} f\left(X^{(i)}\right)
$$

Second item: generating samples approximately distributed according to posterior

What is the Metropolis hasting acceptance ratio?
x^{\prime} : Proposed
A $\frac{p\left(x^{\prime}\right) q\left(x^{\prime} \rightarrow x\right)}{p(x) q\left(x \rightarrow x^{\prime}\right)}$
x : Current
p : Joint density $q(v->w)$ density of proposing w from v

B $\frac{p(x) q\left(x \rightarrow x^{\prime}\right)}{p\left(x^{\prime}\right) q\left(x^{\prime} \rightarrow x\right)}$

Let's start by an easy special case: 'Naive’ Gibbs sampling

Idea: at each iteration, maintain a guess for all the hidden nodes

Init.: guess arbitrary values for the hidden nodes

Let's start by an easy special case: 'Naive’ Gibbs sampling

Loop: pick one node (i, j) at random, erase the contents of the guessed values in (i, j), freeze the value of the other nodes

Then: resample a value for the node (i, j) conditioning on all the others, and write this to the current state at (i, j)

Easy!

Better Gibbs samplers

Loop: pick a subset of nodes N at random, erase the contents of the guessed values in N, freeze the value of the nodes not in N

Then: resample a value for the nodes in N conditioning on all the others, and write this to the current state at N

Easy?

