Statistical modeling with stochastic processes

Alexandre Bouchard-Côté Lecture 3, Monday March 7

Plan for today

- Exact inference review
- Approximate inference, part I: MCMC
 - Gibbs
 - Metropolis-Hastings
 - Overview of theoretical results available
 - Tricks of the trade

Review

Why do we know the marginals? By definition!

What are the bare minimum conditions for λ to be marginals of Y_s ? I.e. we want $\lambda_s(A) = P(Y_s \in A)$, etc

Why do we know the marginals? By definition!

What are the bare minimum conditions for λ to be marginals of Y_s ? I.e. we want $\lambda_s(A) = P(Y_s \in A)$, etc

$$\lambda_{s_1}(A) = \lambda_{s_1,s_2}(A, \mathbf{R}) \text{ [marginalization]}$$

$$\lambda_{s_1,s_2}(A_1, A_2) = \lambda_{s_2,s_1}(A_2, A_1) \text{ [perm]}$$

Why do we know the marginals? By definition!

What are the bare minimum conditions for λ to be marginals

$$\begin{aligned} \lambda_{s_1}(A) &= \lambda_{s_1,s_2}(A,\mathbf{R}) \text{ [marginalization]} \\ \lambda_{s_1,s_2}(A_1,A_2) &= \lambda_{s_2,s_1}(A_2,A_1) \text{ [perm]} \end{aligned}$$

Kolmogorov: if these *consistency* conditions hold for any finite number of variables (not just a pair), then there is a joint stochastic process with these marginals.

of Y_s ?

The Bayesian choice

Task: given an observed random variable *Y*, what value should we guess for a related random variable *X* which is unobserved?

Criterion: if we make a guess x and the real value is x^* , we pay a cost of $L(x,x^*)$ ---- this is called a *loss function*.

In the Bayesian framework: you should answer

$$\operatorname{argmin}_{x} \mathbb{E}(L(x, X)|Y)$$

Directed Graphical Models

Example: $X \longrightarrow Y \longrightarrow Z$

Interpretation: the collection of all distributions that can be factorized as

$$p(x,y,z) = p_1(x) p_2(y|x) p_3(z|y)$$

for some non-negative p_i s such that for each w:

$$\int p_i(v|w) m(\mathrm{d}v) = 1$$

Undirected Graphical Models

Example: $X \rightarrow Y \rightarrow Z$

Interpretation: the collection of all distributions such that their density that can be factorized as

$$p(x,y,z) = f_1(x,y) f_2(y,z)$$

for some non-negative f_i

Suppose: parameters are known, so we condition on them

Next step: turning the directed model into an undirected one

Simplifying undirected models:

$$f'(x) = f(x, y_0)$$

Simplifications:

Consequence of simplification: renormalization needed

Example:

$$f_1(x) = p_1(x)$$

$$f_2(y|x) = p_2(y|x)$$

$$f'_2(x) = p_2(y_0|x)$$

$$P(X = x|Y = y_0) = \frac{f_1(x)f'_2(x)}{\sum_{x'}f_1(x')f'_2(x')}$$
Bayes rule: can interpret Z

$$as P(Y = y_0) = \frac{f_1(x)f'_2(x)}{Z}$$

Further simplifications

Efficient inference: elimination algorithm

Consequence: for chains, efficient computation of *Z* and one-node or two-nodes marginals for tree-shaped undirected graphical models

Much less operations than naive enumeration! In general: if a *chain* has length *T* and *N* states, computing *Z* takes $T N^2$ operations instead of N^T For tree-shaped models: same story! For non-tree models: we need to figure out something else...

MCMC

What it does: Same as the elimination algorithm (normalization and posterior), but not limited to trees.

Output: a list of samples, i.e. the model with values for the hidden nodes filled in (imputed)

A bit of history

MC: Usually credited to Stanislaw Ulam, during the Manhattan project.

MCMC: Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. They ran their chain for 48 iterations on a computer called MANIAC (it took five hours still)

MCMC methods: how does it work?

Things to discuss:

- How to compute posterior expectations from these samples (e.g. Bayes estimator)
- How to create the samples so that they are approximately distributed according to the posterior?
- How to compute Z from these samples

Computing the posterior

Samples:

Monte Carlo estimator: for S samples, compute

$$\mathbb{E}f(X) \approx \frac{1}{S} \sum_{i=1}^{S} f(X^{(i)}) <$$

In discrete models, *f* is generally a vector of indicator functions on variables and values e.g.

 $f_{1,3;B}(X^{(3)}) = 1$

MCMC methods: how does it work?

Things to discuss: (note assume for now state is discrete)

- How to compute posterior expectations from these samples (e.g. Bayes estimator)
- How to create the samples so that they are approximately distributed according to the posterior?
- How to compute Z from these samples

Let's start by an easy special case: 'Naive' Gibbs sampling

Idea: at each iteration, maintain a guess for all the hidden nodes

Initialization: guess arbitrary values for the hidden nodes

Let's start by an easy special case: 'Naive' Gibbs sampling

Loop: pick one node (i,j) at random, erase the contents of the guessed values in (i,j), and freeze the value of the other nodes

Then: resample a value for the node (i,j) conditioning on all the others, and write this to the current state at (i,j)

Better Gibbs samplers

Loop: pick a subset of nodes N at random, erase the contents of the guessed values in N, freeze the value of the nodes not in N

Then: resample a value for the nodes in *N* conditioning on all the others, and write this to the current state at *N*

Next: Metropolis Hastings

Why does it work?

Theoretical framework: The goal is to approximate $target(x) = \mathbb{P}(X = x | obs, params)$ **Method:** build a giant *Markov chain T* converging to target(x)

This construction is called a Metropolis-Hastings chain and Gibbs sampling is a special case of it.

Next: Metropolis Hastings

Markov chain:

Metropolis Hastings

Why it's huge: 2⁹ x 2⁹ matrix

Question

How to build T such that:

$$\operatorname{statio}(x) = \operatorname{target}(x)$$

First step: finding a better expression for statio(*x*)

statio
$$(x) = \lim_{t \to \infty} \mathbb{P}(X_t = x | X = 0 = *)$$

target $(x) = \mathbb{P}(X = x | \text{obs, params})$

One step transition: $T_{s,s'} = P(X_{t+1} = s' | X_t = s)$

Two steps transition: $\mathbb{P}(X_{t+2} = s' | X_t = s) = \left(\sum_{s''} T_{s,s''} T_{s'',s'} \right)_{s,s'}$ $\xrightarrow{+}_{s \quad s''} \underbrace{+}_{s \quad s''} = (T^2)_{s,s'}$

n-steps transition: T^n

Note: this is a special case of an important principle: Chapman–Kolmogorov equation

Definition ('infinite steps' transition): $T^{\infty} = \lim_{n \to \infty} T^n$

What (matrix-valued) equation should the infinite transition satisfy?

Definition ('infinite steps' transition): $T^{\infty} = \lim_{n \to \infty} T^n$

What (matrix-valued) equation should the infinite transition satisfy?

$$T^{\infty} = T^{\infty}T$$

Definition ('infinite steps' transition): $T^{\infty} = \lim_{n \to \infty} T^n$

That would mean that no matter what state we use to initialize the sampler, the distribution over the n-th state converges to a distribution called the stationary distribution $\pi(x) = \operatorname{statio}(x) = \operatorname{target}(x)$

Definition ('infinite steps' transition): $T^{\infty} = \lim_{n \to \infty} T^n$

When this is the case (will see later the conditions):

$$\pi(x) = \sum_{y} \pi(y) T_{y,x} \qquad \text{or} \qquad \pi = \pi T$$

Building T such that statio(x) = target(x)

From previous result, want T such that:

$$\operatorname{target}(x) = \sum_{y} \operatorname{target}(y) T_{y,x}$$

Next: Let's see if Gibbs satisfies this equation!

Definition: Let *R* denote the set of states reachable by the current Gibbs move

E.g.: in previous Ising example, it has two elements

Building T such that statio(x) = target(x)

Goal: Let's see if Gibbs satisfies this equation $\operatorname{target}(x) = \sum_{y} \operatorname{target}(y) T_{y,x}$ (1) **First:** Let's find what is $T_{y,x}$

Building T such that statio(x) = target(x)

Goal: Let's see if Gibbs satisfies this equation $\operatorname{target}(x) = \sum_{y} \operatorname{target}(y) T_{y,x}$ (1) **First:** Let's find what is $T_{y,x}$

$$T_{y,x} = \frac{\mathbf{1}[x, y \in R] \operatorname{target}(x)}{\sum_{x'} \mathbf{1}[x', y \in R] \operatorname{target}(x')}$$

Building T such that statio(x) = target(x)

Goal: Let's see if Gibbs satisfies this equation $\operatorname{target}(x) = \sum_{y} \operatorname{target}(y) T_{y,x}$ (1) **First:** Let's find what is $T_{y,x}$

$$T_{y,x} = \frac{\mathbf{1}[x, y \in R] \operatorname{target}(x)}{\sum_{x'} \mathbf{1}[x', y \in R] \operatorname{target}(x')}$$
(2)

Finally: plug-in (2) in (1) and check it works

Gibbs is not always applicable

Example: non-conjugate prior; in which case even a single node has no analytic posterior expression

Generalization: instead of requiring T be proportional to the target distribution, use arbitrary proposal q and correct the discrepancy between q and the target distribution

Terminology: Metropolis-Hastings

Metropolis-Hastings meta-algorithm

Metropolis-Hastings(target(x), $q(x_{next}|x_{cur}), f(x)$ **)**

Initialize x₀ arbitrarily

- F = 0; N = 0For t = 1...S
 - 1. Propose a new state x_{prop} according to $q(-|x_{t-1})$
 - 2. Compute:

$$A(x_{t-1} \to x_{\text{prop}}) = \min\left\{1, \frac{\operatorname{target}(x_{\text{prop}})q(x_{t-1}|x_{\text{prop}})}{\operatorname{target}(x_{t-1})q(x_{\text{prop}}|x_{t-1})}\right\}$$

3. Set x_t to x_{prop} with probability $A(x_{t-1} \rightarrow x_{prop})$, otherwise set x_t to x_{t-1}

4.
$$F = F + f(x_t), N = N + 1$$

Return F/N $\longrightarrow \mathbb{E}[f(X)]$ for $X \sim \text{target}$

Why Metropolis-Hastings works

From previous result, want T such that:

$$\operatorname{target}(x) = \sum_{y} \operatorname{target}(y) T_{y,x}$$

Sufficient condition (by summing over y on both sides): $target(x)T_{x,y} = target(y)T_{y,x}$

This is called detailed balance or reversibility condition

Why Metropolis-Hastings works

Goal: checking detailed balance for the MH kernel T

 $\operatorname{target}(x)T_{x,y} = \operatorname{target}(y)T_{y,x}$

First: what is $T_{x,y}$? When x = y, the result trivially holds, so let's assume that $x \neq y$

When $x \neq y$, $T_{x,y}$ is equal to the probability that (1) y is proposed by q(-|x) times (2) the probability that it is accepted:

$$T_{x,y} = q(y|x)A(x \to y)$$

Why Metropolis-Hastings works

Final step: using the form of $T_{x,y}$ for $x \neq y$ to check detailed balance for the MH kernel *T*

Goal:
$$\operatorname{target}(x)T_{x,y} = \operatorname{target}(y)T_{y,x}$$

Known:

$$A(x_{t-1} \to x_{\text{prop}}) = \min\left\{1, \frac{\operatorname{target}(x_{\text{prop}})q(x_{t-1}|x_{\text{prop}})}{\operatorname{target}(x_{t-1})q(x_{\text{prop}}|x_{t-1})}\right\}$$
$$T_{x,y} = q(y|x)A(x \to y)$$

Notes on Metropolis-Hastings

Critical: the target and proposal densities always appear as ratios, so if they are only known up to a normalization Z, the normalizations cancel out

$$A(x_{t-1} \to x_{\text{prop}}) = \min\left\{1, \frac{\operatorname{target}(x_{\text{prop}})q(x_{t-1}|x_{\text{prop}})}{\operatorname{target}(x_{t-1})q(x_{\text{prop}}|x_{t-1})}\right\}$$

Practical note: should be computed in log space and exponentiated only after taking ratio (difference of logs)

Special cases: when *q* is symmetric (e.g. isotropic normal), the *q*'s cancel out as well. When $q(-|x_{cur})$ is independent of x_{cur} , it's called an *independence chain* (still has dependence because of *A*)

Useful theoretical results

Counter-example 1

$$T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Limit T^{∞} not even defined!

Problem: a waltz between states

Definition: A state s (or chain) has period k if any return to state s must occur in multiples of k steps. The chain is aperiodic if one (all) states have period 1.

Easy to avoid: add epsilon self-transitions

Counter-example 2

$$T = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Exercise: the asymptotic distribution depends on the starting state. In fact: $T^{\infty} = T$

Problem: some pairs of states cannot reach each other

Definition: An *irreducible* chain is a chain where there is a path between each pair of states (for each *x*, *y* there is an integer *n* such that $(T^n)_{x,y} > 0$)

Example: is this irreducible?

Example: is this irreducible?

$$T_{y,x} = \frac{\mathbf{1}[x, y \in R] \operatorname{target}(x)}{\sum_{x'} \mathbf{1}[x', y \in R] \operatorname{target}(x')}$$

Example: is this irreducible?

$$T_{y,x} = \frac{\mathbf{1}[x, y \in R] \operatorname{target}(x)}{\sum_{x'} \mathbf{1}[x', y \in R] \operatorname{target}(x')}$$

Solution 1: mixing kernels. Suppose we have one Gibbs kernel for each variable $T^{(1)}$, ..., $T^{(9)}$. Then the mixture of them is also reversible (by linearity)

$$T = \sum_{k=1}^{9} \alpha_k T^{(k)}$$

Solution 1: mixing kernels. Suppose we have one Gibbs kernel for each variable $T^{(1)}$, ..., $T^{(9)}$. Then the mixture of them is also reversible (by linearity)

$$T = \sum_{k=1}^{\infty} \alpha_k T^{(k)}$$

Solution 2: alternating kernels deterministically (ie. using the first, then second, etc).

$$T_{x,y} = \sum_{x_1} \cdots \sum_{x_9} T_{x,x_1}^{(1)} T_{x_1,x_2}^{(2)} \cdots T_{x_8,x'}^{(9)}$$

Often works better: shuffle then alternate

Existence of π such that $\pi = \pi T$

Suppose: (still assuming discrete state space)

- 1. T is irreducible
- 2. T is aperiodic

Consequence: There is a unique probability distribution π such that $\pi = \pi T$

Proofs: Consequence of Perron–Frobenius theorem (T^n is positive for *n* large enough, and π is then the eigenvector corresponding to the unique eigenvalue of highest modulus). --- **Note:** can be used to debug samplers

More general arguments exist

Convergence theorem 1

Suppose: (still assuming discrete state space)

- 1. T is irreducible
- 2. T is aperiodic

Consequence: There is a unique probability distribution π such that $\pi = \pi T$; moreover, for all x,

$$\lim_{n \to \infty} T_{x,y}^n = \pi(y)$$

Proof: coupling argument

Idea: simulate a *pair* of chains (X_t, Y_t) such that the marginal transitions are given by *T*:

$$P(X_t = x' | X_{t-1} = x, Y_{t-1} = y) = T_{xx'}$$

Joint distribution: simulate *independent* transitions if $x \neq y$, and *identical* transitions if x = y. Each point is a

 X_t

possible configuration

of latent variables

Proof: coupling argument

Initial distributions: $X_0 \sim \pi$ and $Y_0 \sim$ arbitrary distribution

Note: $X_t \sim \pi$ for all t since $\pi = \pi T$

This is not exactly what we need though...

Recall: the goal is to compute an expectation (with respect to the posterior distribution), not to sample!

Connexion: the law of large numbers

Vanilla version: If X_t are iid π and f is finite, then

$$\lim_{n \to \infty} \frac{1}{S} \sum_{t=1}^{S} f(X_t) = \sum_{x} f(x) \pi(x)$$

Misconception: to have the same conclusion hold for MCMC, we need to *burn-in* and/or *thin* the chain

Burn-in and thinning

The law of large numbers for Markov chains: If X_t is an irreducible Markov chain with stationary distribution π and f is finite, then

$$\lim_{n \to \infty} \frac{1}{S} \sum_{t=1}^{S} f(X_t) = \sum_{x} f(x) \pi(x)$$

Note 1: Aperiodicity not needed for this result

Note 2: For small *S*, burning-in might improve the estimator, but might as well maximize during burn-in

Note 2: Thinning to reduce auto-correlation is not a good idea and can be harmful (only reasons to do it is to save memory writes or memory---but most of the time only finite dimensional sufficient statistics need to be stored)