# Statistical modeling with stochastic processes 

Alexandre Bouchard-Côté
Lecture 3, Monday March 7

## Plan for today

- Exact inference review
- Approximate inference, part I: MCMC
- Gibbs
- Metropolis-Hastings
- Overview of theoretical results available
- Tricks of the trade


## Review

## Why do we know the marginals? By definition!

What are the bare minimum conditions for $\lambda$ to be marginals of $Y_{s}$ ? I.e. we want $\lambda_{s}(A)=P\left(Y_{s} \in A\right)$, etc


## Why do we know the marginals? By definition!

What are the bare minimum conditions for $\lambda$ to be marginals of $Y_{s}$ ? I.e. we want $\lambda_{s}(A)=P\left(Y_{s} \in A\right)$, etc

$$
\begin{aligned}
& \lambda_{s_{1}}(A)=\lambda_{s_{1}, s_{2}}(A, \mathbf{R}) \quad[\text { marginalization }] \\
& \lambda_{s_{1}, s_{2}}\left(A_{1}, A_{2}\right)=\lambda_{s_{2}, s_{1}}\left(A_{2}, A_{1}\right) \quad[\text { perm }]
\end{aligned}
$$



## Why do we know the marginals? By definition!

What are the bare minimum conditions for $\lambda$ to be marginals of $Y_{s}$ ?

$$
\begin{aligned}
& \lambda_{s_{1}}(A)=\lambda_{s_{1}, s_{2}}(A, \mathbf{R}) \text { [marginalization] } \\
& \lambda_{s_{1}, s_{2}}\left(A_{1}, A_{2}\right)=\lambda_{s_{2}, s_{1}}\left(A_{2}, A_{1}\right) \text { [perm] }
\end{aligned}
$$

Kolmogorov: if these consistency conditions hold for any finite number of variables (not just a pair), then there is a joint stochastic process with these marginals.

## The Bayesian choice

Task: given an observed random variable $Y$, what value should we guess for a related random variable $X$ which is unobserved?

Criterion: if we make guess $x$ and the real value is $x^{*}$, we pay a cost of $L\left(x, x^{*}\right)$--- this is called a loss function.

In the Bayesian framework: you should answer

$$
\operatorname{argmin}_{x} \mathbb{E}(L(x, X) \mid Y)
$$

## Directed Graphical Models

Example: $\quad X \longrightarrow Y \longrightarrow Z$
Interpretation: the collection of all distributions that can be factorized as
$p(x, y, z)=p_{1}(x) p_{2}(y \mid x) \quad p_{3}(z \mid y)$
for some non-negative $p_{i} \boldsymbol{s}$ such that for each $w$ :

$$
\int p_{i}(v \mid w) m(\mathrm{~d} v)=1
$$

## Undirected Graphical Models

Example: $\quad X-Y-Z$
Interpretation: the collection of all distributions such that their density that can be factorized as
$p(x, y, z)=f_{1}(x, y) f_{2}(y, z)$
for some non-negative $f_{i}$

## Exact inference and dynamic programming

Suppose: parameters are known, so we condition on them


## Exact inference and dynamic programming

Next step: turning the directed model into an undirected one


## Exact inference and dynamic programming

## Simplifying undirected models:



$$
f^{\prime}(x)=f\left(x, y_{0}\right)
$$

## Exact inference and dynamic programming

## Simplifications:



## Exact inference and dynamic programming

Consequence of simplification: renormalization needed
Example:

$$
\begin{aligned}
& \text { le: } \quad f_{1}(x)=p_{1}(x) \\
& \qquad f_{2}(y \mid x)=p_{2}(y \mid x) \\
& P\left(X=x \mid Y=y_{0}\right)=\frac{f_{1}(x) f_{2}^{\prime}(x)}{\sum_{x^{\prime}} f_{1}\left(x^{\prime}\right) f_{2}^{\prime}\left(x^{\prime}\right)} \\
& \text { e: can interpret } Z \quad=\frac{f_{1}(x) f_{2}^{\prime}(x)}{Z} \\
& P\left(Y=y_{0}\right)
\end{aligned}
$$

Bayes rule: can interpret $Z$

$$
\text { as } P\left(Y=y_{0}\right)
$$

## Further simplifications



Pointwise multiplication


Marginalization

$$
f^{\prime} 2(x, 7)=f(x) x_{2}=(x, 7)
$$



## Efficient inference: elimination algorithm

Consequence: for chains, efficient computation of $Z$ and one-node or two-nodes marginals for tree-shaped undirected graphical models


Much less operations than naive enumeration!
In general: if a chain has length $T$ and $N$ states, computing $Z$ takes $T N^{2}$ operations instead of $N^{T}$
For tree-shaped models: same story!
For non-tree models: we need to figure out something else...

## MCMC

## MCMC methods

What it does: Same as the elimination algorithm (normalization and posterior), but not limited to trees.

Output: a list of samples, i.e. the model with values for the hidden nodes filled in (imputed)


## A bit of history

MC: Usually credited to Stanislaw Ulam, during the Manhattan project.


MCMC: Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E.

They ran their chain for 48 iterations on a computer called MANIAC (it took five hours still)

## MCMC methods: how does it work?

Things to discuss:

- How to compute posterior expectations from these samples (e.g. Bayes estimator)
- How to create the samples so that they are approximately distributed according to the posterior?
- How to compute $Z$ from these samples



## Computing the posterior

## Samples:




Monte Carlo estimator: for $S$ samples, compute

$$
\left.\mathbb{E} f(X) \approx \frac{1}{S} \sum_{i=1}^{S} f\left(X^{(i)}\right)\right\}
$$

In discrete models, $f$ is generally a vector of indicator functions on variables and values e.g.

$$
f_{1,3 ; \mathrm{B}}\left(X^{(3)}\right)=1
$$

## MCMC methods: how does it work?

Things to discuss: (note assume for now state is discrete)

- How to compute posterior expectations from these samples (e.g. Bayes estimator)
- How to create the samples so that they are approximately distributed according to the posterior?
- How to compute $Z$ from these samples



## Let's start by an easy special case: 'Naive’ Gibbs sampling

Idea: at each iteration, maintain a guess for all the hidden nodes

Initialization: guess arbitrary values for the hidden nodes



## Let's start by an easy special case: 'Naive’ Gibbs sampling

Loop: pick one node $(i, j)$ at random, erase the contents of the guessed values in $(i, j)$, and freeze the value of the other nodes


Then: resample a value for the node $(i, j)$ conditioning on all the others, and write this to the current state at $(i, j)$


Easy!

## Better Gibbs samplers

Loop: pick a subset of nodes $N$ at random, erase the contents of the guessed values in $N$, freeze the value of the nodes not in $N$


Then: resample a value for the nodes in $N$ conditioning on all the others, and write this to the current state at $N$




Easy?

## Next: Metropolis Hastings

## Why does it work?

Theoretical framework: The goal is to approximate

$$
\operatorname{target}(x)=\mathbb{P}(X=x \mid \text { obs }, \text { params })
$$

Method: build a giant Markov chain $T$ converging to $\operatorname{target}(x)$

This construction is called a Metropolis-Hastings chain and Gibbs sampling is a special case of it.

## Next: Metropolis Hastings

## Markov chain:

$$
T_{s, s},=\stackrel{\text { Transition matrix: }}{P}\left(X_{t+1}=s^{\prime} \mid X_{t}=s\right)
$$

Each state is a full
Asymptotic/stationary distribution: copy of the latent


## Metropolis Hastings

Why it's huge: $2^{9} \times 2^{9}$ matrix


## Question

How to build T such that:

$$
\operatorname{statio}(x)=\operatorname{target}(x)
$$

First step: finding a better expression for statio $(x)$

$$
\begin{aligned}
& \operatorname{statio}(x)=\lim _{t \rightarrow \infty} \mathbb{P}\left(X_{t}=x \mid X=0=*\right) \\
& \operatorname{target}(x)=\mathbb{P}(X=x \mid \text { obs, params })
\end{aligned}
$$

## Finding a better expression for statio $(x)$

One step transition: $\quad T_{s, s^{\prime}}=P\left(X_{t+1}=s^{\prime} \mid X_{t}=s\right)$
Two steps transition:
$\mathbb{P}\left(X_{t+2}=s^{\prime} \mid X_{t}=s\right)=\left(\sum_{s^{\prime \prime}} T_{s, s^{\prime \prime}} T_{s^{\prime \prime}, s^{\prime}}\right)_{s, s^{\prime}}$


$$
=\left(T^{2}\right)_{s, s^{\prime}}
$$

n-steps transition: $T^{n}$
Note: this is a special case of an important principle:
Chapman-Kolmogorov equation

## Finding a better expression for $\operatorname{statio}(x)$

Definition ('infinite steps' transition): $T^{\infty}=\lim _{n \rightarrow \infty} T^{n}$

What (matrix-valued) equation should the infinite transition satisfy?

## Finding a better expression for $\operatorname{statio}(x)$

Definition ('infinite steps' transition): $T^{\infty}=\lim _{n \rightarrow \infty} T^{n}$

What (matrix-valued) equation should the infinite transition satisfy?

$$
T^{\infty}=T^{\infty} T
$$

## Finding a better expression for statio $(x)$

Definition ('infinite steps' transition): $T^{\infty}=\lim _{n \rightarrow \infty} T^{n}$

## Hope:



That would mean that no matter what state we use to initialize the sampler, the distribution over the $n$-th state converges to a distribution called the stationary distribution $\pi(x)=\operatorname{statio}(x)=\operatorname{target}(x)$

## Finding a better expression for statio $(x)$

Definition ('infinite steps' transition): $T^{\infty}=\lim _{n \rightarrow \infty} T^{n}$
Hope:

When this is the case (will see later the conditions):

$$
\begin{equation*}
\pi(x)=\sum_{y} \pi(y) T_{y, x} \quad \text { or } \quad \pi=\pi T \tag{or}
\end{equation*}
$$

## Building T such that statio( x$)=\operatorname{target}(\mathrm{x})$

From previous result, want $T$ such that:

$$
\operatorname{target}(x)=\sum_{y} \operatorname{target}(y) T_{y, x}
$$

Next: Let's see if Gibbs satisfies this equation!
Definition: Let $R$ denote the set of states reachable by the current Gibbs move
E.g.: in previous Ising example, it has two elements


## Building T such that statio( x$)=\operatorname{target}(\mathrm{x})$

Goal: Let's see if Gibbs satisfies this equation

$$
\begin{equation*}
\operatorname{target}(x)=\sum_{y} \operatorname{target}(y) T_{y, x} \tag{1}
\end{equation*}
$$

First: Let's find what is $T_{y, x}$


## Building T such that station( x$)=\operatorname{target}(\mathrm{x})$

Goal: Let's see if Gibbs satisfies this equation

$$
\begin{equation*}
\operatorname{target}(x)=\sum_{y} \operatorname{target}(y) T_{y, x} \tag{1}
\end{equation*}
$$

First: Let's find what is $T_{y, x}$

$$
T_{y, x}=\frac{\mathbf{1}[x, y \in R] \operatorname{target}(x)}{\sum_{x^{\prime}} \mathbf{1}\left[x^{\prime}, y \in R\right] \operatorname{target}\left(x^{\prime}\right)}
$$



## Building T such that station( x$)=\operatorname{target}(\mathrm{x})$

Goal: Let's see if Gibbs satisfies this equation

$$
\begin{equation*}
\operatorname{target}(x)=\sum_{y} \operatorname{target}(y) T_{y, x} \tag{1}
\end{equation*}
$$

First: Let's find what is $T_{y, x}$

$$
\begin{equation*}
T_{y, x}=\frac{\mathbf{1}[x, y \in R] \operatorname{target}(x)}{\sum_{x^{\prime}} \mathbf{1}\left[x^{\prime}, y \in R\right] \operatorname{target}\left(x^{\prime}\right)} \tag{2}
\end{equation*}
$$

Finally: plug-in (2) in (1) and check it works


## Gibbs is not always applicable

Example: non-conjugate prior; in which case even a single node has no analytic posterior expression

Generalization: instead of requiring $T$ be proportional to the target distribution, use arbitrary proposal $q$ and correct the discrepancy between $q$ and the target distribution

Terminology: Metropolis-Hastings

## Metropolis-Hastings meta-algorithm

Metropolis-Hastings $\left(\operatorname{target}(x), q\left(x_{\text {next }} \mid x_{\text {cur }}\right), f(x)\right)$
Initialize $x_{0}$ arbitrarily
$F=0 ; N=0$
For $t=1 \ldots S$

1. Propose a new state $x_{\text {prop }}$ according to $q\left(-\mid x_{t-1}\right)$
2. Compute:

$$
A\left(x_{t-1} \rightarrow x_{\text {prop }}\right)=\min \left\{1, \frac{\operatorname{target}\left(x_{\text {prop }}\right) q\left(x_{t-1} \mid x_{\text {prop }}\right)}{\operatorname{target}\left(x_{t-1}\right) q\left(x_{\text {prop }} \mid x_{t-1}\right)}\right\}
$$

3. Set $x_{t}$ to $x_{\text {prop }}$ with probability $A\left(x_{t-1} \rightarrow x_{\text {prop }}\right)$, otherwise set $x_{t}$ to $x_{t-1}$
4. $F=F+f\left(x_{i}\right), N=N+1 \quad \approx \mathbb{E}[f(X)]$ for $X \sim$ target

Return $F / N$

## Why Metropolis-Hastings works

From previous result, want $T$ such that:

$$
\operatorname{target}(x)=\sum_{y} \operatorname{target}(y) T_{y, x}
$$

Sufficient condition (by summing over y on both sides):

$$
\operatorname{target}(x) T_{x, y}=\operatorname{target}(y) T_{y, x}
$$

This is called detailed balance or reversibility condition

## Why Metropolis-Hastings works

Goal: checking detailed balance for the MH kernel $T$

$$
\operatorname{target}(x) T_{x, y}=\operatorname{target}(y) T_{y, x}
$$

First: what is $T_{x, y}$ ? When $x=y$, the result trivially holds, so let's assume that $x \neq y$

When $x \neq y, T_{x, y}$ is equal to the probability that
(1) $y$ is proposed by $q(-\mid x)$ times
(2) the probability that it is accepted:

$$
T_{x, y}=q(y \mid x) A(x \rightarrow y)
$$

## Why Metropolis-Hastings works

Final step: using the form of $T_{x, y}$ for $x \neq y$ to check detailed balance for the MH kernel $T$

$$
\text { Goal: } \quad \operatorname{target}(x) T_{x, y}=\operatorname{target}(y) T_{y, x}
$$

## Known:

$$
\begin{aligned}
A\left(x_{t-1} \rightarrow x_{\text {prop }}\right) & =\min \left\{1, \frac{\operatorname{target}\left(x_{\text {prop }}\right) q\left(x_{t-1} \mid x_{\text {prop }}\right)}{\operatorname{target}\left(x_{t-1}\right) q\left(x_{\text {prop }} \mid x_{t-1}\right)}\right\} \\
T_{x, y} & =q(y \mid x) A(x \rightarrow y)
\end{aligned}
$$

## Notes on Metropolis-Hastings

Critical: the target and proposal densities always appear as ratios, so if they are only known up to a normalization $Z$, the normalizations cancel out

$$
A\left(x_{t-1} \rightarrow x_{\text {prop }}\right)=\min \left\{1, \frac{\operatorname{target}\left(x_{\text {prop }}\right) q\left(x_{t-1} \mid x_{\text {prop }}\right)}{\operatorname{target}\left(x_{t-1}\right) q\left(x_{\text {prop }} \mid x_{t-1}\right)}\right\}
$$

Practical note: should be computed in $\log$ space and exponentiated only after taking ratio (difference of logs)

Special cases: when $q$ is symmetric (e.g. isotropic normal), the $q$ 's cancel out as well. When $q\left(-\mid x_{\text {cur }}\right)$ is independent of $x_{\text {cur }}$, it's called an independence chain (still has dependence because of $A$ )

## Useful theoretical results

Definition ('infinite steps' transition): $T^{\infty}=\lim _{n \rightarrow \infty} T^{n}$
Hope:


## Counter-example 1

$$
\begin{aligned}
& T=\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right] \\
& \text { Limit } T^{\infty} \text { not even defined! }
\end{aligned}
$$

Problem: a waltz between states

Definition: A state $s$ (or chain) has period $k$ if any return to state s must occur in multiples of $k$ steps. The chain is aperiodic if one (all) states have period 1.

Easy to avoid: add epsilon self-transitions

## Counter-example 2

$$
\boldsymbol{T}=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Exercise: the asymptotic distribution depends on the starting state. In fact: $T^{\infty}=T$

Problem: some pairs of states cannot reach each other
Definition: An irreducible chain is a chain where there is a path between each pair of states (for each $x, y$ there is an integer $n$ such that $\left.\left(T^{n}\right)_{x, y}>0\right)$

## Are the MH and Gibbs kernels we have introduced earlier irreducible?

Example: is this irreducible?


## Are the MH and Gibbs kernels we have introduced earlier irreducible?

Example: is this irreducible?

$$
T_{y, x}=\frac{\mathbf{1}[x, y \in R] \operatorname{target}(x)}{\sum_{x^{\prime}} \mathbf{1}\left[x^{\prime}, y \in R\right] \operatorname{target}\left(x^{\prime}\right)}
$$



## Are the MH and Gibbs kernels we have introduced earlier irreducible?

Example: is this irreducible?

$$
T_{y, x}=\frac{\mathbf{1}[x, y \in R] \operatorname{target}(x)}{\sum_{x^{\prime}} \mathbf{1}\left[x^{\prime}, y \in R\right] \operatorname{target}\left(x^{\prime}\right)}
$$



Solution 1: mixing kernels. Suppose we have one Gibbs kernel for each variable $T^{(1)}, \ldots, T^{99}$. Then the mixture of them is also reversible (by linearity)

$$
T=\sum_{k=1}^{9} \alpha_{k} T^{(k)}
$$

## Are the MH and Gibbs kernels we have introduced earlier irreducible?

Solution 1: mixing kernels. Suppose we have one Gibbs kernel for each variable $T^{(1)}, \ldots, T^{9}$ ). Then the mixture of them is also reversible (by linearity)

$$
T=\sum_{k=1}^{\infty} \alpha_{k} T^{(k)}
$$

Solution 2: alternating kernels deterministically (ie. using the first, then second, etc).

$$
T_{x, y}=\sum_{x_{1}} \cdots \sum_{x_{9}} T_{x, x_{1}}^{(1)} T_{x_{1}, x_{2}}^{(2)} \cdots T_{x_{8}, x^{\prime}}^{(9)}
$$

Often works better: shuffle then alternate

## Existence of $\pi$ such that $\pi=\pi T$

Suppose: (still assuming discrete state space)

1. T is irreducible
2. T is aperiodic

Consequence: There is a unique probability distribution $\pi$ such that $\pi=\pi T$

Proofs: Consequence of Perron-Frobenius theorem ( $T^{n}$ is positive for $n$ large enough, and $\pi$ is then the eigenvector corresponding to the unique eigenvalue of highest modulus). --- Note: can be used to debug samplers

More general arguments exist

## Convergence theorem 1

Suppose: (still assuming discrete state space)

1. T is irreducible
2. T is aperiodic

Consequence: There is a unique probability distribution $\pi$ such that $\pi=\pi T$; moreover, for all $x$,

$$
\lim _{n \rightarrow \infty} T_{x, y}^{n}=\pi(y)
$$

i.e.:


## Proof: coupling argument

Idea: simulate a pair of chains $\left(X_{t}, Y_{t}\right)$ such that the marginal transitions are given by $T$ :

$$
P\left(X_{t}=x^{\prime} \mid X_{t-1}=x, Y_{t-1}=y\right)=T_{x x}
$$

Joint distribution: simulate independent transitions if $x \neq y$, and identical transitions if $x=y$.


## Proof: coupling argument

Initial distributions: $X_{0} \sim \pi$ and $Y_{0} \sim$ arbitrary distribution
Note: $X_{t} \sim \pi$ for all $t$ since $\pi=\pi T$
Goal: showing that $\lim _{n \rightarrow \infty} \sum_{y}\left|\mathbb{P}\left(X_{n}=y\right)-\mathbb{P}\left(Y_{n}=y\right)\right|=0$


## This is not exactly what we need though...

Recall: the goal is to compute an expectation (with respect to the posterior distribution), not to sample!

Connexion: the law of large numbers
Vanilla version: If $X_{t}$ are iid $\pi$ and $f$ is finite, then

$$
\lim _{n \rightarrow \infty} \frac{1}{S} \sum_{t=1}^{S} f\left(X_{t}\right)=\sum_{x} f(x) \pi(x)
$$

Misconception: to have the same conclusion hold for MCMC, we need to burn-in and/or thin the chain

## Burn-in and thinning

## Burn-in:

$$
\frac{1}{S-b} \sum_{t=b}^{S} f\left(X_{t}\right)
$$

## Thinning:

$$
\frac{1}{S / n} \sum_{t \in\{n, 2 n, \ldots, S\}} f\left(X_{t}\right)
$$

## Burn-in and thinning are unnecessary

The law of large numbers for Markov chains: If $X_{t}$ is an irreducible Markov chain with stationary distribution $\pi$ and $f$ is finite, then

$$
\lim _{n \rightarrow \infty} \frac{1}{S} \sum_{t=1}^{S} f\left(X_{t}\right)=\sum_{x} f(x) \pi(x)
$$

Note 1: Aperiodicity not needed for this result
Note 2: For small $S$, burning-in might improve the estimator, but might as well maximize during burn-in
Note 2: Thinning to reduce auto-correlation is not a good idea and can be harmful (only reasons to do it is to save memory writes or memory---but most of the time only finite dimensional sufficient statistics need to be stored)

