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Plan for today

 Exact inference review

 Approximate inference, part I:  MCMC
 Gibbs
 Metropolis-Hastings
 Overview of theoretical results available
 Tricks of the trade
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Review
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Why do we know the marginals? 
By definition!
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What are the bare minimum conditions for λ to be marginals 
of Ys ?  I.e. we want λs(A) = P(Ys ∈ A), etc

s1 s2

A
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Why do we know the marginals? 
By definition!
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What are the bare minimum conditions for λ to be marginals 
of Ys ?  I.e. we want λs(A) = P(Ys ∈ A), etc

s1 s2

A

λs1(A) = λs1,s2(A,R) [marginalization]
λs1,s2(A1, A2) = λs2,s1(A2, A1) [perm]
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Why do we know the marginals? 
By definition!

What are the bare minimum conditions for λ to be marginals 
of Ys ?

λs1(A) = λs1,s2(A,R) [marginalization]
λs1,s2(A1, A2) = λs2,s1(A2, A1) [perm]

Kolmogorov: if these consistency conditions hold for any 
finite number of variables (not just a pair), then there is a 
joint stochastic process with these marginals.
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The Bayesian choice

Task: given an observed random variable Y, what value 
should we guess for a related random variable X which is 
unobserved?

Criterion: if we make a guess x and the real value is x*, 
we pay a cost of L(x,x*) --- this is called a loss function.

In the Bayesian framework: you should answer

argminxE(L(x, X)|Y )
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Directed Graphical Models

Example:  

Interpretation: the collection of all distributions that can 
be factorized as

p(x,y,z) = p1(x)  p2(y|x)  p3(z|y)

for some non-negative pi s such that for each w:

∫ pi(v|w) m(dv) = 1

X Y Z
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Undirected Graphical Models

Example:  

Interpretation: the collection of all distributions such 
that their density that can be factorized as

p(x,y,z) = f1(x,y)  f2(y,z)

for some non-negative fi

X Y Z

8Tuesday, March 8, 2011



Exact inference and dynamic programming

y1

x1

y2

x2

y3

x3θ(c)

T(c)
π

c = 1,2

c = 1,2

Suppose: parameters are known, so we condition on them
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Exact inference and dynamic programming

Next step: turning the directed model into an undirected one

X Y

V
X Y

V
‘Moralization’
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Exact inference and dynamic programming

Simplifying undirected models:
...

... ...

... ...

... ...

...
Y0 = y0

f(x,y) f’(x)

f’(x) = f(x, y0)
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Exact inference and dynamic programming

Simplifications:
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P (X = x|Y = y0) =
f1(x)f ′

2(x)∑
x′ f1(x′)f ′

2(x′)

=
f1(x)f ′

2(x)
Z

Exact inference and dynamic programming

Consequence of simplification: renormalization needed

Example:

f2(y|x) = p2(y|x)

f1(x) = p1(x)

f’2(x) = p2(y0|x)

f1(x)

Bayes rule: can interpret Z 
as P(Y = y0)

13Tuesday, March 8, 2011



Further simplifications

... ...

...

... ...

...

f ’2(x,y) = f1(x) f2(x,y)

f1(x)
f2(x,y) f’2(x,y)

Pointwise multiplication

...

...

... ...

...

...

f(x,y)X

Y
f’(x)

f ′(x) =
∑

y

f(x, y)
Marginalization
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Efficient inference: elimination algorithm

Consequence: for chains, efficient computation of Z and 
one-node or two-nodes marginals for tree-shaped 
undirected graphical models

4 x 4 operations 4 x 4 operations

Much less operations than naive enumeration!
In general: if a chain has length T and N states, computing Z 
takes T N2 operations instead of NT

For tree-shaped models: same story!
For non-tree models: we need to figure out something else...
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MCMC
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MCMC methods

What it does: Same as the elimination algorithm 
(normalization and posterior), but not limited to trees.  

Output: a list of samples, i.e. the model with values for 
the hidden nodes filled in (imputed)

B
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P
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P
B
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P
B
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A bit of history

MC: Usually credited to Stanislaw Ulam, during the 
Manhattan project. 

MCMC: Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, 
M.N.; Teller, A.H.; Teller, E. 
They ran their chain for 48 iterations on a computer called 
MANIAC (it took five hours still)
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MCMC methods: how does it work?

Things to discuss: 

 How to compute posterior expectations from these 
samples (e.g. Bayes estimator)

 How to create the samples so that they are 
approximately distributed according to the posterior?

 How to compute Z from these samples
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Ef(X) ≈ 1
S

S∑

i=1

f(X(i))

Computing the posterior
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P
B

Samples:

X1,1
X1,3

Monte Carlo estimator:  for S samples, compute

(1) (1)
X1,1

X1,3(3) (3)

In discrete models, f is generally 
a vector of indicator functions on 

variables and values e.g.
f1,3;B(X(3)) = 1
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MCMC methods: how does it work?

Things to discuss: (note assume for now state is discrete)

 How to compute posterior expectations from these 
samples (e.g. Bayes estimator)

 How to create the samples so that they are 
approximately distributed according to the posterior?

 How to compute Z from these samples

B
B
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B
P

P P

P
P B
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Let’s start by an easy special 
case: ‘Naive’ Gibbs sampling

Initialization: guess arbitrary values for the hidden nodes

B
B

B

B

P P

P
B

P

Idea: at each iteration, maintain a guess for all the hidden 
nodes
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Let’s start by an easy special 
case: ‘Naive’ Gibbs sampling

B
B

B

B

P P

P
B

P

Loop: pick one node (i,j)  at random, erase the contents of the 
guessed values in (i,j), and freeze the value of the other nodes

B
B

B

B

P P

P
B

Then: resample a value for the node (i,j) conditioning on all the 
others, and write this to the current state at (i,j)

B
B

B

B

P P

P
B

Easy!
B

B
B

B

B

P

P
B

B

P
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Better Gibbs samplers

B
B

B

B

P P

P
B

P

Loop: pick a subset of nodes N  at random, erase the contents of 
the guessed values in N, freeze the value of the nodes not in N

B

B

B

P P

B

Then: resample a value for the nodes in N conditioning on all the 
others, and write this to the current state at N

B

B

B

P P

B

Easy?

B
P
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P
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P

P

P P P
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Next: Metropolis Hastings

Theoretical framework: The goal is to approximate

Method: build a giant Markov chain T converging to 
target(x)

This construction is called a Metropolis-Hastings chain 
and Gibbs sampling is a special case of it.

target(x) = P(X = x|obs, params)

Why does it work?
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Asymptotic/stationary distribution:

Transition matrix:

statio(x) = lim
t→∞

P(Xt = x|X0 = ∗)

Next: Metropolis Hastings

Markov chain: 

Ts,s’ = P(Xt +1 = s’ | Xt = s)

... ...

Each state is a full 
copy of the latent 

variables!
B
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P

P
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P

P

... ...
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Metropolis Hastings

Why it’s huge: 29 x 29 matrix

T  = 

B

P

B

B

P

P

B

P

P

0.1 0.01
0.01
...

...

Way to large to represent in 
memory but we will compute 

entries on the fly
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Question

How to build T such that: 

First step: finding a better expression for statio(x)

target(x) = P(X = x|obs, params)

statio(x) = target(x)

statio(x) = lim
t→∞

P(Xt = x|X = 0 = ∗)
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P(Xt+2 = s′|Xt = s) =

(
∑

s′′

Ts,s′′Ts′′,s′

)

s,s′

=
(
T 2

)
s,s′

Tn

Finding a better expression for statio(x)

Ts,s’ = P(Xt +1 = s’ | Xt = s)One step transition:

Two steps transition:

n-steps transition:  

Note: this is a special case of an important principle:  
Chapman–Kolmogorov equation

s s’’ s’
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T∞ = lim
n→∞

Tn

Finding a better expression for statio(x)

Definition (‘infinite steps’ transition):

What (matrix-valued) equation should the infinite 
transition satisfy?
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T∞ = lim
n→∞

Tn

Finding a better expression for statio(x)

Definition (‘infinite steps’ transition):

T∞ = T∞T

What (matrix-valued) equation should the infinite 
transition satisfy?
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T∞ = lim
n→∞

Tn

T∞ =

π

Finding a better expression for statio(x)

Definition (‘infinite steps’ transition):

Hope: B

P

B

B
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B
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B

P

P

...

π

π
...

That would mean that no matter what state we use to initialize the sampler, the 
distribution over the n-th state converges to a distribution called the stationary 

distribution  π(x) = statio(x) = target(x)
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T∞ = lim
n→∞

Tn

T∞ =

π

π = πTπ(x) =
∑

y

π(y)Ty,x

Finding a better expression for statio(x)

Definition (‘infinite steps’ transition):

Hope: B

P

B

B

P

P

B

P

P

B

P

B

B

P

P

B

P

P

...

π

π
...

When this is the case (will see later the conditions): 

or
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target(x) =
∑

y

target(y)Ty,x

Building T such that statio(x) = target(x)

From previous result, want T such that:

Next: Let’s see if Gibbs satisfies this equation!

Definition: Let R denote the set of states reachable by the 
current Gibbs move 

E.g.: in previous Ising 
example,it has two 
elements
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P
B
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R
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target(x) =
∑

y

target(y)Ty,x

Building T such that statio(x) = target(x)

Goal: Let’s see if Gibbs satisfies this equation

First: Let’s find what is Ty,x
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R

(1)
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target(x) =
∑

y

target(y)Ty,x

Ty,x =
1[x, y ∈ R]target(x)∑
x′ 1[x′, y ∈ R]target(x′)

Building T such that statio(x) = target(x)

Goal: Let’s see if Gibbs satisfies this equation

First: Let’s find what is Ty,x

B
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B P

R

(1)
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target(x) =
∑

y

target(y)Ty,x

Ty,x =
1[x, y ∈ R]target(x)∑
x′ 1[x′, y ∈ R]target(x′)

Building T such that statio(x) = target(x)

Goal: Let’s see if Gibbs satisfies this equation

First: Let’s find what is Ty,x

B
B

B

B

P P

P
B B

B

B

B

P P

P
B

B P

R

(1)

Finally: plug-in (2) in (1) 
and check it works

(2)
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Gibbs is not always applicable

Example: non-conjugate prior; in which case even a 
single node has no analytic posterior expression

Generalization: instead of requiring T be proportional to 
the target distribution, use arbitrary proposal q and correct 
the discrepancy between q and the target distribution

Terminology: Metropolis-Hastings
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A(xt−1 → xprop) = min
{

1,
target(xprop)q(xt−1|xprop)
target(xt−1)q(xprop|xt−1)

}

Metropolis-Hastings meta-algorithm

Initialize x0 arbitrarily
F = 0; N = 0
For t = 1... S

1. Propose a new state xprop according to q( - | xt-1) 
2. Compute:

3. Set xt to xprop with probability A(xt-1 ➛ xprop), otherwise set 
xt to xt-1

4. F = F + f(xt),  N = N + 1
Return F/N 

Metropolis-Hastings( target(x), q(xnext|xcur), f(x) )

         ≈ E[f(X)] for X ∼ target
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target(x) =
∑

y

target(y)Ty,x

target(x)Tx,y = target(y)Ty,x

Why Metropolis-Hastings works

From previous result, want T such that:

Sufficient condition (by summing over y on both sides): 

This is called detailed balance or reversibility condition
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Why Metropolis-Hastings works

target(x)Tx,y = target(y)Ty,x

Goal: checking detailed balance for the MH kernel T

First: what is Tx,y ?  When x = y, the result trivially holds, so 
let’s assume that x ≠ y

When x ≠ y, Tx,y  is equal to the probability that 
(1) y is proposed by q(-|x) times 
(2) the probability that it is accepted:

Tx,y = q(y|x)A(x→ y)
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Why Metropolis-Hastings works

target(x)Tx,y = target(y)Ty,x

Final step: using the form of Tx,y for x ≠ y to check detailed 
balance for the MH kernel T

Tx,y = q(y|x)A(x→ y)

Goal:

Known:

A(xt−1 → xprop) = min
{

1,
target(xprop)q(xt−1|xprop)
target(xt−1)q(xprop|xt−1)

}
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Notes on Metropolis-Hastings

Critical: the target and proposal densities always appear as  
ratios, so if they are only known up to a normalization Z, the 
normalizations cancel out

A(xt−1 → xprop) = min
{

1,
target(xprop)q(xt−1|xprop)
target(xt−1)q(xprop|xt−1)

}

Practical note: should be computed in log space and 
exponentiated only after taking ratio (difference of logs)

Special cases:  when q is symmetric (e.g. isotropic normal), the 
q’s cancel out as well.   When q(-|xcur) is independent of xcur, it’s 
called an independence chain (still has dependence because of A) 
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T∞ = lim
n→∞

Tn

T∞ =

π

Useful theoretical results

Definition (‘infinite steps’ transition):

Hope: B

P

B

B

P

P

B

P

P

B

P

B

B

P

P

B

P

P

...

π

π
...

When does this limit make 
sense (when does it exists 

and is stochastic)?

When does the limit has this form?
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T =

Counter-example 1

0 1

1 0

Limit         not even defined!

Problem: a waltz between states

Definition: A state s (or chain) has period k if any return 
to state s must occur in multiples of k steps. The chain is 
aperiodic if one (all) states have period 1.

Easy to avoid: add epsilon self-transitions

T∞
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T =

T∞ = T

Counter-example 2

1/2 1/2 0
1/2 1/2 0
0 0 1

Exercise: the asymptotic distribution depends on the 
starting state.  In fact:

Problem: some pairs of states cannot reach each other

Definition: An irreducible chain is a chain where there is 
a path between each pair of states (for each x, y there is 
an integer n such that (Tn)x,y > 0)
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Are the MH and Gibbs kernels we 
have introduced earlier irreducible?

Example: is this irreducible?
B

B

B

B

P P

P

B B

B

B

B

P P

P

B

B P

R
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Are the MH and Gibbs kernels we 
have introduced earlier irreducible?

Example: is this irreducible?

Ty,x =
1[x, y ∈ R]target(x)∑
x′ 1[x′, y ∈ R]target(x′)
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B

P P
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B B

B

B

B

P P
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B P

R
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Are the MH and Gibbs kernels we 
have introduced earlier irreducible?

Example: is this irreducible?

Ty,x =
1[x, y ∈ R]target(x)∑
x′ 1[x′, y ∈ R]target(x′)

B

B

B

B

P P

P

B B

B

B

B

P P

P

B

B P

R

T =
9∑

k=1

αkT (k)

Solution 1: mixing kernels.  Suppose we have one Gibbs 
kernel for each variable T(1), ..., T(9).  Then the mixture of 
them is also reversible (by linearity)
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Tx,y =
∑

x1

· · ·
∑

x9

T (1)
x,x1

T (2)
x1,x2

· · · T (9)
x8,x′

Are the MH and Gibbs kernels we 
have introduced earlier irreducible?

T =
9∑

k=1

αkT (k)

Solution 1: mixing kernels.  Suppose we have one Gibbs 
kernel for each variable T(1), ..., T(9).  Then the mixture of 
them is also reversible (by linearity)

Solution 2: alternating kernels deterministically (ie. using the 
first, then second, etc). 

Often works better: shuffle then alternate
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Existence of π such that π = πT

Suppose: (still assuming discrete state space)
1. T is irreducible
2. T is aperiodic

Consequence: There is a unique probability distribution π such that 
π = πT

Proofs:  Consequence of Perron–Frobenius theorem (Tn is positive 
for n large enough, and π is then the eigenvector corresponding to 
the unique eigenvalue of highest modulus).  --- Note: can be used to 
debug samplers

More general arguments exist
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lim
n→∞

Tx,y = π(y)

Convergence theorem 1

Suppose: (still assuming discrete state space)
1. T is irreducible
2. T is aperiodic

Consequence: There is a unique probability distribution π such 
that π = πT ; moreover, for all x, 

i.e.:
T∞ =

π

π

π

...

n
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Proof: coupling argument
Idea: simulate a pair of chains (Xt, Yt) such that the 
marginal transitions are given by T: 

P(Xt =x’|Xt-1 =x, Yt-1 =y ) = Txx’

Joint distribution: simulate independent transitions if 
x ≠ y, and identical transitions if x =y.

t= 1 2 3 4

Each point is a 
possible configuration 

of latent variables
B

P

B

B

P

P

B

P

P

5

Xt

Yt
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Proof: coupling argument

Initial distributions: X0 ~ π and Y0  ~ arbitrary distribution

Note: Xt ~ π for all t since π = πT

Goal: showing that 

t= 1 2 3 4 5

Xt

Yt

lim
n→∞

∑

y

∣∣∣P(Xn = y)− P(Yn = y)
∣∣∣ = 0

Notation: the 
hitting time H 
where Xt=Yt 
for the first 

time.
e.g. H=3 here
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lim
n→∞

1
S

S∑

t=1

f(Xt) =
∑

x

f(x)π(x)

This is not exactly what we need though...

Recall: the goal is to compute an expectation (with respect 
to the posterior distribution), not to sample!

Connexion: the law of large numbers

Vanilla version: If Xt are iid π and f is finite, then

Misconception: to have the same conclusion hold for 
MCMC, we need to burn-in and/or thin the chain
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1
S/n

∑

t∈{n,2n,...,S}

f(Xt)

Burn-in and thinning

Burn-in: 

Thinning:

1
S − b

S∑

t=b

f(Xt)
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Burn-in and thinning are unnecessary 

The law of large numbers for Markov chains: If Xt is an 
irreducible Markov chain with stationary distribution π and f 
is finite, then

Note 1:  Aperiodicity not needed for this result
Note 2:  For small S, burning-in might improve the estimator, but might 
as well maximize during burn-in
Note 2:  Thinning to reduce auto-correlation is not a good idea and 
can be harmful (only reasons to do it is to save memory writes or memory---but 
most of the time only finite dimensional sufficient statistics need to be stored)

lim
n→∞

1
S

S∑

t=1

f(Xt) =
∑

x

f(x)π(x)
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