Statistical modeling with
stochastic processes

Alexandre Bouchard-Cote
Lecture 3, Monday March 7




Plan for today

= Exact inference review

= Approximate inference, part |: MCMC
= Gibbs
= Metropolis-Hastings
=  QOverview of theoretical results available
= Tricks of the trade
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Why do we know the marginals?
By definition!

What are the bare minimum conditions for A to be marginals
of Ys ? l.e. we want As(4) = P(Ys € A), etc
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Why do we know the marginals?
By definition!

What are the bare minimum conditions for 4 to be marginals
of Ys ? l.e. we want As(4) = P(Ys € A), etc

As; (A) = Ag, s, (A, R) [marginalization]
)\81,82 (A17 AZ) — )\82,81 (A27 A].) [perm]
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Why do we know the marginals?
By definition!

What are the bare minimum conditions for A to be marginals

of Y5 ? L
As; (A) = Ag, s, (A, R) [marginalization]
)\81 s S92 (A17 AQ) — )\82,81 (A27 Al) [perm]

Kolmogorov: if these consistency conditions hold for any
finite number of variables (not just a pair), then there is a
joint stochastic process with these marginals.




The Bayesian choice

Task: given an observed random variable Y, what value
should we guess for a related random variable X which is
unobserved?

Criterion: if we make a guess x and the real value is x*,
we pay a cost of L(x,x*) --- this is called a loss function.

In the Bayesian framework: you should answer

argmin_ E(L(z, X)|Y)




Directed Graphical Models

Example: X— Y— 7/

Interpretation: the collection of all distributions that can
be factorized as

p(x.y.z) = pi(x) p2(y|x) p3(z|y)

for some non-negative p; s such that for each w:

I pitviw) m(dv) =1




Undirected Graphical Models

Example: X = Y -m 7/

Interpretation: the collection of all distributions such
that their density that can be factorized as

px.yz) = fixy) L(0.2)

for some non-negative f;




Exact inference and dynamic programming

Suppose: parameters are known, so we condition on them
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Exact inference and dynamic programming

Next step: turning the directed model into an undirected one

X YbX/T\

‘Moralization’

Sy ¥




Exact inference and dynamic programming

Simplifying undirected models:
Yo yox } - o
)

] () = J(x, yo)




Exact inference and dynamic programming

Simplifications:




Exact inference and dynamic programming

Consequence of simplification: renormalization needed

Example: fi(x) = pi(x) } éﬁ(x)

L2001x) = p2(y|x)

1 2(x) = p2(yo|x)

POC=5lY =) =

Bayes rule: can interpret 7 ~ _ 41(%)f2(2)
dS P(Y:y()) /




Further simplifications

fi)
}{%(w) ) ﬁ 2(5)

Pointwise multlphcatlon

J2(x.) fl(X)fz(x )

AC T fixy) } Kf’()
“\ X
! @)

Marginalization




Efficient inference: elimination algorithm

Consequence: for chains, efficient computation of Z and

one-node or two-nodes marginals for tree-shaped
undirected graphical models

4 x 4 operations 4 x 4 operations

Much less operations than naive enumeration!
In general: if a chain has length 7"and N states, computing Z

takes 7" N? operations instead of N*

For tree-shaped models: same story!
For non-tree models: we need to figure out something else...




MCMC
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MCMC methods

What it does: Same as the elimination algorithm
(normalization and posterior), but not limited to trees.

Output: a list of samples, i.e. the model with values for
the hidden nodes filled in (imputed)




A bit of history

MC: Usually credited to Stanislaw Ulam, during the
Manhattan project.

MCMC: Metropolis, N.; Rosenbluth, A.W.; Rosenbluth,
M.N.: Teller, A.H.: Teller, E.

They ran their chain for 48 iterations on a computer called
MANIAC (it took five hours still)



http://en.wikipedia.org/wiki/Nicholas_Metropolis
http://en.wikipedia.org/wiki/Nicholas_Metropolis
http://en.wikipedia.org/wiki/Marshall_N._Rosenbluth
http://en.wikipedia.org/wiki/Marshall_N._Rosenbluth
http://en.wikipedia.org/wiki/Marshall_N._Rosenbluth
http://en.wikipedia.org/wiki/Marshall_N._Rosenbluth
http://en.wikipedia.org/wiki/Edward_Teller
http://en.wikipedia.org/wiki/Edward_Teller

MCMC methods: how does it work™?

Things to discuss:

= How to compute posterior expectations from these
samples (e.g. Bayes estimator)

= How to create the samples so that they are
approximately distributed according to the posterior?

= How to compute Z from these samples
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Computing the

Samples:

posterior

Monte Carlo estimator: for S sgmples, compute

S
f(X) ~ 5 D F(X9) <
1=1

~

In discrete models, fis generally
a vector of indicator functions on

variables and values e.g.

f1,3;B(X(3)) =1




MCMC methods: how does it work™?

Things to discuss: (note assume for now state is discrete)

= How to compute posterior expectations from these
samples (e.g. Bayes estimator)

= How to create the samples so that they are
approximately distributed according to the posterior?

= How to compute Z from these samples
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Let's start by an easy special
case: Naive Gibbs sampling

Idea: at each iteration, maintain a guess for all the hidden
nodes

Initialization: guess arbitrary values for the hidden nodes




Let's start by an easy special

case: Naive Gibbs sampling

Loop: pick one node (7,;) at random, erase the contents of the
guessed values in (7,/), and freeze the value of the other nodes

Then: resamp
others, and wr

e a value for the node (7,/) conditioning on all the
ite this to the current state at (7,/)




Better Gibbs samplers

Loop: pick a subset of nodes V' at random, erase the contents of
the guessed values in N, freeze the value of the nodes notin N

Then: resample a value for the nodes in NV conditioning on all the
others, and write this to the current state at N




Next: Metropolis Hastings

Why does it work?

Theoretical framework: The goal is to approximate

target(x) = P(X = x|obs, params)
Method: build a giant Markov chain T converging to
target(x)

This construction is called a Metropolis-Hastings chain
and Gibbs sampling is a special case of it.




Next: Metropolis Hastings

Markov chain:

-
Transition matrix:
TS,S’:P()(tJrl_ )(t:S)

-

[ Eachstateisafull g Asymptotic/stationary distribution:

copy of the latent Statlo( ) = lim P(X; = 2| Xy = %)
vanables| \_ t— 00 \/

L

\_
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Metropolis Hastings

Why it’s huge: 2° x 2° matrix
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Way to large to rgpresent in '33?33 33?33
memory but we will compute | o0& ooc
entries on the fly

J
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Question

How to build T such that:
statio(x) = target(x)

First step: finding a better expression for statio(x)

statio(x) = lim P(X; = x| X =0 = %)

{— 00

target(x) = P(X = x|obs, params)




Finding a better expression for statio(x)

One step transition: 7, =P(X;+1 =5 | Xi =)

Two steps transition:

IP)(XH—Q — S |Xt — 5 (Z Ts s”Ts” ,S’ )

s,s’

| | | > L )
LIS' Slv LIS' ’ - (T ) S,S/
n-steps transition: /"

Note: this is a special case of an important principle:
Chapman—Kolmogorov equation




Finding a better expression for statio(x)

Definition (‘infinite steps’ transition); 7™ = lim 7™

n—oo

What (matrix-valued) equation should the infinite
transition satisfy?




Finding a better expression for statio(x)

Definition (‘infinite steps’ transition); 7™ = lim 7™

n—oo

What (matrix-valued) equation should the infinite
transition satisfy?

1= =11




Finding a better expression for statio(x)

Definition (‘infinite steps’ transition); 7™ = lim 7™

Hope:

T =

T

T

T
T

n—oo

B-B—®
>-9-¢
PP

®O-®

D O
004

®O®

[

\.

That would mean that no matter what state we use to initialize the sampler, the
distribution over the n-th state converges to a distribution called the stationary

distribution 7(x) = statio(x) = target(x)

\
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Finding a better expression for statio(x)

Definition (‘infinite steps’ transition); 7™ = lim 7™

T, — OO

B ] B-B—®

Hope: s
P T o0 ¢
B-B—®

>4

E-E—E

T Pee

T =

i 7T _
When this is the case (will see later the conditions):

m(z) =) 7(y)Ty.q or m=ml




Building T such that statio(x) = target(x)
From previous result, want 7" such that:
target(x) = Z target(y)T), o
Y
Next: Let's see if Gibbs satisfies this equation!

Definition: Let R denote the set of states reachable by the

current Gibbs move

E.g.: In previous Ising
example,it has two
elements




Building T such that statio(x) = target(x)

Goal: Let's see if Gibbs satisfies this equation
target(x) = Ztarget(y)Ty,x (1)

First: Let's find what is 7,




Building T such that statio(x) = target(x)

Goal: Let's see if Gibbs satisfies this equation

target(x) = Ztarget(y)Tw (1)
First: Let's find what is T}
1|z, y € R|target(x)

T, , =
7 >, 1|2’y € R|target(x’)




Building T such that statio(x) = target(x)

Goal: Let's see if Gibbs satisfies this equation
target(x) = Ztarget(y)Ty,x (1)
First: Let's find what is T}
1|z, y € R|target(x)

T, . = 2
7 >, 1|2’y € R|target(x’) )

Finally: plug-in (2) in (1)
and check It works




Gibbs is not always applicable

Example: non-conjugate prior; in which case even a
single node has no analytic posterior expression

Generalization: instead of requiring 7" be proportional to
the target distribution, use arbitrary proposal ¢ and correct
the discrepancy between ¢ and the target distribution

Terminology: Metropolis-Hastings




Metropolis-Hastings meta-algorithm

Metropolis-Hastings( target(x), g(xnext|Xcur), f(x) )
Initialize xo arbitrarily
F=0;N=0
Fortr=1..§
1. Propose a new state xprop according to g( - | xs1)

2. Compute: target( o ‘ )
o) =i 1, )
target(xt—l)Q(Iprop|37t—1)

3. Set x; to xprop With probability 4(x:-1 > xprop), Otherwise set

x: 10 xr1
4.F=F+f(x;),N=N+1 (N$ SV for X ot a
Return F/N —— ~E[f(X)] for arge

Tuesday, March 8, 2011



Why Metropolis-Hastings works
From previous result, want 7" such that:

target(x Z target(y

Sufficient condition (by summing over y on both sides):
target(x)T1; ., = target(y)Ty »

This Is called detailed balance or reversibility condition




Why Metropolis-Hastings works

Goal: checking detailed balance for the MH kernel T
target(x)T, , = target(y)T}, »

First: whatis 7., ? When x = y, the result trivially holds, so
let's assume that x # y

When x # y, Ty, Is equal to the probability that
(1) v Is proposed by g(-|x) times
(2) the probability that it is accepted:

T:y = qlylz)Alx — y)




Why Metropolis-Hastings works

Final step: using the form of 7%, for x # y to check detailed
balance for the MH kernel T

Goal: target(z)T, , = target(y)7} »

Knhown:

A(Ti—1 — xpy :min{l,
(¢ prop) target(xt—1)q(@prop|Ti—1)

Tey = qylz) Az — y)




Notes on Metropolis-Hastings

Critical: the target and proposal densities always appear as
ratios, so If they are only known up to a normalization Z, the
normalizations cancel out

target(Tprop ) q(Te—1|Tprop) }

A(Ti_1 — Tpr = min q 1,
(-1 prop) { target(z:—1)q(Tprop|Tt—1)

Practical note: should be computed in log space and
exponentiated only after taking ratio (difference of logs)

Special cases: when g is symmetric (e.g. isotropic normal), the
g's cancel out as well. When g(-|xcur) IS Independent of xcyr, it's

called an independence chain (still has dependence because of A)
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Useful theoretical results

Definition (‘infinite steps’ transition); 7™ = lim 7™

Hope:

T =

n—oo

RNy

-

When does this limit make
sense (when does it exists
and is stochastic)?

\

-
N

[ When does the limit has this form? ]
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Counter-example 1

T _ 0 1
1 0

Limit 7°° not even defined!

Problem: a waltz between states

Definition: A state s (or chain) has period % if any return
to state s must occur in multiples of £ steps. The chain is
aperiodic if one (all) states have period 1.

Easy to avoid: add epsilon self-transitions




Counter-example 2

1/2 1/2
T — 1/2 1/2

0 0

Exercise: the asymptoti5 distribution depends on the
starting state. Infact: 7°° =T

Problem: some pairs of states cannot reach each other

Definition: An irreducible chain is a chain where there is
a path between each pair of states (for each x, y there is

an integer »n such that (77),., > 0)




Are the MH and Gibbs kernels we
have intfroduced earlier irreducible?

Example: is this irreducible?

B-B-B- B-B-B
bpe ok
r ®OE ®EH®
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Are the MH and Gibbs kernels we
have intfroduced earlier irreducible?

Example: is this irreducible?

1|z, y € R|target(r) ‘3’!303

B-B-PB
1Ty, = , , BB B0
> 1|2’y € Rltarget(z’) ] 43‘@‘@ c?‘@‘@
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Are the MH and Gibbs kernels we
have intfroduced earlier irreducible?

Example: is this irreducible?

1|z,y € R|target(x) ®-B-®- -B-B-@
Ty, = B0 B
¥ > 1|2’y € Rltarget(z’) ] ‘3‘009 ‘3&‘90@

Solution 1: mixing kernels. Suppose we have one Gibbs
kernel for each variable 7V, ..., T®. Then the mixture of

them is also reversible (by linearity)

9
1T = Z OékT(k)
k=1




Are the MH and Gibbs kernels we
have intfroduced earlier irreducible?

Solution 1: mixing kernels. Suppose we have one Gibbs
kernel for each variable 70V, ..., T®. Then the mixture of

them is also reversible (by linearity)
9

T = Z o, TF)
k=1

Solution 2: alternating kernels deterministically (ie. using the
first, then second, etc).

Z Z Tx(la):l ag)ccg S Tagg?x’

Often works better: shuffle then alternate




Existence of r such that - = zT

Suppose: (still assuming discrete state space)
1. Tisirreducible
2. T s aperiodic

Consequence: There is a unique probability distribution 7 such that
T =nl

Proofs: Consequence of Perron—Frobenius theorem (7" is positive
for n large enough, and x is then the eigenvector corresponding to
the unique eigenvalue of highest modulus). --- Note: can be used to
debug samplers

More general arguments exist
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Convergence theorem 1

Suppose: (still assuming discrete state space)
1. Tisirreducible
2. Tis aperiodic

Consequence: There is a unique probability distribution 7z such

that z = zT ; moreover, for all x,

lim Txrfy = 7(y)

n—aoo

T

l.e.:

T

T =
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Proof. coupling argument

ldea: simulate a pair of chains (X;, Y;) such that the

marginal transitions are given by 7~

P()(t :)C’|)(t—1 =X, Y1 :y) = Ty

Joint distribution: simulate independent transitions if

x # v, and identical transitions if x =y.

-

Each pointis a
possible configuration
of latent variables

B®-6-6
D O
Q-O-¢
ORGAG




Proof. coupling argument
Initial distributions: Xo ~ = and Y, ~ arbitrary distribution

Note: X;~ zforall since 7 = #T

Goal: showing that lim Z ’P(Xn =y) — P, =y)| =0
Y

n—aoao

4 )
® ® | Notation: the

o

:/: bd hitting time H
/.

o

o

3

Xo where X,=Y,
¢ for the first

time.
5 | eg. H=3 here




This is not exactly what we need though...

Recall: the goal is to compute an expectation (with respect
to the posterior distribution), not to sample!

Connexion: the law of large numbers

Vanilla version: If )G are iid = and f'is finite, then

lim —Zf (X)) =) f(x)n(x)

n—oo S

Misconception: to have the same conclusion hold for
MCMC, we need to burn-in and/or thin the chain




Burn-in:

Thinning:

Burn-in and thinning

1 S
o 2 (X
t=>b




Burn-in and thinning are unnecessary

The law of large numbers for Markov chains: If X; is an
irreducible Markov chain with stationary distribution = and
s finite, then

S
nh_)n;@ 5 Z = Zf(l‘)ﬂ' T

Note 1: Aperiodicity not needed for this result
Note 2: For small S, burning-in might improve the estimator, but might

as well maximize during burn-in
Note 2: Thinning to reduce auto-correlation is not a good idea and

can be harmful (only reasons to do it is to save memory writes or memory---but
most of the time only finite dimensional sufficient statistics need to be stored)
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