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Plan for today

 Exact inference review

 Approximate inference, part I:  MCMC
 Gibbs
 Metropolis-Hastings
 Overview of theoretical results available
 Tricks of the trade
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Review
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Why do we know the marginals? 
By definition!
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What are the bare minimum conditions for λ to be marginals 
of Ys ?  I.e. we want λs(A) = P(Ys ∈ A), etc

s1 s2

A
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Why do we know the marginals? 
By definition!
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What are the bare minimum conditions for λ to be marginals 
of Ys ?  I.e. we want λs(A) = P(Ys ∈ A), etc

s1 s2

A

λs1(A) = λs1,s2(A,R) [marginalization]
λs1,s2(A1, A2) = λs2,s1(A2, A1) [perm]
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Why do we know the marginals? 
By definition!

What are the bare minimum conditions for λ to be marginals 
of Ys ?

λs1(A) = λs1,s2(A,R) [marginalization]
λs1,s2(A1, A2) = λs2,s1(A2, A1) [perm]

Kolmogorov: if these consistency conditions hold for any 
finite number of variables (not just a pair), then there is a 
joint stochastic process with these marginals.
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The Bayesian choice

Task: given an observed random variable Y, what value 
should we guess for a related random variable X which is 
unobserved?

Criterion: if we make a guess x and the real value is x*, 
we pay a cost of L(x,x*) --- this is called a loss function.

In the Bayesian framework: you should answer

argminxE(L(x, X)|Y )
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Directed Graphical Models

Example:  

Interpretation: the collection of all distributions that can 
be factorized as

p(x,y,z) = p1(x)  p2(y|x)  p3(z|y)

for some non-negative pi s such that for each w:

∫ pi(v|w) m(dv) = 1

X Y Z
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Undirected Graphical Models

Example:  

Interpretation: the collection of all distributions such 
that their density that can be factorized as

p(x,y,z) = f1(x,y)  f2(y,z)

for some non-negative fi

X Y Z
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Exact inference and dynamic programming

y1

x1

y2

x2

y3

x3θ(c)

T(c)
π

c = 1,2

c = 1,2

Suppose: parameters are known, so we condition on them
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Exact inference and dynamic programming

Next step: turning the directed model into an undirected one

X Y

V
X Y

V
‘Moralization’
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Exact inference and dynamic programming

Simplifying undirected models:
...

... ...

... ...

... ...

...
Y0 = y0

f(x,y) f’(x)

f’(x) = f(x, y0)
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Exact inference and dynamic programming

Simplifications:
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P (X = x|Y = y0) =
f1(x)f ′

2(x)∑
x′ f1(x′)f ′

2(x′)

=
f1(x)f ′

2(x)
Z

Exact inference and dynamic programming

Consequence of simplification: renormalization needed

Example:

f2(y|x) = p2(y|x)

f1(x) = p1(x)

f’2(x) = p2(y0|x)

f1(x)

Bayes rule: can interpret Z 
as P(Y = y0)
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Further simplifications

... ...

...

... ...

...

f ’2(x,y) = f1(x) f2(x,y)

f1(x)
f2(x,y) f’2(x,y)

Pointwise multiplication

...

...

... ...

...

...

f(x,y)X

Y
f’(x)

f ′(x) =
∑

y

f(x, y)
Marginalization
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Efficient inference: elimination algorithm

Consequence: for chains, efficient computation of Z and 
one-node or two-nodes marginals for tree-shaped 
undirected graphical models

4 x 4 operations 4 x 4 operations

Much less operations than naive enumeration!
In general: if a chain has length T and N states, computing Z 
takes T N2 operations instead of NT

For tree-shaped models: same story!
For non-tree models: we need to figure out something else...
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MCMC
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MCMC methods

What it does: Same as the elimination algorithm 
(normalization and posterior), but not limited to trees.  

Output: a list of samples, i.e. the model with values for 
the hidden nodes filled in (imputed)

B
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P
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P
B
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P
B
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A bit of history

MC: Usually credited to Stanislaw Ulam, during the 
Manhattan project. 

MCMC: Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, 
M.N.; Teller, A.H.; Teller, E. 
They ran their chain for 48 iterations on a computer called 
MANIAC (it took five hours still)
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MCMC methods: how does it work?

Things to discuss: 

 How to compute posterior expectations from these 
samples (e.g. Bayes estimator)

 How to create the samples so that they are 
approximately distributed according to the posterior?

 How to compute Z from these samples
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Ef(X) ≈ 1
S

S∑

i=1

f(X(i))

Computing the posterior

B
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B

P
B

P P

P
B

Samples:

X1,1
X1,3

Monte Carlo estimator:  for S samples, compute

(1) (1)
X1,1

X1,3(3) (3)

In discrete models, f is generally 
a vector of indicator functions on 

variables and values e.g.
f1,3;B(X(3)) = 1
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MCMC methods: how does it work?

Things to discuss: (note assume for now state is discrete)

 How to compute posterior expectations from these 
samples (e.g. Bayes estimator)

 How to create the samples so that they are 
approximately distributed according to the posterior?

 How to compute Z from these samples

B
B

B

B
P

P P

P
P B

B

B

B
B

P P

P
B B

B

B

P
B

P P

P
B

...
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Let’s start by an easy special 
case: ‘Naive’ Gibbs sampling

Initialization: guess arbitrary values for the hidden nodes

B
B

B

B

P P

P
B

P

Idea: at each iteration, maintain a guess for all the hidden 
nodes
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Let’s start by an easy special 
case: ‘Naive’ Gibbs sampling

B
B

B

B

P P

P
B

P

Loop: pick one node (i,j)  at random, erase the contents of the 
guessed values in (i,j), and freeze the value of the other nodes

B
B

B

B

P P

P
B

Then: resample a value for the node (i,j) conditioning on all the 
others, and write this to the current state at (i,j)

B
B

B

B

P P

P
B

Easy!
B

B
B

B

B

P

P
B

B

P
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Better Gibbs samplers

B
B

B

B

P P

P
B

P

Loop: pick a subset of nodes N  at random, erase the contents of 
the guessed values in N, freeze the value of the nodes not in N

B

B

B

P P

B

Then: resample a value for the nodes in N conditioning on all the 
others, and write this to the current state at N

B

B

B

P P

B

Easy?

B
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P P P
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Next: Metropolis Hastings

Theoretical framework: The goal is to approximate

Method: build a giant Markov chain T converging to 
target(x)

This construction is called a Metropolis-Hastings chain 
and Gibbs sampling is a special case of it.

target(x) = P(X = x|obs, params)

Why does it work?
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Asymptotic/stationary distribution:

Transition matrix:

statio(x) = lim
t→∞

P(Xt = x|X0 = ∗)

Next: Metropolis Hastings

Markov chain: 

Ts,s’ = P(Xt +1 = s’ | Xt = s)

... ...

Each state is a full 
copy of the latent 

variables!
B
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P

... ...
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Metropolis Hastings

Why it’s huge: 29 x 29 matrix

T  = 

B

P

B

B

P

P

B

P

P

0.1 0.01
0.01
...

...

Way to large to represent in 
memory but we will compute 

entries on the fly
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Question

How to build T such that: 

First step: finding a better expression for statio(x)

target(x) = P(X = x|obs, params)

statio(x) = target(x)

statio(x) = lim
t→∞

P(Xt = x|X = 0 = ∗)
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P(Xt+2 = s′|Xt = s) =

(
∑

s′′

Ts,s′′Ts′′,s′

)

s,s′

=
(
T 2

)
s,s′

Tn

Finding a better expression for statio(x)

Ts,s’ = P(Xt +1 = s’ | Xt = s)One step transition:

Two steps transition:

n-steps transition:  

Note: this is a special case of an important principle:  
Chapman–Kolmogorov equation

s s’’ s’
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T∞ = lim
n→∞

Tn

Finding a better expression for statio(x)

Definition (‘infinite steps’ transition):

What (matrix-valued) equation should the infinite 
transition satisfy?
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T∞ = lim
n→∞

Tn

Finding a better expression for statio(x)

Definition (‘infinite steps’ transition):

T∞ = T∞T

What (matrix-valued) equation should the infinite 
transition satisfy?
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T∞ = lim
n→∞

Tn

T∞ =

π

Finding a better expression for statio(x)

Definition (‘infinite steps’ transition):

Hope: B

P

B

B

P

P
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P

P

B

P

B

B

P

P

B

P

P

...

π

π
...

That would mean that no matter what state we use to initialize the sampler, the 
distribution over the n-th state converges to a distribution called the stationary 

distribution  π(x) = statio(x) = target(x)
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T∞ = lim
n→∞

Tn

T∞ =

π

π = πTπ(x) =
∑

y

π(y)Ty,x

Finding a better expression for statio(x)

Definition (‘infinite steps’ transition):

Hope: B

P

B

B

P

P

B

P

P

B

P

B

B

P

P

B

P

P

...

π

π
...

When this is the case (will see later the conditions): 

or
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target(x) =
∑

y

target(y)Ty,x

Building T such that statio(x) = target(x)

From previous result, want T such that:

Next: Let’s see if Gibbs satisfies this equation!

Definition: Let R denote the set of states reachable by the 
current Gibbs move 

E.g.: in previous Ising 
example,it has two 
elements
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R
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target(x) =
∑

y

target(y)Ty,x

Building T such that statio(x) = target(x)

Goal: Let’s see if Gibbs satisfies this equation

First: Let’s find what is Ty,x
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R

(1)
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target(x) =
∑

y

target(y)Ty,x

Ty,x =
1[x, y ∈ R]target(x)∑
x′ 1[x′, y ∈ R]target(x′)

Building T such that statio(x) = target(x)

Goal: Let’s see if Gibbs satisfies this equation

First: Let’s find what is Ty,x

B
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B P

R

(1)
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target(x) =
∑

y

target(y)Ty,x

Ty,x =
1[x, y ∈ R]target(x)∑
x′ 1[x′, y ∈ R]target(x′)

Building T such that statio(x) = target(x)

Goal: Let’s see if Gibbs satisfies this equation

First: Let’s find what is Ty,x

B
B

B

B

P P

P
B B

B

B

B

P P

P
B

B P

R

(1)

Finally: plug-in (2) in (1) 
and check it works

(2)

34Tuesday, March 8, 2011



Gibbs is not always applicable

Example: non-conjugate prior; in which case even a 
single node has no analytic posterior expression

Generalization: instead of requiring T be proportional to 
the target distribution, use arbitrary proposal q and correct 
the discrepancy between q and the target distribution

Terminology: Metropolis-Hastings
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A(xt−1 → xprop) = min
{

1,
target(xprop)q(xt−1|xprop)
target(xt−1)q(xprop|xt−1)

}

Metropolis-Hastings meta-algorithm

Initialize x0 arbitrarily
F = 0; N = 0
For t = 1... S

1. Propose a new state xprop according to q( - | xt-1) 
2. Compute:

3. Set xt to xprop with probability A(xt-1 ➛ xprop), otherwise set 
xt to xt-1

4. F = F + f(xt),  N = N + 1
Return F/N 

Metropolis-Hastings( target(x), q(xnext|xcur), f(x) )

         ≈ E[f(X)] for X ∼ target
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target(x) =
∑

y

target(y)Ty,x

target(x)Tx,y = target(y)Ty,x

Why Metropolis-Hastings works

From previous result, want T such that:

Sufficient condition (by summing over y on both sides): 

This is called detailed balance or reversibility condition
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Why Metropolis-Hastings works

target(x)Tx,y = target(y)Ty,x

Goal: checking detailed balance for the MH kernel T

First: what is Tx,y ?  When x = y, the result trivially holds, so 
let’s assume that x ≠ y

When x ≠ y, Tx,y  is equal to the probability that 
(1) y is proposed by q(-|x) times 
(2) the probability that it is accepted:

Tx,y = q(y|x)A(x→ y)
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Why Metropolis-Hastings works

target(x)Tx,y = target(y)Ty,x

Final step: using the form of Tx,y for x ≠ y to check detailed 
balance for the MH kernel T

Tx,y = q(y|x)A(x→ y)

Goal:

Known:

A(xt−1 → xprop) = min
{

1,
target(xprop)q(xt−1|xprop)
target(xt−1)q(xprop|xt−1)

}
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Notes on Metropolis-Hastings

Critical: the target and proposal densities always appear as  
ratios, so if they are only known up to a normalization Z, the 
normalizations cancel out

A(xt−1 → xprop) = min
{

1,
target(xprop)q(xt−1|xprop)
target(xt−1)q(xprop|xt−1)

}

Practical note: should be computed in log space and 
exponentiated only after taking ratio (difference of logs)

Special cases:  when q is symmetric (e.g. isotropic normal), the 
q’s cancel out as well.   When q(-|xcur) is independent of xcur, it’s 
called an independence chain (still has dependence because of A) 
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T∞ = lim
n→∞

Tn

T∞ =

π

Useful theoretical results

Definition (‘infinite steps’ transition):

Hope: B

P

B

B

P

P

B

P

P

B

P

B

B

P

P

B

P

P

...

π

π
...

When does this limit make 
sense (when does it exists 

and is stochastic)?

When does the limit has this form?
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T =

Counter-example 1

0 1

1 0

Limit         not even defined!

Problem: a waltz between states

Definition: A state s (or chain) has period k if any return 
to state s must occur in multiples of k steps. The chain is 
aperiodic if one (all) states have period 1.

Easy to avoid: add epsilon self-transitions

T∞
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T =

T∞ = T

Counter-example 2

1/2 1/2 0
1/2 1/2 0
0 0 1

Exercise: the asymptotic distribution depends on the 
starting state.  In fact:

Problem: some pairs of states cannot reach each other

Definition: An irreducible chain is a chain where there is 
a path between each pair of states (for each x, y there is 
an integer n such that (Tn)x,y > 0)
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Are the MH and Gibbs kernels we 
have introduced earlier irreducible?

Example: is this irreducible?
B

B

B

B

P P

P

B B

B

B

B

P P

P

B

B P

R
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Are the MH and Gibbs kernels we 
have introduced earlier irreducible?

Example: is this irreducible?

Ty,x =
1[x, y ∈ R]target(x)∑
x′ 1[x′, y ∈ R]target(x′)
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B

P P
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B B
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P P
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B P

R

44Tuesday, March 8, 2011



Are the MH and Gibbs kernels we 
have introduced earlier irreducible?

Example: is this irreducible?

Ty,x =
1[x, y ∈ R]target(x)∑
x′ 1[x′, y ∈ R]target(x′)

B

B

B

B

P P

P

B B

B

B

B

P P

P

B

B P

R

T =
9∑

k=1

αkT (k)

Solution 1: mixing kernels.  Suppose we have one Gibbs 
kernel for each variable T(1), ..., T(9).  Then the mixture of 
them is also reversible (by linearity)
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Tx,y =
∑

x1

· · ·
∑

x9

T (1)
x,x1

T (2)
x1,x2

· · · T (9)
x8,x′

Are the MH and Gibbs kernels we 
have introduced earlier irreducible?

T =
9∑

k=1

αkT (k)

Solution 1: mixing kernels.  Suppose we have one Gibbs 
kernel for each variable T(1), ..., T(9).  Then the mixture of 
them is also reversible (by linearity)

Solution 2: alternating kernels deterministically (ie. using the 
first, then second, etc). 

Often works better: shuffle then alternate
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Existence of π such that π = πT

Suppose: (still assuming discrete state space)
1. T is irreducible
2. T is aperiodic

Consequence: There is a unique probability distribution π such that 
π = πT

Proofs:  Consequence of Perron–Frobenius theorem (Tn is positive 
for n large enough, and π is then the eigenvector corresponding to 
the unique eigenvalue of highest modulus).  --- Note: can be used to 
debug samplers

More general arguments exist
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lim
n→∞

Tx,y = π(y)

Convergence theorem 1

Suppose: (still assuming discrete state space)
1. T is irreducible
2. T is aperiodic

Consequence: There is a unique probability distribution π such 
that π = πT ; moreover, for all x, 

i.e.:
T∞ =

π

π

π

...

n
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Proof: coupling argument
Idea: simulate a pair of chains (Xt, Yt) such that the 
marginal transitions are given by T: 

P(Xt =x’|Xt-1 =x, Yt-1 =y ) = Txx’

Joint distribution: simulate independent transitions if 
x ≠ y, and identical transitions if x =y.

t= 1 2 3 4

Each point is a 
possible configuration 

of latent variables
B

P

B

B

P

P

B

P

P

5

Xt

Yt
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Proof: coupling argument

Initial distributions: X0 ~ π and Y0  ~ arbitrary distribution

Note: Xt ~ π for all t since π = πT

Goal: showing that 

t= 1 2 3 4 5

Xt

Yt

lim
n→∞

∑

y

∣∣∣P(Xn = y)− P(Yn = y)
∣∣∣ = 0

Notation: the 
hitting time H 
where Xt=Yt 
for the first 

time.
e.g. H=3 here
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lim
n→∞

1
S

S∑

t=1

f(Xt) =
∑

x

f(x)π(x)

This is not exactly what we need though...

Recall: the goal is to compute an expectation (with respect 
to the posterior distribution), not to sample!

Connexion: the law of large numbers

Vanilla version: If Xt are iid π and f is finite, then

Misconception: to have the same conclusion hold for 
MCMC, we need to burn-in and/or thin the chain
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1
S/n

∑

t∈{n,2n,...,S}

f(Xt)

Burn-in and thinning

Burn-in: 

Thinning:

1
S − b

S∑

t=b

f(Xt)
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Burn-in and thinning are unnecessary 

The law of large numbers for Markov chains: If Xt is an 
irreducible Markov chain with stationary distribution π and f 
is finite, then

Note 1:  Aperiodicity not needed for this result
Note 2:  For small S, burning-in might improve the estimator, but might 
as well maximize during burn-in
Note 2:  Thinning to reduce auto-correlation is not a good idea and 
can be harmful (only reasons to do it is to save memory writes or memory---but 
most of the time only finite dimensional sufficient statistics need to be stored)

lim
n→∞

1
S

S∑

t=1

f(Xt) =
∑

x

f(x)π(x)
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