
Statistical modeling with
stochastic processes

Alexandre Bouchard-Côté
Lecture 4, Monday March 8

Wednesday, March 9, 2011

Program for today

 Wrapping up MCMC
 Auxiliary variables and collapsing
 Common errors
 Annealing and tempering
 Infinite spaces

 Approximate inference, Part 2: Variational
 Examples: Mean field and Belief propagation
 Theoretical framework

Wednesday, March 9, 2011

Review

Wednesday, March 9, 2011

Question

How to build T such that:

First step: finding a better expression for statio(x)

target(x) = P(X = x|obs, params)

statio(x) = target(x)

statio(x) = lim
t→∞

P(Xt = x|X = 0 = ∗)

Wednesday, March 9, 2011

T∞ = lim
n→∞

Tn

T∞ =

π

Finding a better expression for statio(x)

Definition (‘infinite steps’ transition):

Hope: B

P

B

B

P

P

B

P

P

B

P

B

B

P

P

B

P

P

...

π

π
...

That would mean that no matter what state we use to initialize the sampler, the
distribution over the n-th state converges to a distribution called the stationary

distribution π(x) = statio(x) = target(x)
Wednesday, March 9, 2011

target(x) =
∑

y

target(y)Ty,x

Building T such that statio(x) = target(x)

Goal: Let’s see if Gibbs satisfies this equation

First: Let’s find what is Ty,x

B
B

B

B

P P

P
B B

B

B

B

P P

P
B

B P

R

(1)

Wednesday, March 9, 2011

target(x) =
∑

y

target(y)Ty,x

Ty,x =
1[x, y ∈ R]target(x)∑
x′ 1[x′, y ∈ R]target(x′)

Building T such that statio(x) = target(x)

Goal: Let’s see if Gibbs satisfies this equation

First: Let’s find what is Ty,x

B
B

B

B

P P

P
B B

B

B

B

P P

P
B

B P

R

(1)

Wednesday, March 9, 2011

target(x) =
∑

y

target(y)Ty,x

Ty,x =
1[x, y ∈ R]target(x)∑
x′ 1[x′, y ∈ R]target(x′)

Building T such that statio(x) = target(x)

Goal: Let’s see if Gibbs satisfies this equation

First: Let’s find what is Ty,x

B
B

B

B

P P

P
B B

B

B

B

P P

P
B

B P

R

(1)

Finally: plug-in (2) in (1)
and check it works

(2)

Wednesday, March 9, 2011

target(x) =
∑

y

target(y)Ty,x

target(x)Tx,y = target(y)Ty,x

Why Metropolis-Hastings works

From previous result, want T such that:

Sufficient condition (by summing over y on both sides):

This is called detailed balance or reversibility condition

Wednesday, March 9, 2011

Existence of π such that π = πT

Suppose: (still assuming discrete state space)
1. T is irreducible
2. T is aperiodic

Consequence: There is a unique probability distribution π such that
π = πT

Proofs: Consequence of Perron–Frobenius theorem (Tn is positive
for n large enough, and π is then the eigenvector corresponding to
the unique eigenvalue of highest modulus). --- Note: can be used to
debug samplers

More general arguments exist
Wednesday, March 9, 2011

lim
n→∞

Tx,y = π(y)

Convergence theorem 1

Suppose: (still assuming discrete state space)
1. T is irreducible
2. T is aperiodic

Consequence: There is a unique probability distribution π such
that π = πT ; moreover, for all x,

i.e.:
T∞ =

π

π

π

...

n

Wednesday, March 9, 2011

Proof: coupling argument

Initial distributions: X0 ~ π and Y0 ~ arbitrary distribution

Note: Xt ~ π for all t since π = πT

Goal: showing that

t= 1 2 3 4 5

Xt

Yt

lim
n→∞

∑

y

∣∣∣P(Xn = y)− P(Yn = y)
∣∣∣ = 0

Notation: the
hitting time H
where Xt=Yt
for the first

time.
e.g. H=3 here

Wednesday, March 9, 2011

LLN for Markov chains

The law of large numbers for Markov chains: If Xt is an
irreducible Markov chain with stationary distribution π and f
is finite, then

Note 1: Aperiodicity not needed for this result
Note 2: For small S, burning-in might improve the estimator, but might
as well maximize during burn-in
Note 2: Thinning to reduce auto-correlation is not a good idea and
can be harmful (only reasons to do it is to save memory writes or memory---but
most of the time only finite dimensional sufficient statistics need to be stored)

lim
n→∞

1
S

S∑

t=1

f(Xt) =
∑

x

f(x)π(x)

Wednesday, March 9, 2011

Wrapping-up MCMC

Wednesday, March 9, 2011

Terminology

Collapsed sampler: analytically marginalize some of
the variables, and run MCMC on the reduced state
space (makes sampling harder/more expensive, but
improves the quality of the samples)

Auxiliary variable: augment the state space to
facilitate sampling

Example: slice sampling

Wednesday, March 9, 2011

Slice sampling

Goal: sampling from a r.v. X with density f(x)/Z, where Z
is difficult to compute

Intuition: use a MCMC defined on the 2D space defined
as the graph of the density

Moves: sample uniformly vertically or horizontally

1.4. SLICE SAMPLING 27

1.4 Slice Sampling

We have seen that one of the difficulties with the Metropolis algorithm is the sensitivity to step
size. If this is too small the result is slow decorrelation due to random walk behaviour while if
it is too large the result is inefficiency due to a high rejection rate. The technique of slice sampling
provides an adaptive step size which is automatically adjusted to match the characteristics of the
distribution. Again it requires that we be able to evaluate the unnormalized distribution .

Slice sampling involves augmenting with an additional variable and then drawing samples
from the joint space. We shall see another example of this approach when we discuss hybrid
Monte Carlo in Section ??. As with rejection sampling, the goal is to sample uniformly from the
volume under the surface defined by , in other words to sample from the distribution given
by

if

otherwise

where . The marginal distribution over is given by

and so we can sample from by sampling from and then ignoring the values. This
can be achieved by alternately sampling and . Given the value of we evaluate and then
sample uniformly in the range , which is straightforward. Then we fix and sample

uniformly from the ‘slice’ through the distribution defined by . This is illustrated
in Figure ??(a).

x
(a)

u

x
()!

p x()~

x

xmin xmax

(b)

u

x
()!

p x()~

Figure 1.17: Illustration of slice sampling. (a) For a given value , a value of is chosen uniformly
in the region , which defines a ‘slice’ through the distribution, shown by the solid
horizontal lines. (b) Since sampling directly from a slice is infeasible, a new sample of is drawn
from a region which contains the previous value .

In practice it can be difficult to sample directly from a slice through the distribution and so
instead we define a sampling scheme which leaves the uniform distribution under invariant,
which can be achieved by ensuring that detailed balance is satisfied. Here we consider the case of
a univariate .

Suppose the current value of is denoted and that we have obtained a corresponding
sample . The next value of is sampled uniformly from a region which contains

Current state

Wednesday, March 9, 2011

Slice sampling

Goal: sampling from a r.v. X with density f(x)/Z, where Z
is difficult to compute

General auxiliary variable construction: adding a new
random variable U with the following graphical model
does not change the marginal distribution of X, no matter
what is the conditional density g of U | X

X

U

X ~ f(x)/Z

U | X ~ g(u | X)
Wednesday, March 9, 2011

Slice sampler

X

U

X ~ f(x)/Z

U | X ~ Uni[0, f(X)]

1.4. SLICE SAMPLING 27

1.4 Slice Sampling

We have seen that one of the difficulties with the Metropolis algorithm is the sensitivity to step
size. If this is too small the result is slow decorrelation due to random walk behaviour while if
it is too large the result is inefficiency due to a high rejection rate. The technique of slice sampling
provides an adaptive step size which is automatically adjusted to match the characteristics of the
distribution. Again it requires that we be able to evaluate the unnormalized distribution .

Slice sampling involves augmenting with an additional variable and then drawing samples
from the joint space. We shall see another example of this approach when we discuss hybrid
Monte Carlo in Section ??. As with rejection sampling, the goal is to sample uniformly from the
volume under the surface defined by , in other words to sample from the distribution given
by

if

otherwise

where . The marginal distribution over is given by

and so we can sample from by sampling from and then ignoring the values. This
can be achieved by alternately sampling and . Given the value of we evaluate and then
sample uniformly in the range , which is straightforward. Then we fix and sample

uniformly from the ‘slice’ through the distribution defined by . This is illustrated
in Figure ??(a).

x
(a)

u

x
()!

p x()~

x

xmin xmax

(b)

u

x
()!

p x()~

Figure 1.17: Illustration of slice sampling. (a) For a given value , a value of is chosen uniformly
in the region , which defines a ‘slice’ through the distribution, shown by the solid
horizontal lines. (b) Since sampling directly from a slice is infeasible, a new sample of is drawn
from a region which contains the previous value .

In practice it can be difficult to sample directly from a slice through the distribution and so
instead we define a sampling scheme which leaves the uniform distribution under invariant,
which can be achieved by ensuring that detailed balance is satisfied. Here we consider the case of
a univariate .

Suppose the current value of is denoted and that we have obtained a corresponding
sample . The next value of is sampled uniformly from a region which contains

Vertical move: U | X ~ Uni[0, f(X)]

Horizontal move: X | U ~ Uni{x : f(x) ≥ U}

Note: Easier-to-compute alternatives to the horizontal move exist

Wednesday, March 9, 2011

Stopping criteria

Good: bound on the number of samples needed, or exact
(perfect) sampling techniques

Bad (but somewhat useful): checking if the sequence of partial
MC averages are approximately Cauchy; running independent,
over-dispersed chains to check if the MC averages are close

Ugly: when the task is to compute a MC sum, heuristics based
on staring at traceplots (value of f(Xt) as a function of t),
autocorrelation, and spectral density are misguided (see
previous slide on LLN for Markov chains). Especially ugly when
the heuristic is complicated to implement.

Wednesday, March 9, 2011

Perfect sampling

Idea 1: view MCMC algorithm as a deterministic maps Tv
taking the current state x and an idd random uniform u:
Tv(x,u). The variable v selects the kernel and is also iid uni

Idea 2: think backwards and generate an infinite sequence
of past u,v

Tv0(-,u0)Tv-1(-,u-1)Tv-2(-,u-2)Tv-4(-,u-3)

Wednesday, March 9, 2011

Perfect sampling

Idea 3: using the known u,v, find the possible states we can
end up to in say 4 steps. Think about it as doing coupling,
but instead of only 2 starting point, we consider all starting
points simultaneously

Tv0(-,u0)Tv-1(-,u-1)Tv-2(-,u-2)Tv-4(-,u-3)

t= 1 2 3 4
Wednesday, March 9, 2011

Perfect sampling

Idea 4: it that didn’t rule out all the possibles states at time 0,
look further back in time to rule out more paths (using same
randomness) until there is only one state at time zero.
The one state left is exactly distributed according to π !

Tv0(-,u0)Tv-1(-,u-1)Tv-2(-,u-2)Tv-4(-,u-3)

t= 1 2 3 4
Wednesday, March 9, 2011

Perfect sampling

In practice: too expensive to keep track of all states.

Solution: a partial order on the states such that
Xt ≤ Yt ⇒ Xt+1 ≤ Yt+1

More precisely, such that for any fixed u,v:
x ≤ y ⇒ Tv(x,u) ≤ Tv(y,u)

Consequence: only need to keep track of maximal and
minimal elements

Wednesday, March 9, 2011

Debugging MCMC algorithms

Important: Randomized algorithms are hard to implement

Test all small inputs: instead of a few big inputs. Either run the chain
for a long time, or compute eigenvector explicitly and compare to true
posterior.

Use synthetic data: how close do you get to generating parameters?
Is it improving when you generate more data?

Is the posterior calibrated? E.g. for binary variable, construct a
histogram of % correct as a function of posterior of the prediction.
There should be a linear trend.

Trick: fix random seeds to facilitate replication of bugs
Wednesday, March 9, 2011

A(xt−1 → xprop) = min
{

1,
target(xt−1)q(xprop|xt−1)
target(xprop)q(xt−1|xprop)

}

Find the potential bugs

Loop....
1. Propose a new state xprop according to q(x | xt-1)
2. Compute:

3. Generate a Unif[0,1] number u
.... while u > A(xt-1 ➛ xprop)
Set xt to xprop

for t = 1 .. T
Pick a kernel q = qα, α ~ M(xt-1)

Wednesday, March 9, 2011

A(xt−1 → xprop) = min
{

1,
target(xt−1)q(xprop|xt−1)
target(xprop)q(xt−1|xprop)

}

Find the potential bugs

Loop....
1. Propose a new state xprop according to q(x | xt-1)
2. Compute:

3. Generate a Unif[0,1] number u
.... while u > A(xt-1 ➛ xprop)
Set xt to xprop

- Ratio is upside down !
- Mixing of kernels
distribution should not
depend on x
- No while loop !
(c.f. rejection sampling)

for t = 1 .. T
Pick a kernel q = qα, α ~ M(xt-1)

Wednesday, March 9, 2011

Find the potential bug

X Y Z

SX, SY, SZ = 0
NX, NY, NZ = 0
for t = 1 .. T

if t is Odd
(X,Y) ~ Block Gibbs
SX = SX + X ; NX = SX +1
SY = SY + Y ; NY = SY +1

else
[do the same for (Y, Z)

return SX/NX, SY/NY, SZ/NZ

Binary r.v.s

Wednesday, March 9, 2011

Find the potential bug

X Y Z

SX, SY, SZ = 0
NX, NY, NZ = 0
for t = 1 .. T

if t is Odd
(X,Y) ~ Block Gibbs
SX = SX + X ; NX = SX +1
SY = SY + Y ; NY = SY +1

else
[do the same for (Y, Z)

return SX/NX, SY/NY, SZ/NZ

Binary r.v.s

The partial sum SY/NY gets
updated more often (it’s ok

to update random
variables different numbers

of times, but all partial
sums need to be updated
at each iteration---even
when the corresponding

r.v. doesn’t change)

Wednesday, March 9, 2011

More on the previous bug

In Gibbs sampling, we are updating only a small number of
variables, it seems silly to update everything...

When there is no overlap between the sampled blocks, and
every block is asymptotically sampled the same number of
times, can update only what changed

Otherwise, can use a delayed update datastructure (keep
track of the last MCMC iteration each variable/coordinate is
updated, and when it gets updated again, add delta time
multiplied by last value.

Wednesday, March 9, 2011

Other heuristics

Simulated Annealing: exponentiation of the target
distribution

0.5 1 1.5 2 2.5

1

2

3

0.5 1 1.5 2 2.5

1

2

3

0.5 1 1.5 2 2.5

500

1000

Room temperature:
P(X=x)=f(x)

Cold (why?):
P(X=x)=f(x)10

Hot (why?):
P(X=x)=f(x)0.3

Wednesday, March 9, 2011

Other heuristics

Simulated Annealing: exponentiation of the target
distribution

0.5 1 1.5 2 2.5

1

2

3

0.5 1 1.5 2 2.5

1

2

3

0.5 1 1.5 2 2.5

500

1000

Room temperature:
P(X=x)=f(x)

Cold (why?):
P(X=x)=f(x)10

Hot (why?):
P(X=x)=f(x)0.3

To search a
maximum (MAP
configuration)

Wednesday, March 9, 2011

Other heuristics

Simulated Annealing: exponentiation of the target
distribution

0.5 1 1.5 2 2.5

1

2

3

0.5 1 1.5 2 2.5

1

2

3

0.5 1 1.5 2 2.5

500

1000

Room temperature:
P(X=x)=f(x)

Cold (why?):
P(X=x)=f(x)10

Hot (why?):
P(X=x)=f(x)0.3

To search a
maximum (MAP
configuration)

To make it easier
to jump from one
mode to the other

Wednesday, March 9, 2011

Other heuristics

Tempering: expend the state space to one independent extra
chain, with higher temperature. States x = (x(1), x(2))

0.5 1 1.5 2 2.5

1

2

3

0.5 1 1.5 2 2.5

1

2

3

Main chain at room temp.
P(X= x(1))=f(x(1))

Hot copy
P(X= x(2))=f(x(2))0.3

Swap move: introduce a proposal distribution that swaps
the current states in the two chains.

MH ratio: P(xprop)
P(xt−1)

=
f(x(2))

(
f(x(1))

)0.3

f(x(1))
(
f(x(2))

)0.3 =
(
f(x(2))

)0.7

(
f(x(1))

)0.7

Wednesday, March 9, 2011

Other heuristics

Tempering: general version is a chain of chains

x = (x(1), x(2), x(3), ..., x(K))

of increasing temperatures.

Moves: swaps between each pair of chain (ratio has the same
form but with different exponents)

Wednesday, March 9, 2011

Countably infinite chain

Danger: even when the chain is irreducible, in infinite
state spaces, there is a risk that the chain never comes
back to its initial point

Example: ‘A drunk man will eventually find his way home,
but a drunk bird may get lost forever’

Formalization of this joke...

Wednesday, March 9, 2011

Consequences on the asymptotic theory

All the the theory is salvaged if we assume positive
recurrence

I.e., we have our theorem on existence of stationary
distribution, convergence of Xt to the stationary distribution,
and convergence of Monte Carlo averages)

Wednesday, March 9, 2011

Continuous state space

Idea: Assume a base measure ν and use the same
definition as before, but for set A with ν(A) > 0.

Example (Harris recurrence): For all A with ν(A) > 0, the
set A is visited infinitely often with probability one

For most samplers theory goes through easily (only need to
compute an extra Jacobian).

One useful trick not needed in discrete spaces:
Reversible Jump MCMC

Wednesday, March 9, 2011

Reversible Jump MCMC

Goal: sample a continuous space with unknown number
of dimensions. E.g.: model selection--not sure if we
should use a model with one or two parameters.

Problem:

State 1 State 2

θ1

θ2

θ1’

Jacobian is not diffeomorphic

Wednesday, March 9, 2011

Reversible Jump MCMC

Solution: introduce iid auxiliary variables u to make each
state of the same dimensionality (don’t actually need to
represent them across iterations)

State 1 State 2

θ1

θ2

θ1’

u

Wednesday, March 9, 2011

Variational inference

Wednesday, March 9, 2011

Road map

Hard probabilistic
inference problems

Deterministic
algorithms

Probabilistic inference as
an optimization problem

B
B

B

B

P P

P
B

Ptarget(x) = P(X = x|obs, params)

λs1(A) = λs1,s2(A,R) [marginalization]

λs1,s2(A1, A2) = λs2,s1(A2, A1)

1

2 3

Wednesday, March 9, 2011

Quick review of exponential family

and [9, 10] for computing the permanent of a matrix—we are not aware of a general treatment of
variational inference in combinatorial spaces.

There has been work on applying variational algorithms to the problem of maximization over combi-
natorial spaces [11, 12, 13, 14], but maximization over combinatorial spaces is rather different than
summation. For example, in the bipartite matching example considered in both [13] and this paper,
there is a known polynomial algorithm for maximization, but not for summation. Our approach
is also related to agreement-based learning [15, 16], although agreement-based learning is defined
within the context of unsupervised learning using EM, while our framework is agnostic with respect
to parameter estimation.

The paper is organized as follows: in Section 2 we present the measure factorization framework; in
Section 3 we show examples of this framework applied to various combinatorial inference problems;
and in Section 4 we present empirical results.

2 Variational measure factorization

In this section, we present the variational measure factorization framework. At a high level, the first
step is to construct an equivalent but more convenient exponential family. This exponential family
will allow us to transform variational algorithms over graphical models into approximation algo-
rithms over combinatorial spaces. We first describe the techniques needed to do this transformation
in the case of a specific variational inference algorithm—loopy belief propagation—and then discuss
mean-field and tree-reweighted approximations.

To make the exposition more concrete, we use the running example of approximating the value and
gradient of the log-partition function of a Bipartite Matching model (BM) over KN,N , a well-known
#P problem [17]. Unless we mention otherwise, we will consider bipartite perfect matchings; non-
bipartite and non-perfect matchings are discussed in Section 3.1. The reader should keep in mind,
however, that our framework is applicable to a much broader class of combinatorial objects. We
develop several other examples in Section 3 and in Appendix B.

2.1 Setup

Since we are dealing with discrete-valued random variables X , we can assume without loss of
generality that the probability distribution for which we want to compute the partition function and
moments is a member of a regular exponential family with canonical parameters θ ∈ RJ :

P(X ∈ B) =
∑

x∈B

exp{〈φ(x), θ〉 −A(θ)}ν(x), A(θ) = log
∑

x∈X

exp{〈φ(x), θ〉}ν(x), (1)

for a J-dimensional sufficient statistic φ and base measure ν over F = 2X , both of which are
assumed (again, without loss of generality) to be indicator functions : φj , ν : X → {0, 1}. Here
X is a superset of both C and all of the Cis. The link between this setup and the general problem
of computing

∑
x∈C f(x) is the base measure ν, which is set to the indicator function over C:

ν(x) = 1[x ∈ C], where 1[·] is equal to one if its argument holds true, and zero otherwise.

The goal is to approximate A(θ) and ∇A(θ) (recall that the j-th coordinate of the gradient, ∇jA, is
equal to the expectation of the sufficient statistic φj under the exponential family with base measure
ν [5]). We want to exploit situations where the base measure can be written as a product of I
measures ν(x) =

∏I
i=1 νi(x) such that each factor νi : X → {0, 1} induces a super-partition

function assumed to be tractable: Ai(θ) = log
∑

x∈X exp{〈φ(x),θ〉}νi(x). This computation is
typically done using dynamic programming (DP). We also assume that the gradient of the super-
partition functions is tractable, which is typical for DP formulations.

In the case of BM, the space X is a product of N2 binary alignment variables, x =
x1,1, x1,2, . . . , xN,N . In the Standard Bipartite Matching formulation (which we denote by SBM),
the sufficient statistic takes the form φj(x) = xm,n. The measure factorization we use to enforce
the matching property is ν = ν1ν2, where:

ν1(x) =
N∏

m=1

1[
N∑

n=1

xm,n ≤ 1], ν2(x) =
N∏

n=1

1[
N∑

m=1

xm,n ≤ 1]. (2)

2

and [9, 10] for computing the permanent of a matrix—we are not aware of a general treatment of
variational inference in combinatorial spaces.

There has been work on applying variational algorithms to the problem of maximization over combi-
natorial spaces [11, 12, 13, 14], but maximization over combinatorial spaces is rather different than
summation. For example, in the bipartite matching example considered in both [13] and this paper,
there is a known polynomial algorithm for maximization, but not for summation. Our approach
is also related to agreement-based learning [15, 16], although agreement-based learning is defined
within the context of unsupervised learning using EM, while our framework is agnostic with respect
to parameter estimation.

The paper is organized as follows: in Section 2 we present the measure factorization framework; in
Section 3 we show examples of this framework applied to various combinatorial inference problems;
and in Section 4 we present empirical results.

2 Variational measure factorization

In this section, we present the variational measure factorization framework. At a high level, the first
step is to construct an equivalent but more convenient exponential family. This exponential family
will allow us to transform variational algorithms over graphical models into approximation algo-
rithms over combinatorial spaces. We first describe the techniques needed to do this transformation
in the case of a specific variational inference algorithm—loopy belief propagation—and then discuss
mean-field and tree-reweighted approximations.

To make the exposition more concrete, we use the running example of approximating the value and
gradient of the log-partition function of a Bipartite Matching model (BM) over KN,N , a well-known
#P problem [17]. Unless we mention otherwise, we will consider bipartite perfect matchings; non-
bipartite and non-perfect matchings are discussed in Section 3.1. The reader should keep in mind,
however, that our framework is applicable to a much broader class of combinatorial objects. We
develop several other examples in Section 3 and in Appendix B.

2.1 Setup

Since we are dealing with discrete-valued random variables X , we can assume without loss of
generality that the probability distribution for which we want to compute the partition function and
moments is a member of a regular exponential family with canonical parameters θ ∈ RJ :

P(X ∈ B) =
∑

x∈B

exp{〈φ(x), θ〉 −A(θ)}ν(x), A(θ) = log
∑

x∈X

exp{〈φ(x), θ〉}ν(x), (1)

for a J-dimensional sufficient statistic φ and base measure ν over F = 2X , both of which are
assumed (again, without loss of generality) to be indicator functions : φj , ν : X → {0, 1}. Here
X is a superset of both C and all of the Cis. The link between this setup and the general problem
of computing

∑
x∈C f(x) is the base measure ν, which is set to the indicator function over C:

ν(x) = 1[x ∈ C], where 1[·] is equal to one if its argument holds true, and zero otherwise.

The goal is to approximate A(θ) and ∇A(θ) (recall that the j-th coordinate of the gradient, ∇jA, is
equal to the expectation of the sufficient statistic φj under the exponential family with base measure
ν [5]). We want to exploit situations where the base measure can be written as a product of I
measures ν(x) =

∏I
i=1 νi(x) such that each factor νi : X → {0, 1} induces a super-partition

function assumed to be tractable: Ai(θ) = log
∑

x∈X exp{〈φ(x),θ〉}νi(x). This computation is
typically done using dynamic programming (DP). We also assume that the gradient of the super-
partition functions is tractable, which is typical for DP formulations.

In the case of BM, the space X is a product of N2 binary alignment variables, x =
x1,1, x1,2, . . . , xN,N . In the Standard Bipartite Matching formulation (which we denote by SBM),
the sufficient statistic takes the form φj(x) = xm,n. The measure factorization we use to enforce
the matching property is ν = ν1ν2, where:

ν1(x) =
N∏

m=1

1[
N∑

n=1

xm,n ≤ 1], ν2(x) =
N∏

n=1

1[
N∑

m=1

xm,n ≤ 1]. (2)

2

Sufficient statistic Parameter

Log partition function
A counting
measure

and [9, 10] for computing the permanent of a matrix—we are not aware of a general treatment of
variational inference in combinatorial spaces.

There has been work on applying variational algorithms to the problem of maximization over combi-
natorial spaces [11, 12, 13, 14], but maximization over combinatorial spaces is rather different than
summation. For example, in the bipartite matching example considered in both [13] and this paper,
there is a known polynomial algorithm for maximization, but not for summation. Our approach
is also related to agreement-based learning [15, 16], although agreement-based learning is defined
within the context of unsupervised learning using EM, while our framework is agnostic with respect
to parameter estimation.

The paper is organized as follows: in Section 2 we present the measure factorization framework; in
Section 3 we show examples of this framework applied to various combinatorial inference problems;
and in Section 4 we present empirical results.

2 Variational measure factorization

In this section, we present the variational measure factorization framework. At a high level, the first
step is to construct an equivalent but more convenient exponential family. This exponential family
will allow us to transform variational algorithms over graphical models into approximation algo-
rithms over combinatorial spaces. We first describe the techniques needed to do this transformation
in the case of a specific variational inference algorithm—loopy belief propagation—and then discuss
mean-field and tree-reweighted approximations.

To make the exposition more concrete, we use the running example of approximating the value and
gradient of the log-partition function of a Bipartite Matching model (BM) over KN,N , a well-known
#P problem [17]. Unless we mention otherwise, we will consider bipartite perfect matchings; non-
bipartite and non-perfect matchings are discussed in Section 3.1. The reader should keep in mind,
however, that our framework is applicable to a much broader class of combinatorial objects. We
develop several other examples in Section 3 and in Appendix B.

2.1 Setup

Since we are dealing with discrete-valued random variables X , we can assume without loss of
generality that the probability distribution for which we want to compute the partition function and
moments is a member of a regular exponential family with canonical parameters θ ∈ RJ :

P(X ∈ B) =
∑

x∈B

exp{〈φ(x), θ〉 −A(θ)}ν(x), A(θ) = log
∑

x∈X

exp{〈φ(x), θ〉}ν(x), (1)

for a J-dimensional sufficient statistic φ and base measure ν over F = 2X , both of which are
assumed (again, without loss of generality) to be indicator functions : φj , ν : X → {0, 1}. Here
X is a superset of both C and all of the Cis. The link between this setup and the general problem
of computing

∑
x∈C f(x) is the base measure ν, which is set to the indicator function over C:

ν(x) = 1[x ∈ C], where 1[·] is equal to one if its argument holds true, and zero otherwise.

The goal is to approximate A(θ) and ∇A(θ) (recall that the j-th coordinate of the gradient, ∇jA, is
equal to the expectation of the sufficient statistic φj under the exponential family with base measure
ν [5]). We want to exploit situations where the base measure can be written as a product of I
measures ν(x) =

∏I
i=1 νi(x) such that each factor νi : X → {0, 1} induces a super-partition

function assumed to be tractable: Ai(θ) = log
∑

x∈X exp{〈φ(x),θ〉}νi(x). This computation is
typically done using dynamic programming (DP). We also assume that the gradient of the super-
partition functions is tractable, which is typical for DP formulations.

In the case of BM, the space X is a product of N2 binary alignment variables, x =
x1,1, x1,2, . . . , xN,N . In the Standard Bipartite Matching formulation (which we denote by SBM),
the sufficient statistic takes the form φj(x) = xm,n. The measure factorization we use to enforce
the matching property is ν = ν1ν2, where:

ν1(x) =
N∏

m=1

1[
N∑

n=1

xm,n ≤ 1], ν2(x) =
N∏

n=1

1[
N∑

m=1

xm,n ≤ 1]. (2)

2

Large discrete set
(e.g. all configs of an Ising model)

Wednesday, March 9, 2011

Example of sufficient statistics

+
+

+

-
+

- -

-
+

Ising model

ϕ(x) =

1[x1,1 = +]
1[x1,1 = -]
1[x1,2 = +]

1[x1,1 = +, x1,2 = +]
1[x1,1 = +, x1,2 = -]

...
...

One node

Pairs of nodes

‘Over-complete’ sufficient statistic

D

θ1,1,+
θ1,1,-
θ1,2,+

θ1,1,+;1,2,+
θ1,1,+;1,2,-

...
...

Wednesday, March 9, 2011

What we are trying to compute

1[x1,1 = +]
1[x1,1 = -]
1[x1,2 = +]

1[x1,1 = +, x1,2 = +]
1[x1,1 = +, x1,2 = -]

...
...

D

θ1,1,+
θ1,1,-
θ1,2,+

θ1,1,+;1,2,+
θ1,1,+;1,2,-

...
...

µ1,1,+
µ1,1,-
µ1,2,+

µ1,1,+;1,2,+
µ1,1,+;1,2,-

...
...

µ = E[ϕ(X)] =

and log partition function:

Moments:

and [9, 10] for computing the permanent of a matrix—we are not aware of a general treatment of
variational inference in combinatorial spaces.

There has been work on applying variational algorithms to the problem of maximization over combi-
natorial spaces [11, 12, 13, 14], but maximization over combinatorial spaces is rather different than
summation. For example, in the bipartite matching example considered in both [13] and this paper,
there is a known polynomial algorithm for maximization, but not for summation. Our approach
is also related to agreement-based learning [15, 16], although agreement-based learning is defined
within the context of unsupervised learning using EM, while our framework is agnostic with respect
to parameter estimation.

The paper is organized as follows: in Section 2 we present the measure factorization framework; in
Section 3 we show examples of this framework applied to various combinatorial inference problems;
and in Section 4 we present empirical results.

2 Variational measure factorization

In this section, we present the variational measure factorization framework. At a high level, the first
step is to construct an equivalent but more convenient exponential family. This exponential family
will allow us to transform variational algorithms over graphical models into approximation algo-
rithms over combinatorial spaces. We first describe the techniques needed to do this transformation
in the case of a specific variational inference algorithm—loopy belief propagation—and then discuss
mean-field and tree-reweighted approximations.

To make the exposition more concrete, we use the running example of approximating the value and
gradient of the log-partition function of a Bipartite Matching model (BM) over KN,N , a well-known
#P problem [17]. Unless we mention otherwise, we will consider bipartite perfect matchings; non-
bipartite and non-perfect matchings are discussed in Section 3.1. The reader should keep in mind,
however, that our framework is applicable to a much broader class of combinatorial objects. We
develop several other examples in Section 3 and in Appendix B.

2.1 Setup

Since we are dealing with discrete-valued random variables X , we can assume without loss of
generality that the probability distribution for which we want to compute the partition function and
moments is a member of a regular exponential family with canonical parameters θ ∈ RJ :

P(X ∈ B) =
∑

x∈B

exp{〈φ(x), θ〉 −A(θ)}ν(x), A(θ) = log
∑

x∈X

exp{〈φ(x), θ〉}ν(x), (1)

for a J-dimensional sufficient statistic φ and base measure ν over F = 2X , both of which are
assumed (again, without loss of generality) to be indicator functions : φj , ν : X → {0, 1}. Here
X is a superset of both C and all of the Cis. The link between this setup and the general problem
of computing

∑
x∈C f(x) is the base measure ν, which is set to the indicator function over C:

ν(x) = 1[x ∈ C], where 1[·] is equal to one if its argument holds true, and zero otherwise.

The goal is to approximate A(θ) and ∇A(θ) (recall that the j-th coordinate of the gradient, ∇jA, is
equal to the expectation of the sufficient statistic φj under the exponential family with base measure
ν [5]). We want to exploit situations where the base measure can be written as a product of I
measures ν(x) =

∏I
i=1 νi(x) such that each factor νi : X → {0, 1} induces a super-partition

function assumed to be tractable: Ai(θ) = log
∑

x∈X exp{〈φ(x),θ〉}νi(x). This computation is
typically done using dynamic programming (DP). We also assume that the gradient of the super-
partition functions is tractable, which is typical for DP formulations.

In the case of BM, the space X is a product of N2 binary alignment variables, x =
x1,1, x1,2, . . . , xN,N . In the Standard Bipartite Matching formulation (which we denote by SBM),
the sufficient statistic takes the form φj(x) = xm,n. The measure factorization we use to enforce
the matching property is ν = ν1ν2, where:

ν1(x) =
N∏

m=1

1[
N∑

n=1

xm,n ≤ 1], ν2(x) =
N∏

n=1

1[
N∑

m=1

xm,n ≤ 1]. (2)

2

Wednesday, March 9, 2011

Important properties

of this gain in accuracy, we present a new structure
mean field algorithm based on auxiliary exponential
families.

The notion of v- and b-acyclic subgraphs is different
that the notion of “overlapping cluster” used in the
work on structured mean field by Geiger et al. (2006).
Some v-acyclic graphs have overlapping clusters, some
do not; and moreover, the computational dichotomy
we establish here does not hold if the notion of v- and
b-acyclic subgraphs is replaced by that of overlapping
clusters. Note that other variational approximations
such as Expectation Propagation also have a subgraph
interpretation (Minka and Qi 2003). While this sub-
graph sometimes happens to be b-acyclic, there is no
special distinction between v- and b-acyclic graphical
approximations in the case of Bethe-energy variational
approximations. This is why we focus on mean field
approximations.

The paper is organized as follows. We present a ba-
sic introduction to structured mean field in Section 2.
We then discuss our analysis and algorithmic develop-
ments in Section 3. We present empirical results to
support our claims in Section 4 and we present our
conclusions in Section 5.

2 Background

In this section, we review the principles of mean field
approximation and set the notation. Our exposition
follows the general treatment of variational methods
presented in Wainwright and Jordan (2003) where the
Legendre-Fenchel transformation plays a central role.

2.1 Exponential families

We assume that the random variable under study, Xθ,
has a distribution in a regular exponential family P
in canonical form:

P(Xθ ∈ A) =
∫

A
exp{〈φ(x),θ〉 −A(θ)}ν(dx), (1)

A(θ) = log
∫

exp{〈φ(x),θ〉}ν(dx) (2)

for a sufficient statistics φ : X → Rd, base measure ν
and parameters θ ∈ Ω = {θ ∈ Rd : A(θ) < ∞}.

We will also use the notation Xµ where µ ∈ Rd to
denote a random variable with distribution in P such
that E[φ(Xµ)] = µ. Note that this is well defined
since φ is sufficient for θ.

We are interested in the case in which the distribu-
tion of X factors according to an undirected graph-
ical model on m vertices G = (V,E), i.e. X =
(X1, . . . , Xm), X = Xm. For simplicity of notation we

focus on the case in which the interactions are pairwise
and the base measure is discrete. However, the ideas
apply directly to the general exponential family—this
will be discussed in more detail in Section 3.

Let F = (V ×X)∪(E×X 2) be the index set for the co-
ordinates of φ (the potentials). If e = (a, b) ∈ E, then
it is understood that the following inclusion holds on
the induced sigma-algebra: σ(φe,·(X)) ⊇ σ(Xa, Xb).
Similarly, if v ∈ V , σ(φv,·(X)) ⊇ σ(Xa). We lose no
generality by requiring existence of potentials for all
vertices and edges, since we can always set their cor-
responding parameter to zero.

2.2 Convex duality

A simple but fundamental property of exponential
families is that the gradient and Hessian of the log
partition function have the following forms:

∇A(θ) = E[φ(Xθ)]
H(A(θ)) = Var[φ(Xθ)]. (3)

The second identity implies convexity, which we can
use in conjunction with the Legendre-Fenchel trans-
formation to establish an alternative form for A.

Definition 1 For an extended real-valued function f ,
the Legendre-Fenchel transformation is defined as:

f∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f∗∗,
we can use convexity of A to obtain:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ M }, (4)

where M = ∇A(Θ) is the set of realizable moments.

Formulation (4) is no more tractable than the defini-
tion of A in Equation (2): the term A∗(µ), which can
be shown to be equal to the negative of the entropy
−Hν(Xµ) (Wainwright and Jordan 2008) cannot be
computed efficiently for arbitrary µ. Hence, the objec-
tive function cannot be evaluated efficiently. On the
other hand, Equation (4) is a constrained optimization
problem that can be relaxed. Mean field methods can
be seen as a particular type of relaxation where the
sup is taken over a proper subset of M . In particu-
lar, the sup is taken over a subset of M for which the
objective function and its gradient can be evaluated
efficiently.

2.3 Graphical mean-field relaxations

In order to define this relaxation, the user needs to
provide a subset of the principal exponential family,

The gradient of the log partition function is equal to the
moments:

The hessian of the log partition function is equal to the
covariance matrix:

of this gain in accuracy, we present a new structure
mean field algorithm based on auxiliary exponential
families.

The notion of v- and b-acyclic subgraphs is different
that the notion of “overlapping cluster” used in the
work on structured mean field by Geiger et al. (2006).
Some v-acyclic graphs have overlapping clusters, some
do not; and moreover, the computational dichotomy
we establish here does not hold if the notion of v- and
b-acyclic subgraphs is replaced by that of overlapping
clusters. Note that other variational approximations
such as Expectation Propagation also have a subgraph
interpretation (Minka and Qi 2003). While this sub-
graph sometimes happens to be b-acyclic, there is no
special distinction between v- and b-acyclic graphical
approximations in the case of Bethe-energy variational
approximations. This is why we focus on mean field
approximations.

The paper is organized as follows. We present a ba-
sic introduction to structured mean field in Section 2.
We then discuss our analysis and algorithmic develop-
ments in Section 3. We present empirical results to
support our claims in Section 4 and we present our
conclusions in Section 5.

2 Background

In this section, we review the principles of mean field
approximation and set the notation. Our exposition
follows the general treatment of variational methods
presented in Wainwright and Jordan (2003) where the
Legendre-Fenchel transformation plays a central role.

2.1 Exponential families

We assume that the random variable under study, Xθ,
has a distribution in a regular exponential family P
in canonical form:

P(Xθ ∈ A) =
∫

A
exp{〈φ(x),θ〉 −A(θ)}ν(dx), (1)

A(θ) = log
∫

exp{〈φ(x),θ〉}ν(dx) (2)

for a sufficient statistics φ : X → Rd, base measure ν
and parameters θ ∈ Ω = {θ ∈ Rd : A(θ) < ∞}.

We will also use the notation Xµ where µ ∈ Rd to
denote a random variable with distribution in P such
that E[φ(Xµ)] = µ. Note that this is well defined
since φ is sufficient for θ.

We are interested in the case in which the distribu-
tion of X factors according to an undirected graph-
ical model on m vertices G = (V,E), i.e. X =
(X1, . . . , Xm), X = Xm. For simplicity of notation we

focus on the case in which the interactions are pairwise
and the base measure is discrete. However, the ideas
apply directly to the general exponential family—this
will be discussed in more detail in Section 3.

Let F = (V ×X)∪(E×X 2) be the index set for the co-
ordinates of φ (the potentials). If e = (a, b) ∈ E, then
it is understood that the following inclusion holds on
the induced sigma-algebra: σ(φe,·(X)) ⊇ σ(Xa, Xb).
Similarly, if v ∈ V , σ(φv,·(X)) ⊇ σ(Xa). We lose no
generality by requiring existence of potentials for all
vertices and edges, since we can always set their cor-
responding parameter to zero.

2.2 Convex duality

A simple but fundamental property of exponential
families is that the gradient and Hessian of the log
partition function have the following forms:

∇A(θ) = E[φ(Xθ)]
H(A(θ)) = Var[φ(Xθ)]. (3)

The second identity implies convexity, which we can
use in conjunction with the Legendre-Fenchel trans-
formation to establish an alternative form for A.

Definition 1 For an extended real-valued function f ,
the Legendre-Fenchel transformation is defined as:

f∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f∗∗,
we can use convexity of A to obtain:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ M }, (4)

where M = ∇A(Θ) is the set of realizable moments.

Formulation (4) is no more tractable than the defini-
tion of A in Equation (2): the term A∗(µ), which can
be shown to be equal to the negative of the entropy
−Hν(Xµ) (Wainwright and Jordan 2008) cannot be
computed efficiently for arbitrary µ. Hence, the objec-
tive function cannot be evaluated efficiently. On the
other hand, Equation (4) is a constrained optimization
problem that can be relaxed. Mean field methods can
be seen as a particular type of relaxation where the
sup is taken over a proper subset of M . In particu-
lar, the sup is taken over a subset of M for which the
objective function and its gradient can be evaluated
efficiently.

2.3 Graphical mean-field relaxations

In order to define this relaxation, the user needs to
provide a subset of the principal exponential family,

Consequence: A is a convex function

Wednesday, March 9, 2011

