Statistical modeling with stochastic processes

Alexandre Bouchard-Côté
Lecture 6, Wednesday March I6

Program for today

- Introduction to Bayesian non-parametrics
- The Dirichlet Process: Theoretical foundations
- Basic properties: posterior conjugacy, predictive distribution, etc
- Chinese Restaurant, Polya Urn, etc.
- Basic probabilistic inference
- Collapsed sampler
- Slice sampler

Review

(Finite) Dirichlet distribution

Distribution on the parameters of categorical/multinomial distributions

Equivalent: distribution on the simplex
$\xrightarrow[\begin{array}{c}\text { second } \\ \text { parameter }\end{array}]{\substack{\text { first } \\ \text { parameter }}}$

Density: for $\alpha_{i}>0$

$$
\frac{1}{Z(\alpha)} \prod_{i=1}^{K} x_{i}^{\alpha_{i}-1} \cdot \mathbf{1}\left[\sum_{i} x_{i}=1, x_{i} \geq 0\right]
$$

Equivalent notation

Mixture model: (UBC student height with 2 components) say we have only 3 observations

Samples from G

What we have:

What we want:

Definition: Dirichlet Process

Let G_{0} be a distribution on a sample space Ω (the base distribution) α_{0} be a positive real number (the concentration), and $\left(A_{1}, \ldots, A_{\mathrm{k}}\right)$ be a partition of Ω. We say

$$
G \sim \operatorname{DP}\left(\alpha_{0}, G_{0}\right)
$$

i.e., G is a Dirichlet Process, if

$$
\left(G\left(A_{1}\right), \ldots, G\left(A_{k}\right)\right) \sim \operatorname{Dir}\left(\alpha_{0} G_{0}\left(A_{1}\right), \ldots, \alpha_{0} G_{0}\left(A_{k}\right)\right)
$$

for all partitions and all k.

Does this make sense/exists?

Kolmogorov consistency: check the marginals are consistent under marginalization

In this case: check that the marginals are consistent when refining partitions

$$
\begin{gathered}
\hline A_{2} A_{1} \mid \\
\left(G\left(A_{1}\right), G\left(A_{2}\right)\right) \\
\left(U_{1}, U_{2}\right)
\end{gathered}
$$

$\left(G\left(B_{1}\right), G\left(B_{2}\right), G\left(B_{3}\right)\right)$
$\left(V_{1}, V_{2}, V_{3}\right)$

Constructive argument

Claim: the random probability distribution constructed below is the Dirichlet process with base distribution G_{0} and concentration α_{0}

$$
\begin{aligned}
& \beta_{j} \stackrel{\text { id }}{\sim} \operatorname{Beta}\left(1, \alpha_{0}\right) \\
& \theta_{c} \stackrel{\text { id }}{\sim} G_{0}
\end{aligned}
$$

Start with a stick of length 1 , and break a segment of length β_{1} for π_{1}, keep the rest

$$
\pi_{1}=\beta_{1}
$$

At step c, if the length of the stick remaining is L, set:

$$
\pi_{c}=\beta_{c} L=\beta_{c} \prod_{j: j<c}\left(1-\beta_{j}\right)
$$

We will de
this distrib
over π
GEM
d break a
ep the rest

Samples from G

Unit length stick

Mixture proportions

Ordered iid G_{0} locations

Back to the proof that $G=G$ ' in distribution

Reference: 'A constructive definition of Dirichlet Priors' (I994) Jayaram Sethuraman.

Goal: showing two definitions are equivalent

Kolmogorov consistency

Strategy: showing that for all partitions $\left(A_{1}, \ldots, A_{\mathrm{k}}\right)$, the constructed process G ' has finite Dirichlet marginals

$$
\left(G^{\prime}\left(A_{1}\right), \ldots, G^{\prime}\left(A_{k}\right)\right) \sim \operatorname{Dir}\left(\alpha_{0} G_{0}\left(A_{1}\right), \ldots, \alpha_{0} G_{0}\left(A_{k}\right)\right)
$$

Key observation: ‘self-similarity’

Definitions:

$$
\begin{aligned}
& G^{\prime}=f(\beta, \theta)=\sum_{c=1}^{\infty} \pi_{c} \delta_{\{\theta(c)\}} \\
& \beta^{*}=\left(\beta_{1}, \beta_{2}, \ldots\right)^{*}=\left(\beta_{2}, \beta_{3}, \ldots\right)
\end{aligned}
$$

Observation: $\quad G^{\prime}=\pi_{1} \delta_{\{\theta(1)\}}+\left(1-\pi_{1}\right) f\left(\beta^{*}, \theta^{*}\right)$

$$
=\pi_{1} \delta_{\{\theta(1)\}}+\left(1-\pi_{1}\right) G^{\prime \prime} \quad \text { for } G^{\prime} \stackrel{d}{=} G^{\prime \prime}
$$

Notation:

$$
G^{\prime} \stackrel{s t}{=} \pi_{1} \delta_{\{\theta(1)\}}+\left(1-\pi_{1}\right) G^{\prime}
$$

*

How we'll use it: we will show that if there is a distribution that satisfies this equation, it is unique; and that the finite Dirichlet distribution satisfies it

Detailed plan

Finite Dirichlet
distributions satisfy
equation (*)
Equation (*) has a unique solution

G'satisfies equation (*)

The marginals of G^{\prime} satisfy \Longrightarrow equation (*)
G^{\prime} has Dirichlet marginals

$$
\begin{gathered}
\Downarrow \\
G \stackrel{d}{=} G^{\prime}
\end{gathered}
$$

Lemma: uniqueness of the solution of *

Notation: $\quad \begin{array}{ll}G^{\prime}=\frac{\pi_{1} \delta_{\{\theta(1)\}}}{} & +\underbrace{\left(1-\pi_{1}\right)}_{W} G^{\prime \prime} \\ V & =\frac{s t}{=}\end{array}$
3

Properties we use:

- G " is independent of (U, W)
$-P(0<W<1 / 2)>0$
(Proof of uniqueness on the board)

Detailed plan

Finite Dirichlet distributions satisfy equation (*)

Equation (*) has a unique solution

The marginals of
G'satisfies equation (*)
G ' has Dirichlet marginals

$$
\begin{gathered}
\Downarrow \\
G \stackrel{d}{=} G^{\prime}
\end{gathered}
$$

Lemmas

Lemma 1. Let: $U \sim \operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{k}\right)$,

$$
\alpha_{0}=\sum_{i=1}^{k} \alpha_{i}
$$

$$
\begin{aligned}
V & \sim \operatorname{Dir}\left(\gamma_{1}, \ldots, \gamma_{k}\right) \\
W & \sim \operatorname{Beta}\left(\alpha_{0}, \gamma_{0}\right)
\end{aligned}
$$

all indep.
Then: $W U+(1-W) V \sim \operatorname{Dir}(\alpha+\gamma)$

Proof: Gamma/neutral representation

Lemmas

Lemma 2. Let: $\quad e_{j}=$ a unit basis vector

$$
\begin{gathered}
\bar{\gamma}_{j}=\frac{\gamma_{j}}{\gamma_{0}} \\
\text { Then: } \sum_{j=1}^{k} \bar{\gamma}_{j} \operatorname{Dir}\left(\gamma+e_{j}\right) \sim \operatorname{Dir}(\gamma)
\end{gathered}
$$

Proof: Exercise (next assignment)

Main proof: finite Dirichlet satisfies *

Goal: showing that:

$$
V \sim \operatorname{Dir}\left(\gamma_{1}, \ldots, \gamma_{k}\right)
$$

satisfies equation (*) projected to the marginal of a finite partition

Steps:

1- Condition on the partition indicator X in which the first atom falls in
2- Sum over the possible values of X

Detailed plan

Finite Dirichlet distributions satisfy equation (*)

Equation (*) has a unique solution

》

G'satisfies equation (*)

The marginals of
$\Longrightarrow G^{\prime}$ satisfy \Longrightarrow equation (*)

G'has Dirichlet marginals

$$
\begin{gathered}
\| \\
G=G^{\prime}
\end{gathered}
$$

Main properties of Dirichlet Processes

Moments

Let $G \sim \operatorname{DP}\left(\alpha_{0}, G_{0}\right)$ and A be a measurable set

Exercise: find the first and second moments of $G(A)$

(Derivation of the moments on the board)

Towards conjugacy

Let $G \sim \operatorname{DP}\left(\alpha_{0}, G_{0}\right)$ and $\left(A_{1}, \ldots, A_{\mathrm{k}}\right)$ be a measurable partition. Let θ be a draw from G, i.e.: $\theta \mid G \sim G$

By multinomial-Dirichlet conjugacy, we have:

$$
\begin{aligned}
& \left(G\left(A_{1}\right), \ldots, G\left(A_{k}\right)\right) \mid \theta \sim \\
& \quad \operatorname{Dir}\left(\alpha_{0} G_{0}\left(A_{1}\right)+\delta_{\{\theta\}}\left(A_{1}\right), \ldots, \alpha_{0} G_{0}\left(A_{k}\right)+\delta_{\{\theta\}}\left(A_{k}\right)\right)
\end{aligned}
$$

Since this is true for all partitions, this means the posterior is a Dirichlet process as well!

Reference: 'The theory of statistics' (I995) Mark J. Schervish

Conjugacy

Found:

$$
\left(G\left(A_{1}\right), \ldots, G\left(A_{k}\right)\right) \mid \theta \sim
$$

$$
\operatorname{Dir}\left(\alpha_{0} G_{0}\left(A_{1}\right)+\delta_{\{\theta\}}\left(A_{1}\right), \ldots, \alpha_{0} G_{0}\left(A_{k}\right)+\delta_{\{\theta\}}\left(A_{k}\right)\right)
$$

Next: Identifying the new parameters $\alpha_{0}{ }_{0}$ and $G^{\prime}{ }_{0}$ of the posterior distribution...

$$
\begin{aligned}
\alpha_{0}^{\prime} & =\sum_{k}\left(\alpha_{0} G_{0}\left(A_{k}\right)+\delta_{\{\theta\}}\left(A_{k}\right)\right)=\alpha_{0}+1 \\
G_{0}^{\prime} & =\frac{\alpha_{0}}{\alpha_{0}+1} G_{0}+\frac{1}{\alpha_{0}+1} \delta_{\{\theta\}}
\end{aligned}
$$

General formula

Suppose now we have several draws from G :
$\left(G\left(A_{1}\right), \ldots, G\left(A_{k}\right)\right) \mid \theta_{1}, \ldots, \theta_{n} \sim$

$$
\operatorname{Dir}\left(\alpha_{0} G_{0}\left(A_{1}\right)+n_{1}, \ldots, \alpha_{0} G_{0}\left(A_{k}\right)+n_{k}\right)
$$

where: $\quad n_{j}=\sum_{i=1}^{n} \delta_{\left\{\theta_{i}\right\}}\left(A_{j}\right)$
Therefore the posterior parameters are:

$$
\begin{aligned}
\alpha_{0}^{\prime} & =\alpha_{0}+n \\
G_{0}^{\prime} & =\frac{\alpha_{0}}{\alpha_{0}+n} G_{0}+\frac{1}{\alpha_{0}+n} \sum_{i=1}^{n} \delta_{\left\{\theta_{i}\right\}}
\end{aligned}
$$

Predictive distribution

Predictive distribution: $\theta_{n+1} \mid \theta_{1}, \ldots, \theta_{n}$
Motivation for marginalizing \boldsymbol{G} : posterior inference using MCMC on a finite state space

Let A be a measurable set, $\quad G \sim \operatorname{DP}\left(G_{0}, \alpha_{0}\right)$

$$
\theta_{1}, \ldots, \theta_{n+1} \mid G \sim G
$$

Application: Pólya Urn

Thought experiment: Consider an urn, with initially R red marbles and B blue marbles.

At each step, draw one marble at random, and put it back in the urn after adding another one of the same color

Question: does this process converge to a certain red:blue ratio? What is this ratio?

Application: Pólya Urn

Thought experiment: Consider an urn, with initially R red marbles and B blue marbles.

Question: does this process converge to a certain red:blue ratio? What is this ratio?

Hint: Let $\alpha_{0}=R+B$

$$
G_{0}=\operatorname{Bern}\left(\frac{R}{B+R}\right)
$$

(Solution described on the board)

Chinese Restaurant Process (CRP)

Idea: Instead of colors sharing colors, think about customers sharing tables in an infinite restaurant

Initialization: The first customer sits in the first empty table.
Iterate: If \boldsymbol{n} customers are already sitting in the restaurant, the next customer starts a new table with probability $\alpha_{0} /\left(\alpha_{0}+n\right)$; otherwise the customer joins an existing table with probability proportional to the number of people already at the table
E.g.:

Join table 1?

Join table 2? Start emtpy?

