Statistical modeling with stochastic processes

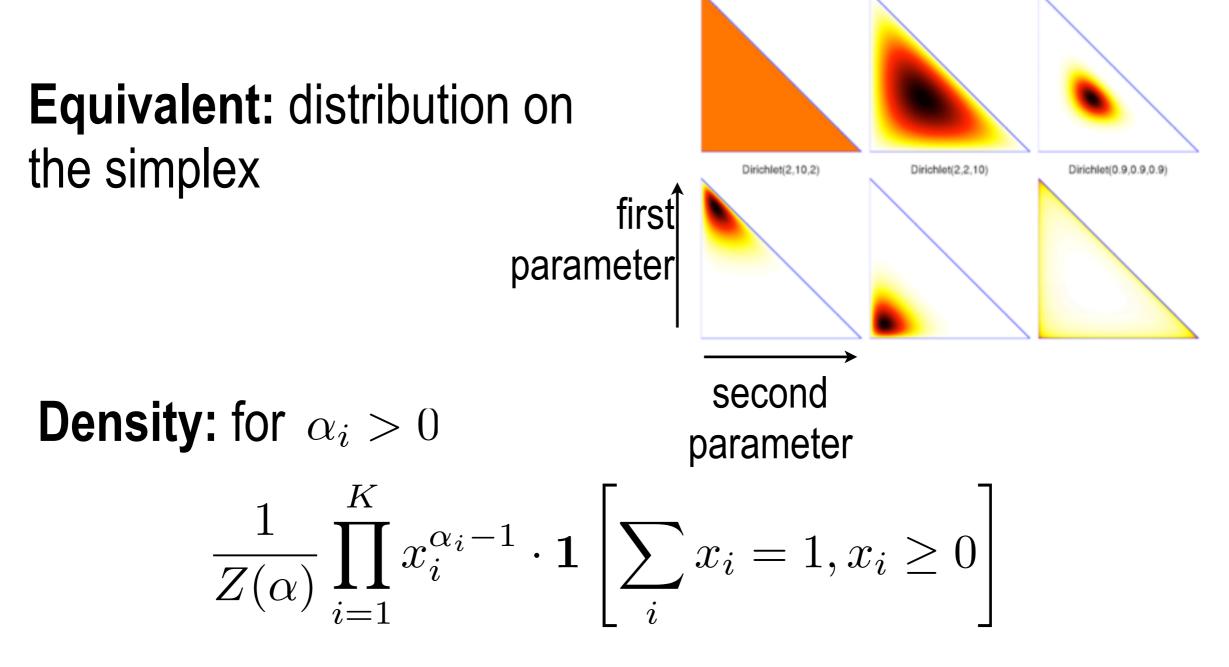
Alexandre Bouchard-Côté Lecture 6, Wednesday March 16

- Introduction to Bayesian non-parametrics
 - The Dirichlet Process: Theoretical foundations
 - Basic properties: posterior conjugacy, predictive distribution, etc
 - Chinese Restaurant, Polya Urn, etc.
- Basic probabilistic inference
 - Collapsed sampler
 - Slice sampler

Review

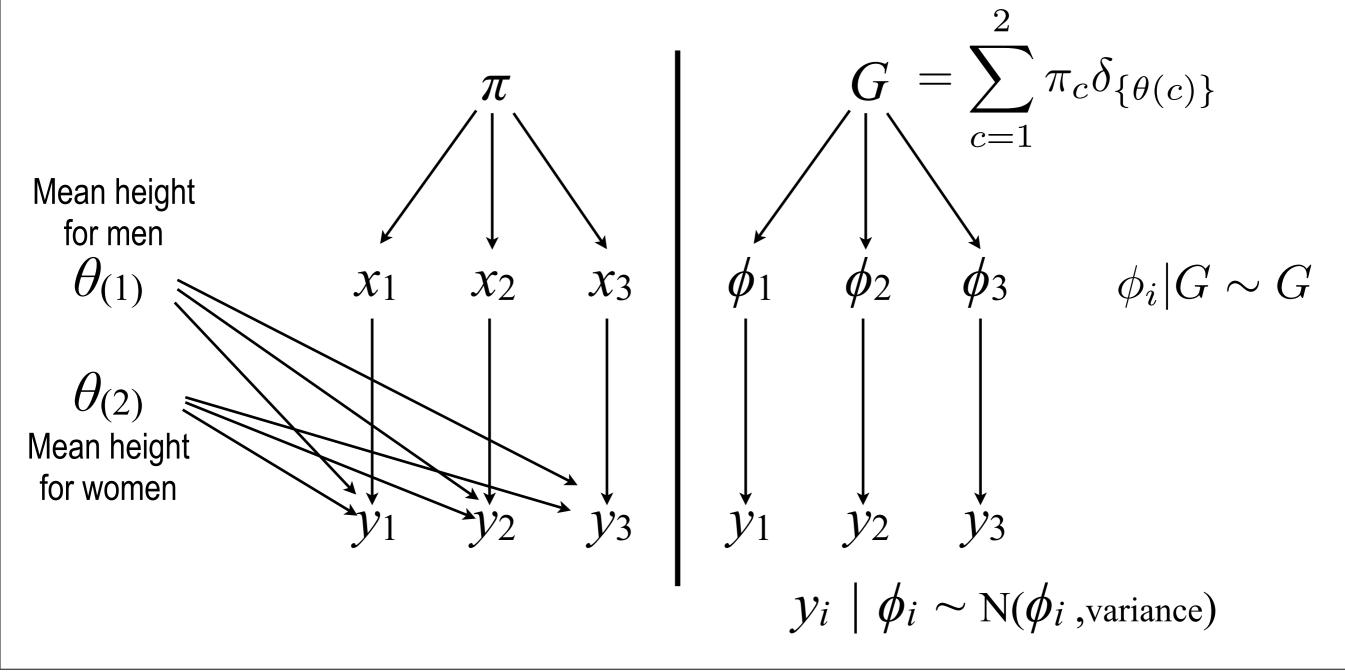
(Finite) Dirichlet distribution

Distribution on the parameters of categorical/multinomial distributions

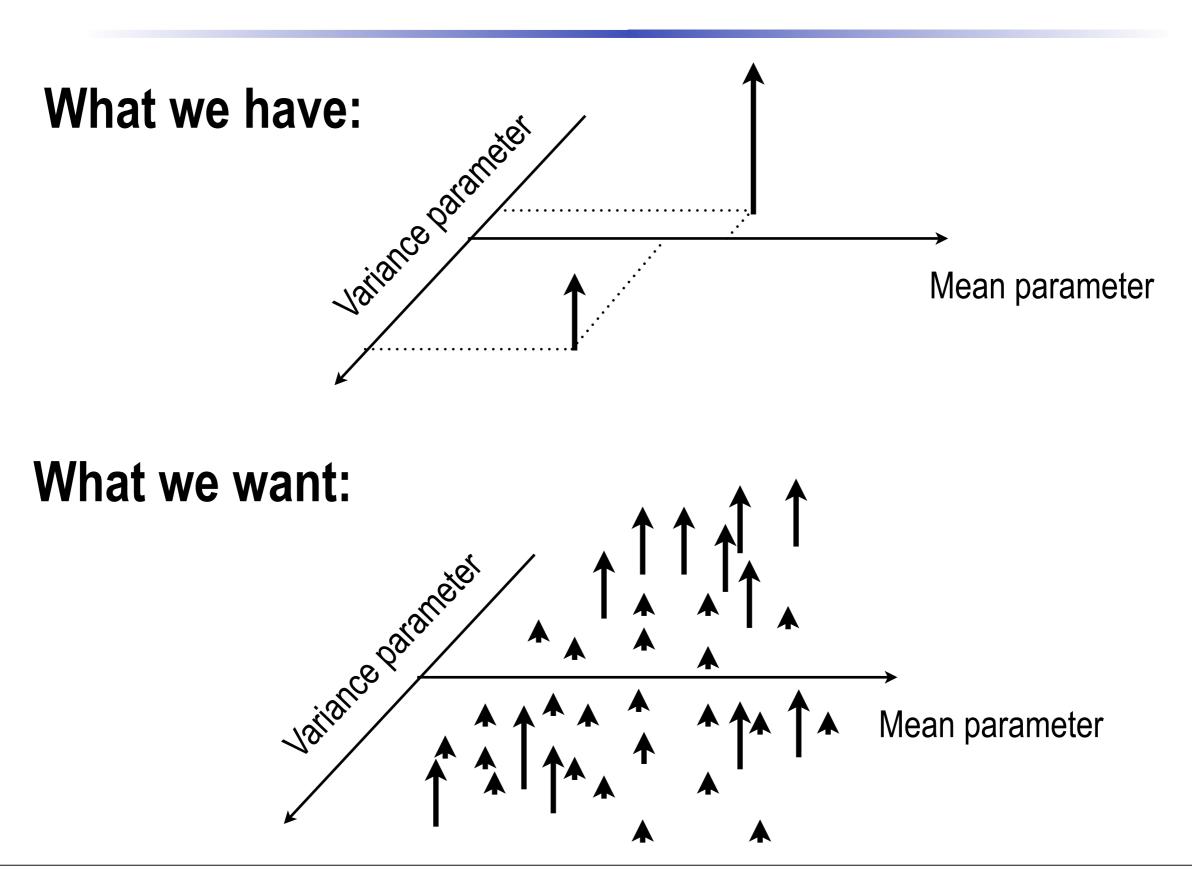


Equivalent notation

Mixture model: (UBC student height with 2 components) say we have only 3 observations



Samples from *G*



Definition: Dirichlet Process

Let G_0 be a distribution on a sample space Ω (the base distribution) α_0 be a positive real number (the concentration), and $(A_1, ..., A_k)$ be a partition of Ω . We say

 $G \sim \mathrm{DP}(\alpha_0, G_0)$

i.e., G is a Dirichlet Process, if

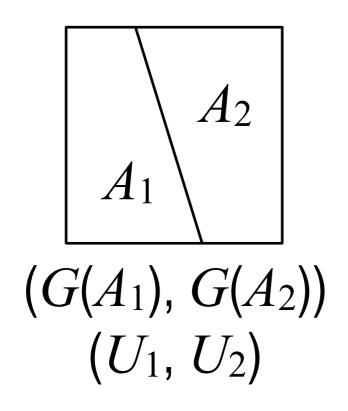
 $(G(A_1),\ldots,G(A_k)) \sim \operatorname{Dir}(\alpha_0 G_0(A_1),\ldots,\alpha_0 G_0(A_k))$

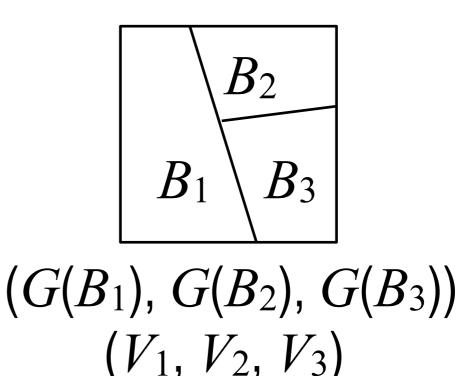
for all partitions and all k.

Does this make sense/exists?

Kolmogorov consistency: check the marginals are consistent under marginalization

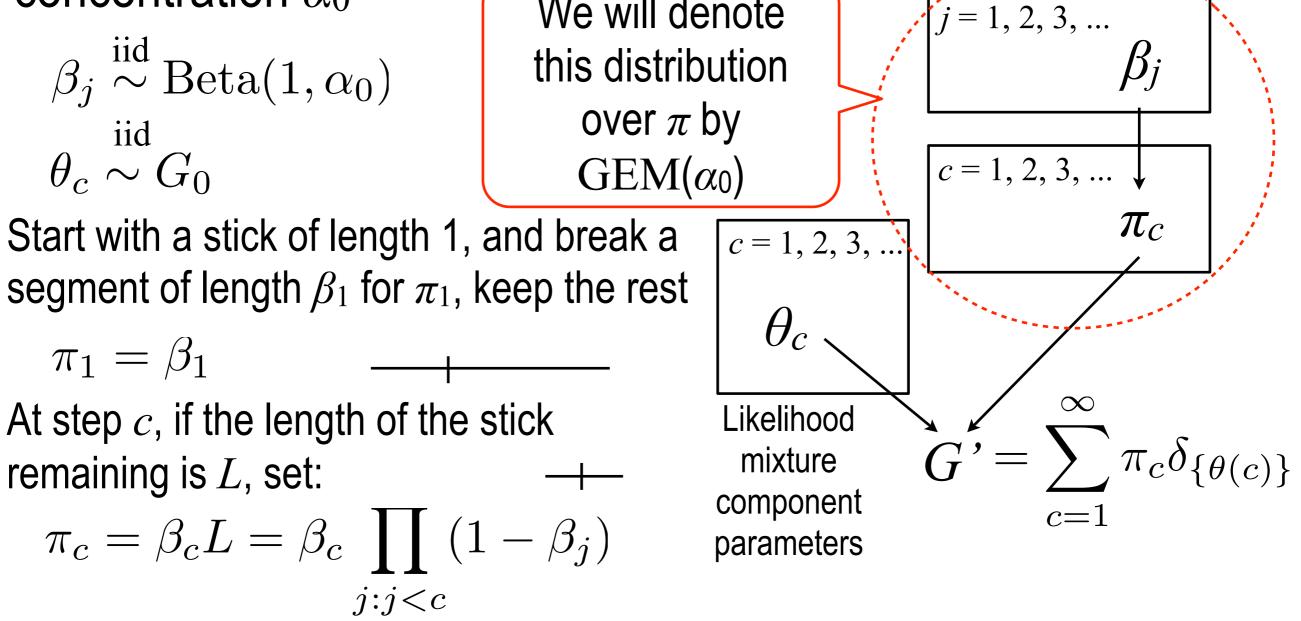
In this case: check that the marginals are consistent when refining partitions



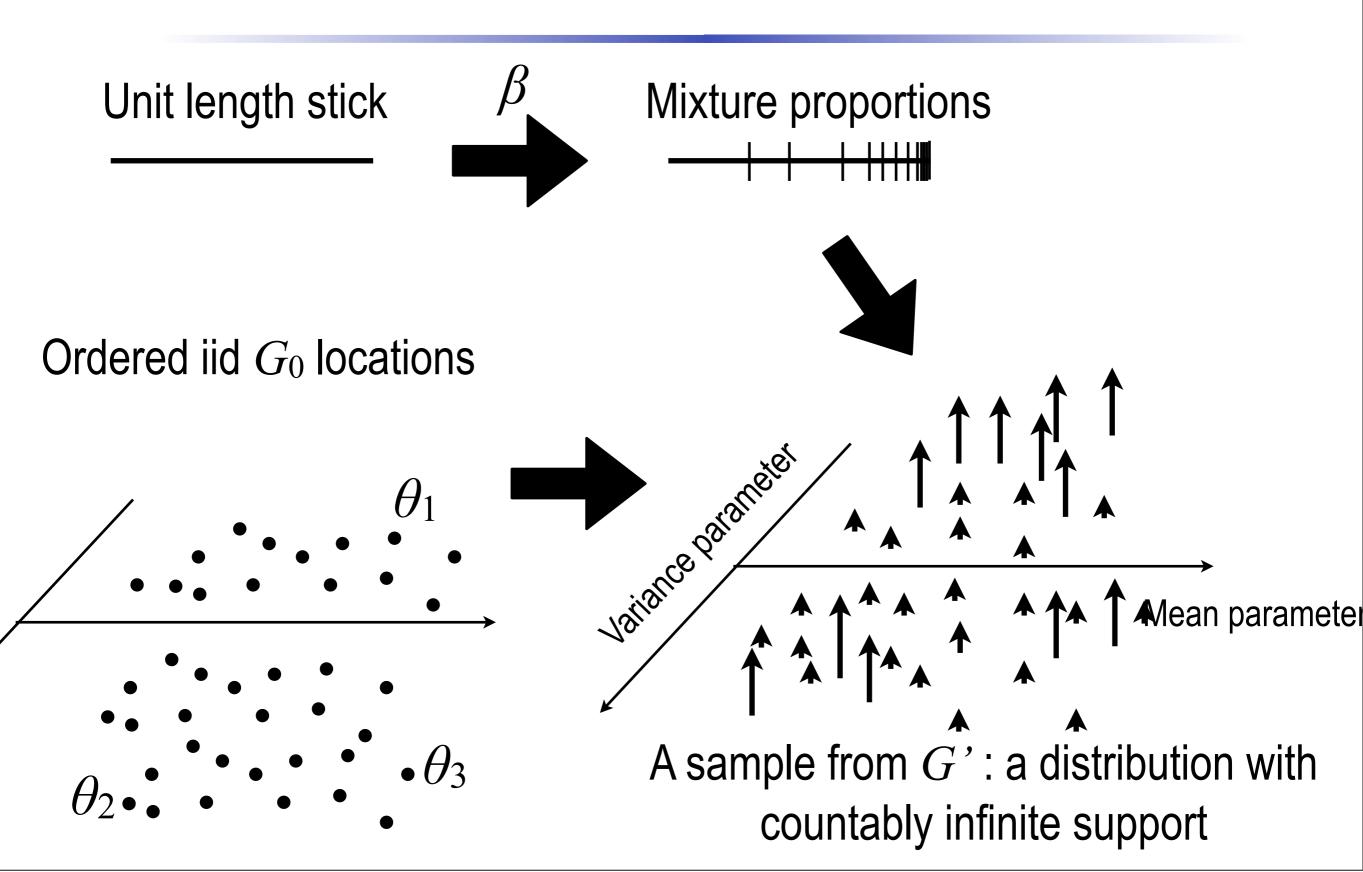


Constructive argument

Claim: the random probability distribution constructed below is the Dirichlet process with base distribution G_0 and concentration α_0 We will denote



Samples from G

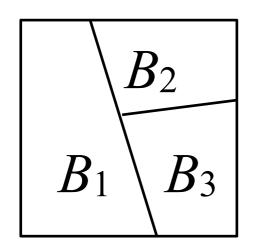


Back to the proof that G = G' in distribution

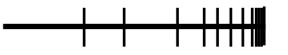
Reference: 'A constructive definition of Dirichlet Priors' (1994) Jayaram Sethuraman.

Goal: showing two definitions are equivalent

Kolmogorov consistency



Stick-breaking construction



Strategy: showing that for all partitions $(A_1, ..., A_k)$, the constructed process *G*' has finite Dirichlet marginals

 $(G'(A_1),\ldots,G'(A_k)) \sim \operatorname{Dir}(\alpha_0 G_0(A_1),\ldots,\alpha_0 G_0(A_k))$

Key observation: 'self-similarity'

Definitions:
$$G' = f(\beta, \theta) = \sum_{c=1}^{\infty} \pi_c \delta_{\{\theta(c)\}}$$

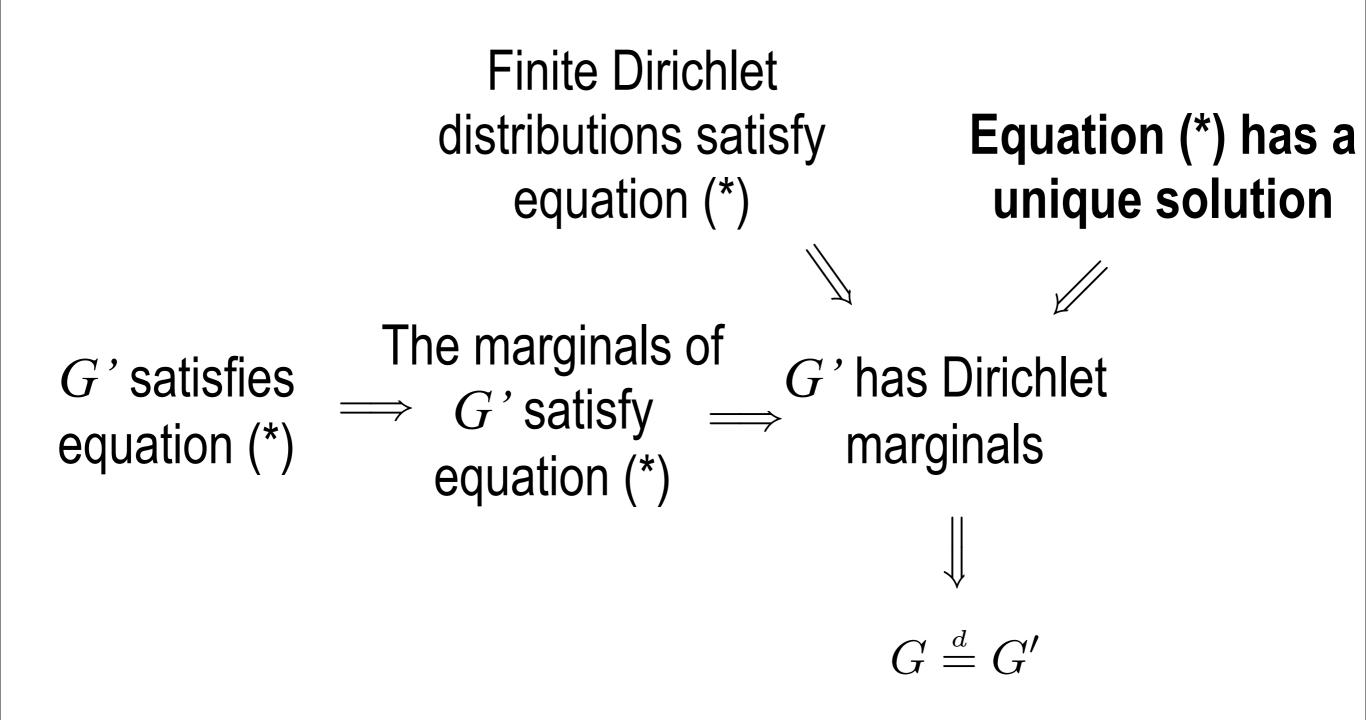
 $\beta^* = (\beta_1, \beta_2, \dots)^* = (\beta_2, \beta_3, \dots)$

Observation:
$$G' = \pi_1 \delta_{\{\theta(1)\}} + (1 - \pi_1) f(\beta^*, \theta^*)$$

= $\pi_1 \delta_{\{\theta(1)\}} + (1 - \pi_1) G''$ for $G' \stackrel{d}{=} G''$
Notation: $G' \stackrel{st}{=} \pi_1 \delta_{\{\theta(1)\}} + (1 - \pi_1) G'$ *****

How we'll use it: we will show that if there is a distribution that satisfies this equation, it is unique; and that the finite Dirichlet distribution satisfies it

Detailed plan



Lemma: uniqueness of the solution of *

Notation:
$$G' = \pi_1 \delta_{\{\theta(1)\}} + (1 - \pi_1)G''$$
$$\bigvee_{V = U}^{st} U + W V$$

Properties we use:

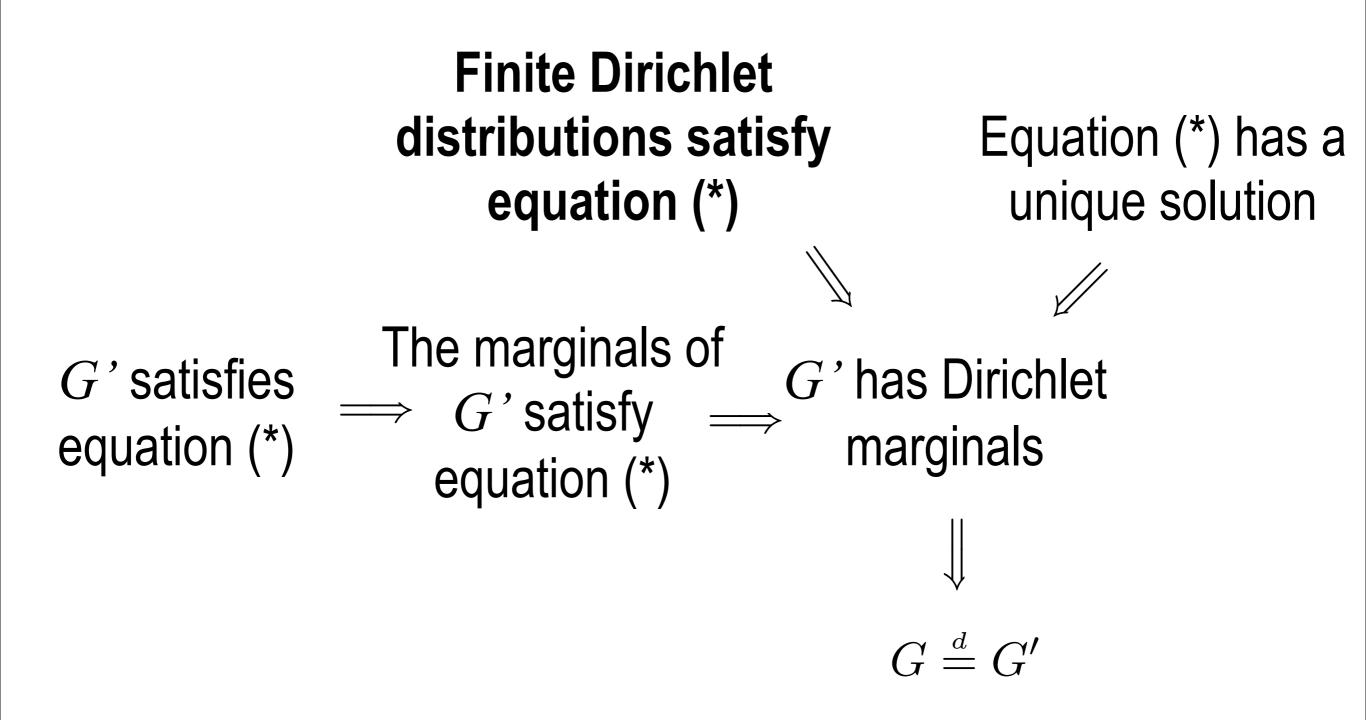
- G " is independent of (U, W)

$$-P(0 < W < 1/2) > 0$$

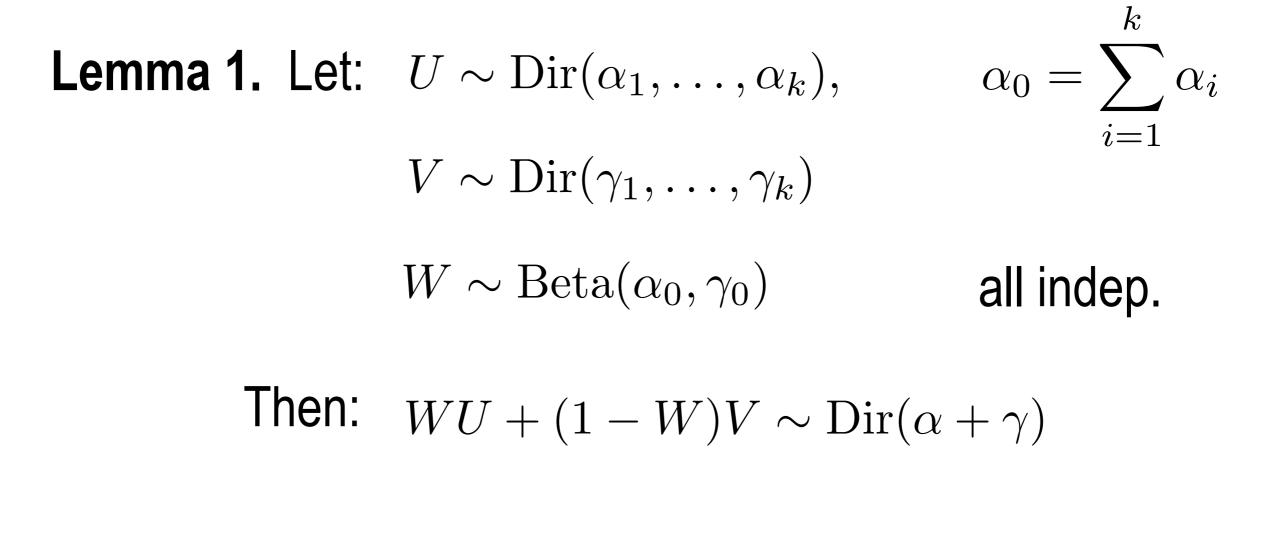
(Proof of uniqueness on the board)

*

Detailed plan



Lemmas



Proof: Gamma/neutral representation

Lemmas

Lemma 2. Let: $e_j = a$ unit basis vector

$$\bar{\gamma}_j = \frac{\gamma_j}{\gamma_0}$$

Then:
$$\sum_{j=1}^k \bar{\gamma}_j \operatorname{Dir}(\gamma + e_j) \sim \operatorname{Dir}(\gamma)$$

Proof: Exercise (next assignment)

Main proof: finite Dirichlet satisfies *

Goal: showing that:

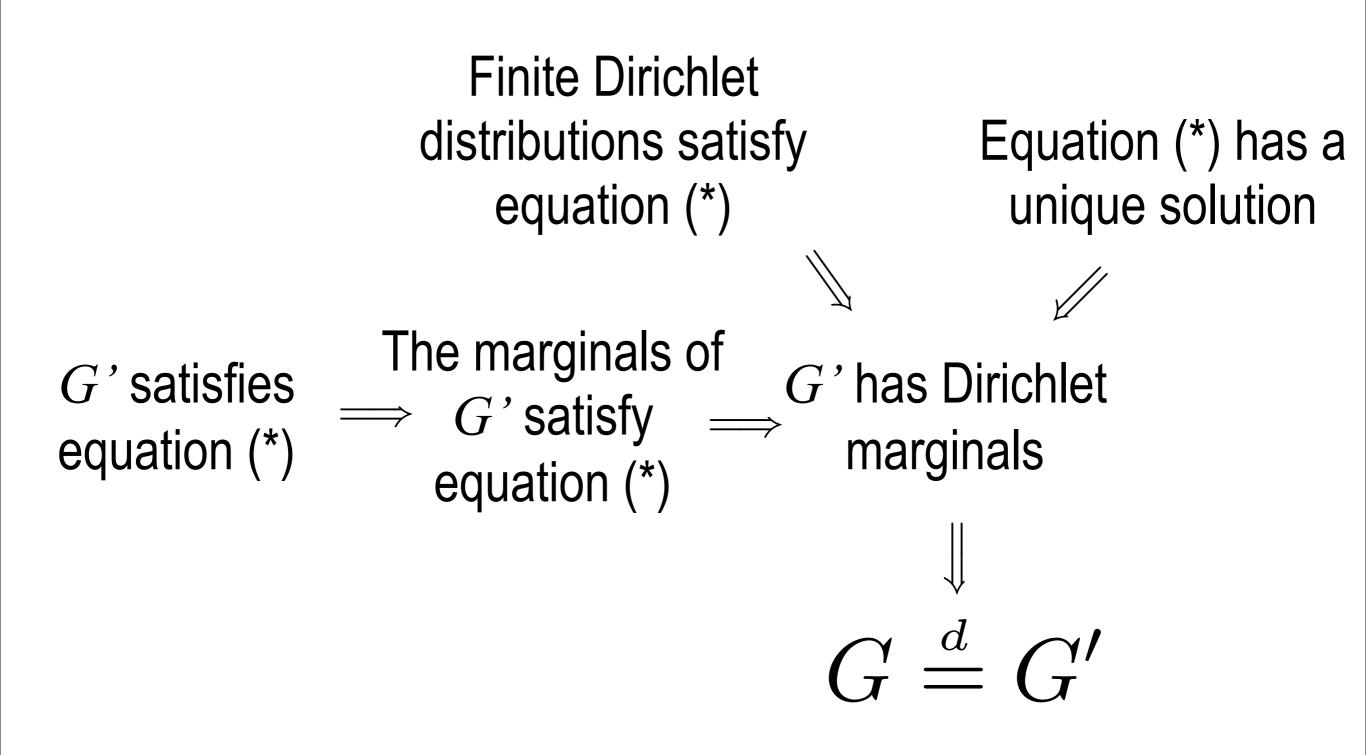
$$V \sim \operatorname{Dir}(\gamma_1, \ldots, \gamma_k)$$

satisfies equation (*) projected to the marginal of a finite partition

Steps:

1- Condition on the partition indicator *X* in which the first atom falls in2- Sum over the possible values of *X*

Detailed plan



Main properties of Dirichlet Processes

Moments

Let $G \sim DP(\alpha_0, G_0)$ and A be a measurable set

Exercise: find the first and second moments of G(A)

(Derivation of the moments on the board)

Towards conjugacy

Let $G \sim DP(\alpha_0, G_0)$ and $(A_1, ..., A_k)$ be a measurable partition. Let θ be a draw from G, i.e.: $\theta \mid G \sim G$

By multinomial-Dirichlet conjugacy, we have:

$$(G(A_1),\ldots,G(A_k))|\theta \sim$$

Dir $(\alpha_0 G_0(A_1) + \delta_{\{\theta\}}(A_1),\ldots,\alpha_0 G_0(A_k) + \delta_{\{\theta\}}(A_k))$

Since this is true for all partitions, this means the posterior is a Dirichlet process as well!

Reference: 'The theory of statistics' (1995) Mark J. Schervish

Conjugacy

Found:

 $\left(G(A_1),\ldots,G(A_k)\right)|\theta \sim$ $\operatorname{Dir}\left(\alpha_0 G_0(A_1) + \delta_{\{\theta\}}(A_1),\ldots,\alpha_0 G_0(A_k) + \delta_{\{\theta\}}(A_k)\right)$

Next: Identifying the new parameters α'_0 and G'_0 of the posterior distribution...

$$\alpha_{0}' = \sum_{k} \left(\alpha_{0} G_{0}(A_{k}) + \delta_{\{\theta\}}(A_{k}) \right) = \alpha_{0} + 1$$
$$G_{0}' = \frac{\alpha_{0}}{\alpha_{0} + 1} G_{0} + \frac{1}{\alpha_{0} + 1} \delta_{\{\theta\}}$$

General formula

Suppose now we have several draws from *G*:

$$\begin{pmatrix} G(A_1), \dots, G(A_k) \end{pmatrix} | \theta_1, \dots, \theta_n \sim \\ \text{Dir} (\alpha_0 G_0(A_1) + n_1, \dots, \alpha_0 G_0(A_k) + n_k) \\ \text{where:} \quad n_j = \sum_{i=1}^n \delta_{\{\theta_i\}}(A_j)$$

Therefore the posterior parameters are:

$$\alpha'_{0} = \alpha_{0} + n$$

$$G'_{0} = \frac{\alpha_{0}}{\alpha_{0} + n} G_{0} + \frac{1}{\alpha_{0} + n} \sum_{i=1}^{n} \delta_{\{\theta_{i}\}}$$

Predictive distribution

Predictive distribution: $\theta_{n+1} | \theta_1, \ldots, \theta_n$

Motivation for marginalizing *G***:** posterior inference using MCMC on a *finite* state space

Let A be a measurable set, $G \sim DP(G_0, \alpha_0)$

$$\theta_1, \ldots, \theta_{n+1} | G \sim G$$

(Derivation of the predictive dist. on the board)

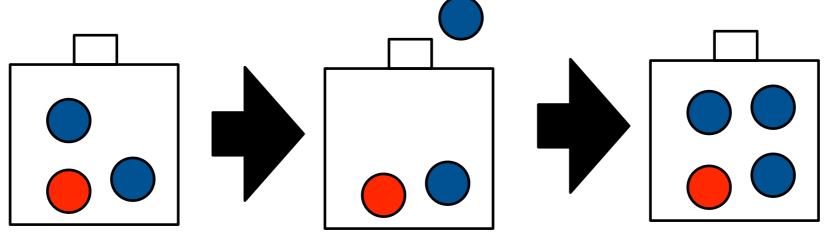
('

 θ_1

Application: Pólya Urn

Thought experiment: Consider an urn, with initially *R* red marbles and *B* blue marbles.

At each step, draw one marble at random, and put it back in the urn after adding another one of the same color



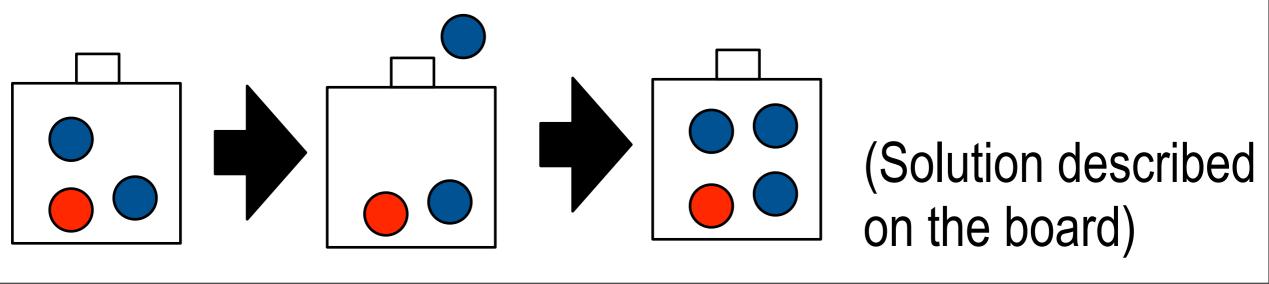
Question: does this process converge to a certain red:blue ratio? What is this ratio?

Application: Pólya Urn

Thought experiment: Consider an urn, with initially R red marbles and *B* blue marbles.

Question: does this process converge to a certain red:blue ratio? What is this ratio?

 $G_0 = \operatorname{Bern}\left(\frac{R}{B+R}\right)$ **Hint:** Let $\alpha_0 = R + B$



Chinese Restaurant Process (CRP)

Idea: Instead of colors sharing colors, think about customers sharing tables in an infinite restaurant

Initialization: The first customer sits in the first empty table.

Iterate: If *n* **customers** are already sitting in the restaurant, the next customer starts a new table with probability $\alpha_0 / (\alpha_0 + n)$; otherwise the customer joins an existing table with probability proportional to the number of people already at the table

