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Program for today

 Applications
 GLMs: Regression and classification
 NLP: language modelling, segmentation, alignment

 Extensions
 Hierarchies and sequences
 Pitman-Yor process
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Terminology

y1

x1

y2

x2

y3

x3θc

πc

c = 1, 2, 3, ...

c = 1, 2, 3, ...

The part in red is the part 
called a Dirichlet Process 

prior, or just DP

After adding a likelihood 
model, the full model is called 

a DP mixture
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Terminology

y1

x1

y2

x2

y3

x3θc

πc

c = 1, 2, 3, ...

c = 1, 2, 3, ...

We denote the marginal 
distribution over the cluster 
indicators x’s by CRP(α0)

CRP: Chinese Restaurant Process
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α0 = 1

CRP: Quiz

What is the marginal CRP(1) of this table assignment,

(Solution shown in the board)

1 2 3 4 5
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Terminology

=
∞∑

c=1

πcδ{θ(c)}G’

θc

πc

βj

c = 1, 2, 3, ...

c = 1, 2, 3, ...

j = 1, 2, 3, ...

βj ∼ Beta(1, α0)
iid

θc ∼ G0

iid

We will denote 
this distribution 

over π by 
GEM(α0)

1

β1
β2(1-β1)

β3(1-β2) (1-β1)

GEM: Griffiths-Engen-McCloskey
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Probabilistic inference with DPs

E[f(π, θ, x, y)|y]

Goal: computing a conditional expectation (e.g. for a Bayes 
estimator)

We covered two samplers: 
Collapsed sampler Slice sampler

...
x1 x2 xn

π

...y1 y2 yn

θ ...

π

x1 x2 xn

...y1 y2 yn

θ
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Collapsed Gibbs sampler

(Derivation on the board)

1 2 3 4 5Current state:

Notation: L(dy|θ) = likelihood, B ⊆ {1, 2, ..., n}, and L(dyB) = 
cluster marginal likelihood:

L(dyB) =
∫ ∏

i∈B

L(dyi|θ)G0(dθ)

E.g.: P(z2 = k | rest)

k = 1 k = 2
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Applications of Dirichlet 
Processes: Regression
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Regression: notation

zi
yi

zn +1

yn +1

Training data Test data/prediction

Input/covariate
Output/dep. var.

z

y

(zi,yi)

zn +1
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Goals

- Globally linear > locally linear
- More generally, globally GLM > locally GLM

Lauren A. Hannah, David M. Blei, Warren B. Powell

(Lower case values refer to observed or fixed values,
while upper case refer to random variables.)

Equation (1) reveals the clustering property of the joint
distribution of θ1:n: There is a positive probability
that each θi will take on the value of another θj , lead-
ing some of the parameters to share values. This equa-
tion also makes clear the roles of α and G0. The unique
values of θ1:n are drawn independently from G0; the
parameter α determines how likely Θn+1 is to be a
newly drawn value from G0 rather than take on one of
the values from θ1:n. G0 controls the distribution of a
new component.

In a DP mixture, θ is a latent parameter to an observed
data point x (Antoniak, 1974),

P ∼ DP(αG0), Θi ∼ P, xi|θi ∼ f(· | θi).

Examining the posterior distribution of θ1:n given x1:n

brings out its interpretation as an “infinite clustering”
model. Because of the clustering property, observa-
tions are grouped by their shared parameters. Un-
like finite clustering models, however, the number of
groups is random and unknown. Moreover, a new data
point can be assigned to a new cluster that was not
previously seen in the data.

Generalized Linear Models. Generalized linear
models (GLMs) build on linear regression to provide a
flexible suite of predictive models. GLMs relate a lin-
ear model to a response via a link function; examples
include familiar models like logistic regression, Poisson
regression, and multinomial regression. (See McCul-
lagh and Nelder (1989) for a full discussion.)

GLMs have three components: the conditional proba-
bility model for response Y , the linear predictor and
the link function. The probability model for Y , de-
pendent on covariates X, is

f(y|η) = exp
(

yη − b(η)
a(φ)

+ c(y,φ)
)

.

Here the canonical form of the exponential family is
given, where a, b, and c are known functions specific
to the exponential family, φ is an arbitrary scale (dis-
persion) parameter, and η is the canonical parameter.
A linear predictor, Xβ, is used to determine the canon-
ical parameter through a set of transformations. It can
be shown that b′(η) = µ = E[Y |X]. However, we can
choose a link function g such that µ = g−1(Xβ), which
defines η in terms of Xβ. The canonical form is useful
for discussion of GLM properties, but we use the mean
form in the rest of this paper. The flexible nature of
GLMs allows us to use them as a local approximation
for a global response function.
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Figure 1: The top figure shows the smoothed regres-
sion estimate for the Gaussian model of equation (2).
The center figure shows the training data (blue) fitted
into clusters, with the prediction given a single sam-
ple from the posterior, θ(i) (red). The bottom figure
shows the underlying clusters (blue) with the fitted re-
sponse (red) for each point in the cluster. Data plot
multipole moments against power spectrum C! for cos-
mic microwave background radiation (Bennett et al.,
2003).

4 Dirichlet Process Mixtures of
Generalized Linear Models

We now develop Dirichlet process mixtures of gener-
alized linear models (DP-GLMs), a flexible Bayesian
predictive model that places prior mass on a large class
of response densities. Given a data set of covariate-
response pairs, we describe Gibbs sampling algorithms
for approximate posterior inference and prediction.
We present theoretical properties of the DP-GLM in
Section 5.

4.1 DP-GLM Formulation

In a DP-GLM, we assume that the covariates X are
modeled by a mixture of exponential-family distri-
butions, the response Y is modeled by a GLM con-
ditioned on the inputs, and that these models are
connected by associating a set of GLM coefficients
with each exponential family mixture component. Let
θ = (θx, θy) denote the bundle of parameters over X
and Y | X, and let G0 denote a base measure on the
space of both. For example, θx might be a set of d-
dimensional multivariate Gaussian location and scale
parameters for a vector of continuous covariates; θy

might be a d+2-vector of reals for their corresponding
GLM linear prediction coefficients, along with a GLM

- Posterior distribution over predictions
- Optionally, over parameters as well
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Basic Bayesian regression

zi

θ

yi

zn +1

yn +1

Training data Test data/prediction

Input/covariate
Output/dep. var.

Regress. 
parameters

Note: in this basic setup, distribution on zi  does not affect 
prediction (but we will need dist on z later, so G-prior excluded)
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Nonparametric Bayesian regression

x1 xn +1

π

zi

θ

yi

zn +1

yn +1

Training data Test data/prediction

Input/covariate
Output/dep. var.

Regress. 
parameters

Cluster indicator

Mixture proportion

θ’ Covariate clustering 
parameters
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Nonparametric Bayesian regression

x1 xn +1

π

zi

θ

yi

zn +1

yn +1

Training data Test data/prediction

Input/covariate
Output/dep. var.

Regress. 
parameters

Cluster indicator

Mixture proportion

θ’ Covariate clustering 
parameters
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Intuition

Lauren A. Hannah, David M. Blei, Warren B. Powell

(Lower case values refer to observed or fixed values,
while upper case refer to random variables.)

Equation (1) reveals the clustering property of the joint
distribution of θ1:n: There is a positive probability
that each θi will take on the value of another θj , lead-
ing some of the parameters to share values. This equa-
tion also makes clear the roles of α and G0. The unique
values of θ1:n are drawn independently from G0; the
parameter α determines how likely Θn+1 is to be a
newly drawn value from G0 rather than take on one of
the values from θ1:n. G0 controls the distribution of a
new component.

In a DP mixture, θ is a latent parameter to an observed
data point x (Antoniak, 1974),

P ∼ DP(αG0), Θi ∼ P, xi|θi ∼ f(· | θi).

Examining the posterior distribution of θ1:n given x1:n

brings out its interpretation as an “infinite clustering”
model. Because of the clustering property, observa-
tions are grouped by their shared parameters. Un-
like finite clustering models, however, the number of
groups is random and unknown. Moreover, a new data
point can be assigned to a new cluster that was not
previously seen in the data.

Generalized Linear Models. Generalized linear
models (GLMs) build on linear regression to provide a
flexible suite of predictive models. GLMs relate a lin-
ear model to a response via a link function; examples
include familiar models like logistic regression, Poisson
regression, and multinomial regression. (See McCul-
lagh and Nelder (1989) for a full discussion.)

GLMs have three components: the conditional proba-
bility model for response Y , the linear predictor and
the link function. The probability model for Y , de-
pendent on covariates X, is

f(y|η) = exp
(

yη − b(η)
a(φ)

+ c(y,φ)
)

.

Here the canonical form of the exponential family is
given, where a, b, and c are known functions specific
to the exponential family, φ is an arbitrary scale (dis-
persion) parameter, and η is the canonical parameter.
A linear predictor, Xβ, is used to determine the canon-
ical parameter through a set of transformations. It can
be shown that b′(η) = µ = E[Y |X]. However, we can
choose a link function g such that µ = g−1(Xβ), which
defines η in terms of Xβ. The canonical form is useful
for discussion of GLM properties, but we use the mean
form in the rest of this paper. The flexible nature of
GLMs allows us to use them as a local approximation
for a global response function.
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Figure 1: The top figure shows the smoothed regres-
sion estimate for the Gaussian model of equation (2).
The center figure shows the training data (blue) fitted
into clusters, with the prediction given a single sam-
ple from the posterior, θ(i) (red). The bottom figure
shows the underlying clusters (blue) with the fitted re-
sponse (red) for each point in the cluster. Data plot
multipole moments against power spectrum C! for cos-
mic microwave background radiation (Bennett et al.,
2003).

4 Dirichlet Process Mixtures of
Generalized Linear Models

We now develop Dirichlet process mixtures of gener-
alized linear models (DP-GLMs), a flexible Bayesian
predictive model that places prior mass on a large class
of response densities. Given a data set of covariate-
response pairs, we describe Gibbs sampling algorithms
for approximate posterior inference and prediction.
We present theoretical properties of the DP-GLM in
Section 5.

4.1 DP-GLM Formulation

In a DP-GLM, we assume that the covariates X are
modeled by a mixture of exponential-family distri-
butions, the response Y is modeled by a GLM con-
ditioned on the inputs, and that these models are
connected by associating a set of GLM coefficients
with each exponential family mixture component. Let
θ = (θx, θy) denote the bundle of parameters over X
and Y | X, and let G0 denote a base measure on the
space of both. For example, θx might be a set of d-
dimensional multivariate Gaussian location and scale
parameters for a vector of continuous covariates; θy

might be a d+2-vector of reals for their corresponding
GLM linear prediction coefficients, along with a GLM

Given a new datapoint, the prior on the z’s enable us to get a 
posterior over which cluster it belongs to.  For each cluster, 

we have a standard Bayesian linear regression model
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Computing the posterior

x1 xn +1

π

zi

θ

yi

zn +1

yn +1

Training data Test data/prediction

Input/covariate
Output/dep. var.

Regress. 
parameters

Cluster indicator

Mixture proportion

θ’ Covariate clustering 
parameters

Collapse sampling is possible:
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Back to previous remark

E[f(π, θ, x, y)|y]

Goal: computing a conditional expectation (e.g. for a Bayes 
estimator)

Special case: sometimes, f depends only on the cluster 
indicators,

Example: clustering, where we only care about the posterior 
fraction of the time each pair of points is in the same mixture 
component

Note: can be made a bit less restrictive 
(will come back to this point later)

f(π, θ, x, y) = f(x)
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Extensions

Other types of input/output: 
Categorical/simplex, count, positive reals

Simple,unified model: replace Normal likelihoods by GLMs
Multinomial, Poisson, Gamma

Difficulty: loss of analytic conjugate priors

Solution: use slice sampler or other auxiliary variables
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Empirical evaluationDirichlet Process Mixtures of Generalized Linear Models

to show. Condition (i) assures weak consistency of
the posterior, condition (ii) guarantees a mean func-
tion exists in the limit and condition (iii) guarantees
that positive probability is only placed on densities
that yield a finite mean function estimate. See Han-
nah et al. (2009) for a discussion and proof.

5.3 Example: Gaussian Model with a
Conjugate Base Measure

The next theorem gives an example of when Theorem
5.1 holds for the Gaussian model. Discussion, proof
and extensions are given in Hannah et al. (2009).
Theorem 5.2. Let (X, Y ) have the joint Gaussian
model. If, for a compact covariate set C,

(i)
∫

f0(x, y)(log f0(x, y))2dxdy <∞,

(ii)
∫

|y|2f0(y|x)dy <∞ for every x ∈ C, and

(iii) G0 is conjugate to the Gaussian model, that is,

β0:d, σy ∼ N − Inv −Gamma(νy,Ξy, ry, λy),
µi, σi ∼ N − Inv −Gamma(νi, ξi, ri, λi),

and ry, r1:d ∈ (1/2, 1), then the conditions of Theorem
5.1 are satisfied.

6 Empirical Study

We compare the performance of DP-GLM regression
to other regression methods. We chose data sets to il-
lustrate the strengths of the DP-GLM, including abil-
ity to model different response/covariate types, and
robustness with respect to heteroscedasticity and mod-
erate dimensionality.

We compare to the following algorithms:

Naive Ordinary Least Squares (OLS). A para-
metric method that often provides a reasonable fit
when there are few observations.

Regression Trees (Tree). A nonparametric
method generated by the Matlab function classregtree.
It accommodates both continuous and categorical
inputs and any type of response.

Gaussian Processes (GP). GPs were generated in
Matlab by the program gpr of Rasmussen and Williams
(2006). It is suitable only for continuous responses and
covariates.

Basic DP Regression (DP Base). Similar to DP-
GLM, except the response is a function only of µy,
rather than β0 +

∑
βixi. That is,

Yi|xi, θi ∼ µiy.
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Figure 2: The average mean absolute error (top) and
mean squared error (bottom) +/− one standard devia-
tion for ordinary least squares (OLS), tree regression,
Gaussian processes and DP-GLM on the CMB data
set. The data were normalized.

Without the GLM response, the model cannot inter-
polate well in higher dimensions, leading to poor pre-
dictive performance.

Poisson GLM (GLM). A Poisson generalized lin-
ear model (count responses), used on the Solar Flare
data set.

With these methods, we examined three data sets:

Cosmic Microwave Background (CMB) Re-
sults. The CMB dataset Bennett et al. (2003) con-
sists of 899 observations which map positive integers
' = 1, 2, . . . , 899, called ‘multipole moments,’ to the
power spectrum C!. Both the covariate and response
are considered continuous. The data are highly non-
linear and heteroscedastic. Competitors were OLS, re-
gression trees and Gaussian processes. Mean absolute
(L1) error and mean squared (L2) error for 5, 10, 30,
50, 100, 250, and 500 training data were computed
using 10 random subset selections for each amount of
data. A conjugate base measure was used. Results are
given in Figure 2.

Concrete Compressive Strength (CCS) Re-
sults. The CCS Yeh (1998) dataset has 8 continuous
covariates. The response is the compressive strength
of the resulting concrete, also continuous. There are
1,030 observations. The data have relatively little
noise. Competitors were OLS, GPs and regression

Lauren A. Hannah, David M. Blei, Warren B. Powell

CCS Dataset
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Figure 3: The average mean absolute error (top) and
mean squared error (bottom) +/− one standard de-
viation for ordinary least squares (OLS), tree regres-
sion, Gaussian processes, location/scale DP and the
DP-GLM Poisson model on the CCS data set. The
data were normalized.

trees. We also included a basic DP regression tech-
nique (location/scale DP) on this data set. Mean ab-
solute (L1) error and mean squared (L2) error for 20,
30, 50, 100, 250, and 500 training data were computed
using 10 random subset selections for each amount
of data. Gaussian mean and log-Gaussian scale base
measures were used. Results are given in Figure 3.

Solar Flare Results. The Solar Bradshaw (1989)
dataset was chosen to demonstrate the flexibility of
DP-GLM. The response is the number of solar flares in
a 24 hour period in a given area. There 1,389 observa-
tions and 11 categorical covariates. Competitors were
tree regression and a Poisson GLM. GPs and other
methods cannot be used for count/categorical data.
Mean absolute (L1) error and mean squared (L2) er-
ror for 50, 100, 200, 500, and 800 training data were
computed using 10 random subset selections for each
amount of data. A Dirichlet covariate and Gaussian
slope base measure was used with a Poisson response
distribution. Results are given in Figure 4.

Discussion. DP-GLM has flexibility that is not of-
fered by most regression methods. It does well on data
sets with heteroscedastic errors because it fundamen-
tally incorporates them; error parameters (σiy) are in-
cluded in the DP mixture. DP-GLM is comparatively
robust with small amounts of data because in that

Solar Dataset
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Figure 4: The average mean absolute error (top) and
mean squared error (bottom) +/− one standard devi-
ation for tree regression, a Poisson GLM (GLM) and
DP-GLM on the Solar data set.

case it tends to put all (or most) of the observations
into one cluster; this effectively produces a linear re-
gression, but eliminates outliers by placing them into
their own (low-weighted) clusters.

The comparison between DP-GLM regression and ba-
sic DP regression is illustrative. We compared basic
DP regression only on the CCS data set because it has
a large number of covariates. Like kernel smoothing,
basic DP regression struggles in high dimensions be-
cause it cannot efficiently interpolate values between
observations. The GLM component effectively elimi-
nates this problem.

The diversity of the data sets demonstrates the adapt-
ability of the DP-GLM. Only tree regression was able
to work on all of the data sets, and the DP-GLM
has many desirable properties that tree regression does
not, such as a smooth mean function estimate and less
sensitivity to bandwidth/pruning level.
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