Statistical modeling with stochastic processes

Alexandre Bouchard-Côté Lecture 8, Wednesday March 23

Program for today

Applications

- GLMs: Regression and classification
- NLP: language modelling, segmentation, alignment

Extensions

- Hierarchies and sequences
- Pitman-Yor process

Review

Terminology

Terminology

CRP: Chinese Restaurant Process

CRP: Quiz

What is the marginal CRP(1) of this table assignment, $\alpha_0 = 1$

(Solution shown in the board)

Terminology

GEM: Griffiths-Engen-McCloskey

Probabilistic inference with DPs

Goal: computing a conditional expectation (e.g. for a Bayes estimator) $\mathbb{E}[f(\pi, \theta, x, y)|y]$

We covered two samplers:

 χ_n

Collapsed Gibbs sampler

Current state:

Notation: $L(dy|\theta)$ = likelihood, $B \subseteq \{1, 2, ..., n\}$, and $L(dy_B)$ = cluster marginal likelihood:

$$L(\mathrm{d}y_B) = \int \prod_{i \in B} L(\mathrm{d}y_i | \theta) G_0(\mathrm{d}\theta)$$

E.g.: $P(z_2 = k | \text{rest})$

(Derivation on the board)

Applications of Dirichlet Processes: Regression

Regression: notation

- Globally linear > locally linear
- More generally, globally GLM > locally GLM

- Posterior distribution over predictions
- Optionally, over parameters as well

Basic Bayesian regression

Note: in this basic setup, distribution on z_i does not affect prediction (but we will need dist on z later, so G-prior excluded)

Nonparametric Bayesian regression

Nonparametric Bayesian regression

Given a new datapoint, the prior on the z's enable us to get a posterior over which cluster it belongs to. For each cluster, we have a standard Bayesian linear regression model

Computing the posterior

Collapse sampling is possible:

Back to previous remark

Goal: computing a conditional expectation (e.g. for a Bayes estimator) $\mathbb{E}[f(\pi, \theta, x, y)|y]$

Special case: sometimes, *f* depends only on the cluster indicators, $f(\pi \ \theta \ x \ y) = f(x)$

$$f(\pi, \theta, x, y) = f(x)$$

Example: clustering, where we only care about the posterior fraction of the time each pair of points is in the same mixture component

Note: can be made a bit less restrictive (will come back to this point later)

Extensions

Other types of input/output: Categorical/simplex, count, positive reals

Simple, unified model: replace Normal likelihoods by GLMs Multinomial, Poisson, Gamma

Difficulty: loss of analytic conjugate priors

Solution: use slice sampler or other auxiliary variables

Empirical evaluation

Mean Absolute Error

Mean Square Error

800

500

Algorithm

DP-GLM

Poisson

Regression

GLM

Tree

