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Program for today

 Applications
 NLP: language modelling, segmentation, alignment

 Extensions
 Hierarchies and sequences
 Pitman-Yor & Beta processes
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Regression: notation
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Goals

- Globally linear > locally linear
- More generally, globally GLM > locally GLM

Lauren A. Hannah, David M. Blei, Warren B. Powell

(Lower case values refer to observed or fixed values,
while upper case refer to random variables.)

Equation (1) reveals the clustering property of the joint
distribution of θ1:n: There is a positive probability
that each θi will take on the value of another θj , lead-
ing some of the parameters to share values. This equa-
tion also makes clear the roles of α and G0. The unique
values of θ1:n are drawn independently from G0; the
parameter α determines how likely Θn+1 is to be a
newly drawn value from G0 rather than take on one of
the values from θ1:n. G0 controls the distribution of a
new component.

In a DP mixture, θ is a latent parameter to an observed
data point x (Antoniak, 1974),

P ∼ DP(αG0), Θi ∼ P, xi|θi ∼ f(· | θi).

Examining the posterior distribution of θ1:n given x1:n

brings out its interpretation as an “infinite clustering”
model. Because of the clustering property, observa-
tions are grouped by their shared parameters. Un-
like finite clustering models, however, the number of
groups is random and unknown. Moreover, a new data
point can be assigned to a new cluster that was not
previously seen in the data.

Generalized Linear Models. Generalized linear
models (GLMs) build on linear regression to provide a
flexible suite of predictive models. GLMs relate a lin-
ear model to a response via a link function; examples
include familiar models like logistic regression, Poisson
regression, and multinomial regression. (See McCul-
lagh and Nelder (1989) for a full discussion.)

GLMs have three components: the conditional proba-
bility model for response Y , the linear predictor and
the link function. The probability model for Y , de-
pendent on covariates X, is

f(y|η) = exp
(

yη − b(η)
a(φ)

+ c(y,φ)
)

.

Here the canonical form of the exponential family is
given, where a, b, and c are known functions specific
to the exponential family, φ is an arbitrary scale (dis-
persion) parameter, and η is the canonical parameter.
A linear predictor, Xβ, is used to determine the canon-
ical parameter through a set of transformations. It can
be shown that b′(η) = µ = E[Y |X]. However, we can
choose a link function g such that µ = g−1(Xβ), which
defines η in terms of Xβ. The canonical form is useful
for discussion of GLM properties, but we use the mean
form in the rest of this paper. The flexible nature of
GLMs allows us to use them as a local approximation
for a global response function.
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Figure 1: The top figure shows the smoothed regres-
sion estimate for the Gaussian model of equation (2).
The center figure shows the training data (blue) fitted
into clusters, with the prediction given a single sam-
ple from the posterior, θ(i) (red). The bottom figure
shows the underlying clusters (blue) with the fitted re-
sponse (red) for each point in the cluster. Data plot
multipole moments against power spectrum C! for cos-
mic microwave background radiation (Bennett et al.,
2003).

4 Dirichlet Process Mixtures of
Generalized Linear Models

We now develop Dirichlet process mixtures of gener-
alized linear models (DP-GLMs), a flexible Bayesian
predictive model that places prior mass on a large class
of response densities. Given a data set of covariate-
response pairs, we describe Gibbs sampling algorithms
for approximate posterior inference and prediction.
We present theoretical properties of the DP-GLM in
Section 5.

4.1 DP-GLM Formulation

In a DP-GLM, we assume that the covariates X are
modeled by a mixture of exponential-family distri-
butions, the response Y is modeled by a GLM con-
ditioned on the inputs, and that these models are
connected by associating a set of GLM coefficients
with each exponential family mixture component. Let
θ = (θx, θy) denote the bundle of parameters over X
and Y | X, and let G0 denote a base measure on the
space of both. For example, θx might be a set of d-
dimensional multivariate Gaussian location and scale
parameters for a vector of continuous covariates; θy

might be a d+2-vector of reals for their corresponding
GLM linear prediction coefficients, along with a GLM

- Posterior distribution over predictions
- Optionally, over parameters as well
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Basic Bayesian regression

zi
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Output/dep. var.

Regress. 
parameters

Note: in this basic setup, distribution on zi  does not affect 
prediction (but we will need dist on z later, so G-prior excluded)
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Nonparametric Bayesian regression
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Nonparametric Bayesian regression
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Intuition

Lauren A. Hannah, David M. Blei, Warren B. Powell

(Lower case values refer to observed or fixed values,
while upper case refer to random variables.)

Equation (1) reveals the clustering property of the joint
distribution of θ1:n: There is a positive probability
that each θi will take on the value of another θj , lead-
ing some of the parameters to share values. This equa-
tion also makes clear the roles of α and G0. The unique
values of θ1:n are drawn independently from G0; the
parameter α determines how likely Θn+1 is to be a
newly drawn value from G0 rather than take on one of
the values from θ1:n. G0 controls the distribution of a
new component.

In a DP mixture, θ is a latent parameter to an observed
data point x (Antoniak, 1974),

P ∼ DP(αG0), Θi ∼ P, xi|θi ∼ f(· | θi).

Examining the posterior distribution of θ1:n given x1:n

brings out its interpretation as an “infinite clustering”
model. Because of the clustering property, observa-
tions are grouped by their shared parameters. Un-
like finite clustering models, however, the number of
groups is random and unknown. Moreover, a new data
point can be assigned to a new cluster that was not
previously seen in the data.

Generalized Linear Models. Generalized linear
models (GLMs) build on linear regression to provide a
flexible suite of predictive models. GLMs relate a lin-
ear model to a response via a link function; examples
include familiar models like logistic regression, Poisson
regression, and multinomial regression. (See McCul-
lagh and Nelder (1989) for a full discussion.)

GLMs have three components: the conditional proba-
bility model for response Y , the linear predictor and
the link function. The probability model for Y , de-
pendent on covariates X, is

f(y|η) = exp
(

yη − b(η)
a(φ)

+ c(y,φ)
)

.

Here the canonical form of the exponential family is
given, where a, b, and c are known functions specific
to the exponential family, φ is an arbitrary scale (dis-
persion) parameter, and η is the canonical parameter.
A linear predictor, Xβ, is used to determine the canon-
ical parameter through a set of transformations. It can
be shown that b′(η) = µ = E[Y |X]. However, we can
choose a link function g such that µ = g−1(Xβ), which
defines η in terms of Xβ. The canonical form is useful
for discussion of GLM properties, but we use the mean
form in the rest of this paper. The flexible nature of
GLMs allows us to use them as a local approximation
for a global response function.
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Figure 1: The top figure shows the smoothed regres-
sion estimate for the Gaussian model of equation (2).
The center figure shows the training data (blue) fitted
into clusters, with the prediction given a single sam-
ple from the posterior, θ(i) (red). The bottom figure
shows the underlying clusters (blue) with the fitted re-
sponse (red) for each point in the cluster. Data plot
multipole moments against power spectrum C! for cos-
mic microwave background radiation (Bennett et al.,
2003).

4 Dirichlet Process Mixtures of
Generalized Linear Models

We now develop Dirichlet process mixtures of gener-
alized linear models (DP-GLMs), a flexible Bayesian
predictive model that places prior mass on a large class
of response densities. Given a data set of covariate-
response pairs, we describe Gibbs sampling algorithms
for approximate posterior inference and prediction.
We present theoretical properties of the DP-GLM in
Section 5.

4.1 DP-GLM Formulation

In a DP-GLM, we assume that the covariates X are
modeled by a mixture of exponential-family distri-
butions, the response Y is modeled by a GLM con-
ditioned on the inputs, and that these models are
connected by associating a set of GLM coefficients
with each exponential family mixture component. Let
θ = (θx, θy) denote the bundle of parameters over X
and Y | X, and let G0 denote a base measure on the
space of both. For example, θx might be a set of d-
dimensional multivariate Gaussian location and scale
parameters for a vector of continuous covariates; θy

might be a d+2-vector of reals for their corresponding
GLM linear prediction coefficients, along with a GLM

Given a new datapoint, the prior on the z’s enable us to get a 
posterior over which cluster it belongs to.  For each cluster, 

we have a standard Bayesian linear regression model
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Extensions

Other types of input/output: 
Categorical/simplex, count, positive reals

Simple,unified model: replace Normal likelihoods by GLMs
Multinomial, Poisson, Gamma

Difficulty: loss of analytic conjugate priors

Solution: use slice sampler or other auxiliary variables
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Applications of Dirichlet 
Processes in NLP
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Language models

Shannon’s game: guess the next word...

I have lived in San ______ 

I am not going to go ______

Application: finding which sentence is more likely

there or their?

Example: Speech recognition
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Language models: first approach

Fix a certain prefix length, and estimate one categorical 
distribution for each prefix from a text dataset (n-gram)

Distribution over what 
follows after the prefix 

Fix ___ 

Guess Pr
a 1.0

Distribution over what 
follows after the prefix 

a ___ 

Guess Pr
certain 0.5
text 0.5

...

Problem with the maximum likelihood estimator?
Monday, March 28, 2011



First try: language model using DPs

y1

x1

y2

x2

y3

x3

Parameters of 
each mixture 
component

θc

πc

c = 1, 2, 3, ...

c = 1, 2, 3, ...

Model:

Fix a prefix, e.g. u = (Fix __)

 u

 u

All the observed 
words following 
Fix ____

 u  u  u

 u  u  u
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Alternative view to the CRP: cache model

w1 w2 w3

G

Fix a prefix, e.g. u = (Fix __)

All the observed 
words following 
Fix ____

 u  u  u

 u

Recall: We denote the marginal 
distribution over the cluster 
indicators x’s by CRP(α0)
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First try: language model using DPs

w1 w2 w3

G

Fix a prefix, e.g. u = (Fix __)

All the observed 
words following 
Fix ____

 u  u  u

 u

Simplified model:
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Problem...

Distribution over what 
follows after the prefix 

Fix ___ 

Guess Pr
a 0.92
... ...
... ...

Distribution over what 
follows after the prefix 

a ___ 

Guess Pr
certain 0.46
text 0.46
... ...

...

Some prefixes are rare.  Is that a problem? 

Prior for prefix 1 Prior for prefix 2 ...
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Solution: hierarchical model

Distribution over what follows after 
the prefix 
Fix ___ 

Guess Pr

a 0.92

... ...

... ...

Distribution over what follows after 
the prefix 

a ___ 

Guess Pr

certain 0.46

text 0.46

... ...

...

Prior for prefix 1 Prior for prefix 2 ...

Hyper-prior over words---not specific to a prefix
Guess Pr

the 0.04

a 0.02

... ...

Distribution over words 
in text dataset
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Another problem...

Dirichlet process does not have the right tail behavior!

Empirical observation: number of unique words (word 
types) in a natural language corpus containing n words 
tokens is O(ns) for s ∈ [1/2, 1)
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P(customer n starts a new table) =
α0

α0 + n

A simple asymptotic result
Expected number of tables t as number of customers n 
goes to infinity?

Note: the probability of creating a new table for a new 
customer n + 1 does not depend on the previous sitting 
arrangement:

Therefore: the number of tables is an harmonic sum, so 
the asymptotic number of tables is O(log n)

Soon: Pitman-Yor, a process that has O(nd) table...
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