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3.1 Overview

In these notes, we will see examples of how the Dirichlet process can be used as a prior in classical statistical
estimation problems. We will see two examples: density estimation (and its cousin, cluster analysis), and
nonparametric Bayesian GLMs (which include nonparametric regression and classification as special cases).
We will introduce along the way two MCMC techniques that can be used to approximate the posterior. We
will also look at the question of how to use the posterior to answer the task at hand.

3.2 First examples: applying DPs to density estimation and clus-
ter analysis

The task in density estimation is to give an estimate, based on observed data, of an unobservable underlying
probability density function. The unobservable density function is thought of as the density according to
which a large population is distributed; the data are usually thought of as a random sample from that
population.

In cases where the population is thought as being the union of sub-populations, the task of cluster analysis
is to find the sub-population structure (usually without labeled data). Let us assume for simplicity that we
wish to separate the data into two clusters.1

Let us take a Bayesian approach to these problems. This means that we (the modeler) need to pick a joint
probability distribution over knowns and unknowns (prior+likelihood), as well as a loss function.

3.2.1 Example of joint probability distribution

When the data yi we wish to model is continuous, e.g. when the random variables yi

.
∈ Rd have a distribution

absolutely continuous with respect to the Lebesgue measure, using the Dirichlet process G directly as a prior
on yi is inappropriate, i.e. modeling the data as yi|G ∼ G is not a good choice. The reason is that the
predictive distribution y′|y1, . . . , yn will always assign positive probability to the events (y′ = a) for a ∈ R2,
while any consistent estimator would assign probability zero to these events.2

1Note that the Dirichlet process is still a useful tool, even when the number of desired cluster is fixed. This is because each
cluster that is output may need internally more than one mixture to be explained adequately under the likelihood model at
hand. Consider for example doing clustering on the data used in the first problem of the second assignment.

2Note that in cases where yi take values in a countable set, models of the form yi|G ∼ G are used. See the next set of notes
for an example.
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Instead Dirichlet processes are often used as a prior over the parameters of a mixture model, as discussed in
the motivation of Part 2 of this set of lecture notes. This yields a model of the form:

Definition 3.1 (Dirichlet mixture model) Let (Θ,FΘ) be a measurable space of parameters, and (X ,FX )
be a measurable space of observation. A Dirichlet mixture (DPM) model is specified by three ingredients:

1. A concentration parameter α0 > 0,

2. A likelihood model L (formally, a regular conditional distribution L : Θ×FX → [0, 1]),

3. A prior over cluster parameters G0 (formally, a distribution G0 : FΘ → [0, 1]).

Given these ingredients, the DPM is defined as follows:

G ∼ DP(α0, G0)
θi|G ∼ G

yi|θi ∼ L(θi, ·).

For example, in Section 2.1 of Part 2 of this set of notes, Θ = R × (0,∞) (mean parameter times variance
parameter), X = R; and L could be a normal likelihood, and G0, a normal-scaled inverse gamma distribution
(the conjugate distribution when both means and variance of L are unknown).

Note that a clustering can be obtained from a DPM by looking at the posterior frequency that pairs of
customers sit together at a CRP table (i.e. a sample from the posterior of a DPM defines a clustering via
the labeled partition construction of Part 2 of this set of notes). Recall that we use the notation xi for the
cluster (table) index of data point (customer) i. These variables are typically implemented by taking value
in the positive integers, but note that the ordering structure is meaningless in collapsed samplers and should
not be used when computing posterior statistics (and indeed, we will see in Section 3.2.3 that the sufficient
statistics for computing the Bayes estimator for a classical loss take the form 1[xi = xj ]).

A density estimator can also be obtained from a DPM by the random density F (ỹ) =
∫

l(ỹ|θ)G( dθ), where
l is a density for L.

3.2.2 Examples of loss functions

In the case of clustering, a popular choice is the rand loss between a true and putative labeled partitions
ρ, ρ′, denoted by Rand(ρ, ρ′).3

Definition 3.2 The rand loss is defined as the number of (unordered) pairs of data points indices {i, j} such
that (i ∼ρ j) 6= (i ∼ρ′ j), i.e.: ∑

1≤i<j≤n

1[(i ∼ρ j) 6= (i ∼ρ′ j)],

where:

(i ∼ρ j) =
{

1 if there is a B ∈ ρ s.t.{i, j} ⊆ B
0 o.w. .

In other words, a loss of one is incurred each time either: (1) two points are assumed to be in the same
cluster when they should not, or (2) two points are assumed to be in different clusters when they should be
in the same cluster.

3Note that we turn the standard notion of rand index into a loss by taking 1 - the rand index.
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The rand loss has several problems, motivating other clustering losses such as the adjusted rand index, but
we will look at the rand loss here since the derivation of the Bayes estimator is easy for that particular loss.

In the case of density estimation, if the task is to reconstruct the density itself, examples of loss functions
include the Hellinger and KL losses. However, density estimation is usually an intermediate step for another
task, and the loss should then be defined on this final task rather than on the intermediate density estimation
task. For example, in the first part of the second assignment, the task under consideration is to construct a
visualization of the predictive density using a large but finite number of points ỹj ∈ S on a grid S. In this
case, an example of loss function is:

L(p, p′) = ||pj − p′j ||22,

where p, p′ are |S|−dimensional vectors of nonnegative real numbers (where pj corresponds to the density
sampled at ỹj).

3.2.3 Combining probability models and loss functions to do inference

As reviewed earlier, the Bayesian framework is reductionist: given a loss function L and a probability model
(X, Y ) ∼ P, it prescribes the following estimator:

argmin
x

E[L(x,X)|Y ].

We will revisit the examples of clustering and density estimation with the loss function defined in Section 3.2.2
to see how this abstract quantity can be computed or approximated in practice.

First, for the rand loss, we can write:

argmin
partition ρ

E [Rand(x, ρ)|y] = argmin
partition ρ

∑
i<j

E [1 [1[xi = xj ]] 6= ρij |y]

= argmin
partition ρ

∑
i<j

{(1− ρij)P(xi = xj |y) + ρij (1− P(xi = xj |y))}

where ρi,j = (i ∼ρ j).

This means that computing an optimal bipartition of the data into two clusters can be done in two steps:

1. Simulating a Markov chain, and use the samples to estimate µi,j = P(xi = xj |y) via Monte Carlo
averages.

2. Minimize the linear objective function
∑

i<j {(1− ρij)µi,j + ρij (1− µi,j)} over bipartitions ρ.

Note that the second step can be efficiently computed using min-flow/max-cut algorithms (understanding
how this algorithm works is outside of the scope of this lecture, but if you are curious, see [4]). Our focus
will be on computing the first step, i.e. the posterior over the random cluster membership variables xi. Note
that the µi,j are easy to compute from samples since the Monte carlo average of a function f applied to
MCMC samples converges to the expectation of the function under the stationary distribution (as long as f
is integrable, which is the case here since the indicator function is bounded). Sampling will be the topic of
the next section.

For density estimation, going over the same process for the special loss defined Section 3.2.2, we get:

min
p∈[0,∞)|S|

E

 |S|∑
j=1

(pj − F (ỹj))2
∣∣∣y
 =

|S|∑
j=1

min
pj∈[0,∞)

E
[
(pj − F (ỹj))2

∣∣∣y] ,
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so that the estimator is p̂j = E[F (ỹj)|y], which we will approximate using again a MC average:

p̂j = E[F (ỹj)|y]

≈ 1
T

T∑
t=1

E[F (ỹj)|x(t), y]. (3.1)

We will come back on how to compute E[F (ỹj)|x(t), y] for each sample x(t) later on, but the important point
here is that again, we need to simulate cluster membership variables x from the posterior distribution.

3.3 MCMC sampling on DPMs

We will cover two sampling techniques, called collapsed [11] (or marginalized) and slice sampling [9]. The
difference between the two lays in the variables that are explicitly represented in the state of the sampler.

In the collapsed sampler, only the cluster membership variables are stored as each Gibbs iteration:

...

x1 x2 xn

!

...
y1 y2 yn

"

Again, the crosses in this picture represents analytic marginalization (more on how this is done is coming
soon). The shaded variables are observed.

In the slice sampler, we will represent (instantiate) more variables in the state of the sampler:

...

!

x1 x2 xn

...
y1 y2 yn

"

We will use auxiliary variables and lazy computation to avoid having to explicitly represent all of the infinite
list of sticks and dishes.

This difference in representation has an impact on which blocks of variables can be sampled simultaneously.
This in turn has an impact on both the performance of the sampler and what types of statistics can be
computed from the posterior.
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3.3.1 Joint distribution

We start by writing an expression for the joint distribution over a dish event dθ (i.e. a measurable set of
infinite list of parameters, dθ ∈ F∞

Θ ), a stick event dπ ( dπ ∈ F∞
[0,1]), observations dy ( dy ∈ Fn

X ) and over
an assignment a ∈ Nn of the cluster membership variables, (x = a).

Finding the joint distribution is done by writing a product where each factor correspond to an edge in the
joint graphical model:

...

!

x1 x2 xn

...
y1 y2 yn

"

This yields:

P( dθ, dπ, x = a, dy) = G∞
0 ( dθ) GEM(dπ;α0)P(x = a|π)

n∏
i=1

L( dyi|θai).

In the collapsed sampler version, we will integrate over θ and π, while in the slice version, we will augment
this representation to make it possible to represent the infinite lists explicitly.

3.3.2 Collapsed Gibbs sampler

The collapsed Gibbs sampler make two assumptions: that the prior over dishes, G0 and the likelihood L are
conjugate, and that the posterior of interest can be computed from samples from the cluster membership
variables.

At each iteration, the collapsed sampler maintains values only for the cluster membership variables x, or
more precisely, a labeled partition ρ over the datapoints, which, as will is see, is sufficient thanks to the
results on the Chinese Restaurant Process representation of the part 2 of this set of notes. We will write
(ρ(x) = ρ) for the labeled partition induced by the cluster membership variables (overloading ρ(·) to denote
also the function that extracts the labeled partition induced by the cluster membership variables).

Given a block B ⊂ {1, 2, . . . , n} of datapoints sharing a table, with corresponding observations dyB = (dyi :
i ∈ B), we introduce the following notation for the cluster marginal likelihood:

L( dyB) =
∫ ∏

i∈B

L( dyi|θc)G0( dθc),

and its density l(yB) =
∫ ∏

i∈B l(yi|θc)G0( dθc).

With this notation, and given that the observations dyB of the customers sitting at table (or block) B share
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a G0-distributed cluster parameter θ, we get:

P(x = a, dy) =
∫ ∫

P(x = a|π)

(
n∏

i=1

L( dyi|θai
)

)
G∞

0 ( dθ) GEM(dπ;α0)

=
(∫

P(x = a|π) GEM(dπ;α0)
)(∫ ( n∏

i=1

L( dyi|θai
)

)
G∞

0 ( dθ)

)
= CRP(ρ(a);α0)

∏
B∈ρ(a)

L( dyB)

From this expression, it is apparent that ρ(x) is sufficient.

In general, collapsed Gibbs samplers proceed by proposing local changes ρ′1, . . . , ρ
′
K to the current labeled

partition ρ, and picks one of the neighbor or outcome ρ′k proportionally to the density of the joint:

pk = CRP(ρ′k;α0)
∏

B∈ρ′
k

l(yB). (3.2)

In other words, after computing p1, . . . , pK (perhaps up to a proportionality constant), a new labeled partition
is picked with probability

P(ρ(x) = ρ′k|y) =
pk∑
k′ pk′

.

In the remaining of the section, we explain how these local changes are defined, and how to compute pk

efficiently.

In the standard Gibbs sampler, a local change to a seating arrangement (labeled partition) is simply obtained
by taking one of the customer i out of the restaurant, and reinserting the customer at one of the tables
(including the possibility of letting the customer start a new table). In principle, this could be done by
computing the Formula (3.2) for each of the t + 1 possible ways of reinserting the customer, where t is the
number of tables occupied by the customers other than i. However this would involve O(t2) cluster marginal
likelihood computations (there are t + 1 of them for each of the t + 1 possible ρ′k), while we now show that
it can be done using only O(t) cluster marginal likelihood evaluations.

A more efficient method is to compute unnormalized outcome probability via the density of the predictive
distribution P(ρ(x) = ρ′k, dyi|x\i, y\i):

qk = CRP(ρ′k|ρ(x\i))l(yi|yBk
),

where Bk is the indices of the customers (other than i) that customer i would share a table with if outcome
k is selected, and l(yi|yB) is the density of the predictive cluster likelihood:

L( dyi|yB) =
{

L( dyi) if B = ∅
L(yB∪{i})/L(yB) o.w.

The intuition behind this computation is to consider the customer being resampled as the last one entering
the restaurant.

Note that pk ∝ qk, but computing qk takes only O(t) cluster marginal likelihood evaluations.

We now turn to the problem of computing cluster marginal and predictive likelihoods, where we will use the
conjugacy assumption. Let T

.
∈ Rd be the sufficient statistic for θ, and ξ ∈ Ξ denote the hyper-parameters for

the dish prior density. Recall that conjugacy means that there is a deterministic function f : Ξ×Rd → Ξ such
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that the density of the cluster posterior, g0(θ|y; ξ) is equal to the density of the prior, but with transformed
(updated) hyper-parameters:

g0(θ|y; ξ) = g0(θ; f(ξ, T (y))).

Next, let us fix an arbitrary θ∗ and note that by the Bayes rule we have:

g0(θ∗|y; ξ) =
l(y|θ∗)g0(θ∗; ξ)

l(y)
.

Combining these two equations together, we get that the density of the marginal likelihood can be computed
via the identity:

l(y) =
l(y|θ∗)g0(θ∗; ξ)

g0(θ∗; f(ξ, T (y)))
.

This gives all the ingredients needed to compute an estimate for the clustering application introduced earlier.
For the density estimation problem, we still have to show that samples over the cluster indicators are enough
to minimized the loss function at hand in Equation (3.1):

E
[
F (ỹ)

∣∣∣x(t), y
]

=
∫

l(ỹ|θ)G( dθ|x(t), y)

=
α0l(ỹ)
α0 + n

+
1

α0 + n

∑
B∈ρ(x(t))

l(ỹ|yB).

One final note is that adding a prior on α0 and resampling its value is possible and an important thing to
do in practice. See [1].

3.3.3 Slice sampler

The slice sampler proceeds by introducing auxiliary variables which makes it possible to avoid storing the
infinite list of sticks and stick locations. This is done by a general computational trick called lazy computa-
tion.

Before going over the trick for posterior inference, let us go over an easier instance of lazy computation, for
sampling from the prior in the Polya urn example of the previous set of notes.

We are going to see an alternative way of sampling a sequence of draws from the urn model. This is certainly
not the simplest way to do so (using the predictive distribution is simpler, i.e. drawing balls and reinserting
it plus one of the same color), but it is instructive to consider the following alternative “algorithm”:

1. Sample a list of stick lengths, π1, π2, · · · ∼ GEM(R + B)

2. Sample one stick ‘color’ for each stick, θ1, θ2, · · · ∼ G0 = Bin(R/(R + B))

3. To sample a ball, throw a dart on the stick and return the color of that stick segment:
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The problem with this “algorithm” is that the first step would never terminate: it requires infinite time to
compute an infinite list of stick lengths.4

Fortunately it turns out the steps can be turned around to transform the procedure into a valid algorithm:

1. Throw the dart first, look at the position u of landing

2. Sample the minimum number of πc’s such that
∑c

c′=1 πc > u (finite with probability one)

3. Color the segments, return the color of the segment we landed on:

To get more samples, first throw the dart again, then check if more segments are needed (if the dart fall in
an existing colored segment, return that color).

In order to apply a similar idea to posterior inference, we will have to first introduce some auxiliary variables
u, more precisely one for each datapoint:

!

x1 xn

y1 yn

"

u1 un
...

where ui|xi, π ∼ Uni(0, πxi). This yields the following joint density:

P( dθ, dπ, x = a, dy, du) = G∞
0 ( dθ) GEM(dπ;α0)P(x = a|π)

n∏
i=1

L( dyi|θai) Uni( dui; 0, πxi).

= G∞
0 ( dθ) GEM(dπ;α0)

n∏
i=1

1[0 ≤ ui ≤ πxi ] duiL(dyi|θxi) (3.3)

where we used P(xi = c|π) Uni( dui; 0, πxi) = 1[0 ≤ ui ≤ πxi ] dui by the definition of uniform distributions
and P(xi = c|π) = πc, also by definition.

The slice sampler proceeds by resampling the variables in three blocks: (1) all the dishes θ, (2) all the cluster
membership variables, and (3), both all the stick lengths and all the auxiliary variables.

4In other words, naively such “algorithm” would need to be ran on a “Zeno machine,” a hypothetical computer that could
do a countable amount of operation in finite time.
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Cluster membership variables

This move resamples the following variables:

!

x1 xn

y1 yn

"

u1 un
...

This can be done by resampling each one independently (conditionally on the Markov blanket).

To find the conditional distribution of xi = c, for each c = 1, 2, . . . , we look at the factors in Equation (3.3)
that depend on xi, and obtain:

P(xi = c|rest) ∝ 1[0 ≤ ui ≤ πc]L( dyi|θc)

Thanks to lazy computation, we do not have to instantiate an infinite list of πc in order to compute this.
Instead, we find the smallest N ∈ Z+, such that

∑N
c=1 πc > 1 − ui. For c > N ,

∑N
c=1 πc > 1 − ui, so

1[0 ≤ µi ≤ πc] = 0.

Dishes

This move resamples the following variables:

!

x1 xn

y1 yn

"

u1 un
...

Again, this can be done by resampling each θc independently (conditionally on the Markov blanket).

The posterior distribution of θc|rest is

P( dθc|rest) ∝ G0( dθc)
∏

i:xi=c

L( dyi|θc),

which can be resampled by Gibbs sampling in some conjugate models, and can be resampled using a
Metropolis-Hastings step more generally.
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Auxiliary variables and stick lengths

This resamples both all the auxiliary variables and all the stick lengths in one step. Using the chain rule,
this step is subdivided in two substeps:

!

x1 xn

y1 yn

"

u1 un
...

!

x1 xn

y1 yn

"

u1 un
...

!

x1 xn

y1 yn

"

u1 un
...

~

In other words:

P
(
dπ, du

∣∣rest) =P
(
dπ
∣∣ rest except for u

)
P ( du|rest)

The second factor can be sampled from readily:

P( dui|rest) =Uni( dui; 0, πxi).

To sample from the first factor, we look at a sequential scheme for sampling sticks that is an alternative to
dart throwing. This sequential scheme makes it easier to see how to resample π while integrating out the
auxiliary variables.

This alternative consists in visiting the sticks in order, and flipping a coin each time to determine if we are
going to pick the current stick, or a stick of larger index:

~

...

Cluster c=1

Cluster c=2

Cluster c=3

Cluster c=4

!1 1-!1

!2 1-!2

!3 1-!3

!4 1-!4

Here the persons represent datapoints, and the left-hand-side represents a decision tree. Since the βc ∼
Beta(1, α0), and that each decision in the decision tree is multinomial, we get by multinomial-dirichlet
conjugacy:

P( dπc| rest except for u) = Beta( dπi; ac, bc)
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where:

ac = 1 +
n∑

i=1

1[xi = c]

bc = α0 +
m∑

i=1

1[xi > c]

3.3.4 Comparison

We conclude this section by summarizing the advantages and disadvantages of each methods:

Collapsed sampler Slice sampler

Pros
+ Easy to implement

+ Rao-Blackwellized

+ Flexible conditions on loss

+ Easy to parallelize

Cons

- Restrictions on the loss 

- Restr. on the likelihood

- No easy parallelization

- Harder to implement

- Aux. variables: less efficient

- Memory needs

The restriction on the loss is that the expected loss needs to be computable from only samples from the
cluster indicators. The restriction on the likelihood is the conjugacy assumption discussed in the section on
collapsed sampler. Note that Rao-Blackwellization does not necessarily means that the collapsed sampler will
be more efficiently, since each sampler resamples different blocks of variables with a different computation
cost per sample.

The memory needs of the slice sampler can get large the case where the value of the auxiliary variables
is low. Note that using a non-uniform distribution on the auxiliary variables could potentially be used to
alleviate this problem.

Note also that for some other prior distributions (for example general stick-breaking distributions, which are
covered in the next set of notes), only the slice sampler may be applicable. In other extensions of the DP,
both slice and collapsed samplers are available.

3.3.5 Other posterior inference methods

Other techniques have been proposed to approximate the posterior of DPMs.

One approach is to use the collapsed sampler with different proposal distributions, to prevent the sampler
from getting stuck in local optima (note for example that splitting a cluster into two takes a long time if we
move one customer at the time). See for example [8] and [10].

Another approach is to use the stick breaking representation while ignoring the small sticks [7, 6] (i.e. setting
βN = 1 for some large enough N). This technique is called truncation. Using the Levy construction that we
will cover in the next set of notes, the error of this type of approximation can be bounded. A diagnostic is
also available to set the value of the truncation automatically.

Finally, one can use variational techniques instead of MCMC, see for example [2], which is based on the
representation of [7].
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3.4 DP for GLMs

We now outline an application DPMs to regression and clustering. This application was described in [5].

The goal is to transform a globally (generalized) linear model into a locally (generalized) linear model, within
a Bayesian framework. For example instead of getting a fit as shown on the left, we would like a collection
of locally linear fits:

Lauren A. Hannah, David M. Blei, Warren B. Powell

(Lower case values refer to observed or fixed values,
while upper case refer to random variables.)

Equation (1) reveals the clustering property of the joint
distribution of θ1:n: There is a positive probability
that each θi will take on the value of another θj , lead-
ing some of the parameters to share values. This equa-
tion also makes clear the roles of α and G0. The unique
values of θ1:n are drawn independently from G0; the
parameter α determines how likely Θn+1 is to be a
newly drawn value from G0 rather than take on one of
the values from θ1:n. G0 controls the distribution of a
new component.

In a DP mixture, θ is a latent parameter to an observed
data point x (Antoniak, 1974),

P ∼ DP(αG0), Θi ∼ P, xi|θi ∼ f(· | θi).

Examining the posterior distribution of θ1:n given x1:n

brings out its interpretation as an “infinite clustering”
model. Because of the clustering property, observa-
tions are grouped by their shared parameters. Un-
like finite clustering models, however, the number of
groups is random and unknown. Moreover, a new data
point can be assigned to a new cluster that was not
previously seen in the data.

Generalized Linear Models. Generalized linear
models (GLMs) build on linear regression to provide a
flexible suite of predictive models. GLMs relate a lin-
ear model to a response via a link function; examples
include familiar models like logistic regression, Poisson
regression, and multinomial regression. (See McCul-
lagh and Nelder (1989) for a full discussion.)

GLMs have three components: the conditional proba-
bility model for response Y , the linear predictor and
the link function. The probability model for Y , de-
pendent on covariates X, is

f(y|η) = exp
(

yη − b(η)
a(φ)

+ c(y,φ)
)

.

Here the canonical form of the exponential family is
given, where a, b, and c are known functions specific
to the exponential family, φ is an arbitrary scale (dis-
persion) parameter, and η is the canonical parameter.
A linear predictor, Xβ, is used to determine the canon-
ical parameter through a set of transformations. It can
be shown that b′(η) = µ = E[Y |X]. However, we can
choose a link function g such that µ = g−1(Xβ), which
defines η in terms of Xβ. The canonical form is useful
for discussion of GLM properties, but we use the mean
form in the rest of this paper. The flexible nature of
GLMs allows us to use them as a local approximation
for a global response function.
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Figure 1: The top figure shows the smoothed regres-
sion estimate for the Gaussian model of equation (2).
The center figure shows the training data (blue) fitted
into clusters, with the prediction given a single sam-
ple from the posterior, θ(i) (red). The bottom figure
shows the underlying clusters (blue) with the fitted re-
sponse (red) for each point in the cluster. Data plot
multipole moments against power spectrum C! for cos-
mic microwave background radiation (Bennett et al.,
2003).

4 Dirichlet Process Mixtures of
Generalized Linear Models

We now develop Dirichlet process mixtures of gener-
alized linear models (DP-GLMs), a flexible Bayesian
predictive model that places prior mass on a large class
of response densities. Given a data set of covariate-
response pairs, we describe Gibbs sampling algorithms
for approximate posterior inference and prediction.
We present theoretical properties of the DP-GLM in
Section 5.

4.1 DP-GLM Formulation

In a DP-GLM, we assume that the covariates X are
modeled by a mixture of exponential-family distri-
butions, the response Y is modeled by a GLM con-
ditioned on the inputs, and that these models are
connected by associating a set of GLM coefficients
with each exponential family mixture component. Let
θ = (θx, θy) denote the bundle of parameters over X
and Y | X, and let G0 denote a base measure on the
space of both. For example, θx might be a set of d-
dimensional multivariate Gaussian location and scale
parameters for a vector of continuous covariates; θy

might be a d+2-vector of reals for their corresponding
GLM linear prediction coefficients, along with a GLM

We start by reviewing standard Bayesian regression (for more detailed introduction see [3] or [12]), then
introduce the DPM approach.

A basic Bayesian linear regression model has the following form:

zi

!

yi

zn +1

yn +1

Training data Test data/prediction

Input/covariate

Output/dep. var.

Regress. 
parameters

where zi is a D-dimensional vector of input/covariates, θ is a D-dimensional parameter vector and yi is a
1-dimensional response say. Let Z denote the n by D data matrix, and Y , the n by 1 training responses.
We put the following distributions on these variables:

θ(d) ∼ N

(
0,

1
τ2

)
, d = 1, . . . , D.

yi|θ, zi ∼ N

(
〈θ, zi〉,

1
τ

)
.

where τ1 is a noise precision parameter, and τ2 is an isotropic parameter regularization.5

By conjugacy, we get the following posterior on the parameters:

θ|y1:n, z1:n ∼ N(Mn, Sn)

where

Sn = (τ2 + τZTZ)−1

Mn = τSnZTY.

5Note that this model does not depend on the prior on the covariates. This has motivated G-priors [12] with parameters
that depend on X, which allow putting a prior over the precision parameters considered fixed in the model above. On the
other hand, in the DPM extension that will follow shortly, we will need to put a distribution on the input variable, since new
datapoints will be assigned to a cluster using this distribution, which will then allow using the most appropriate set of regression
parameters with higher probability.
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Given a new covariate zn+1, the predictive distribution over yn+1 is then:

yn+1|zn+1, y1:n, z1:n ∼ N(Mn
Tzn+1, σ

2
n(zn+1))

where σ2
n(z) = 1

τ + zTSnz.

We now turn to the non parametric version of this model, which has the following graphical model:

xi xn +1

!

zi

"

yi

zn +1

yn +1

Training data Test data/prediction

Input/covariate

Output/dep. var.

Regress. 
parameters

Cluster indicator

Mixture proportion

"’ Covariate clustering 
parameters

where θc = (θ(1)
c , . . . , θ

(D)
c ) are vectors of regression parameters, and θ′c = (θ′(1)c , . . . , θ

′(D′)
c ) are vectors of

clustering parameters.

This model seems complicated at first glance, but note that a standard DPM model on the covariates appears
as a submodel:

xi xn +1

!

zi

"

yi

zn +1

yn +1

Training data Test data/prediction

Input/covariate

Output/dep. var.

Regress. 
parameters

Cluster indicator

Mixture proportion

"’ Covariate clustering 
parameters

The rest of the model is the same as the standard (parametric) Bayesian regression model, but with the set
of parameter determined by the cluster indicator.

The intuitive idea is that given a new datapoint, the prior over the z’s enable us to get a posterior over
which cluster it belongs to. For each cluster, we have a standard Bayesian linear regression model.
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Formally, we define the distributions as follows:

π ∼ GEM(α0)
xi|π ∼ Mult(π)

θ
′(d)
c ∼ N

(
0,

1
τ3

)
, d = 1, . . . , D; c = 1, 2, . . .

θ(e)
c ∼ N

(
0,

1
τ2

)
e = 1, . . . , D′

zi|θ, xi ∼ N

(
θ′xi

,
1
τ4

)
, i = 1, . . . , n + 1

yi|zi, xi, θ ∼ N

(
〈θxi

, zi〉,
1
τ

)
,

where τ3 acts as a regularization on the clustering parameter, and τ4 as a noise precision parameter on the
input variables.

Note that simulating the posterior of the cluster variables can be done using collapsed sampling by conjugacy.
Given such samples x

(s)
1:n1

, the regression estimator under L2 loss on y takes the form:

E(yn+1|D) = E[E[yn+1|D,x1:(n+1)]]

≈ 1
S

S∑
s=1

E[yn+1|D,x
(s)
1:(n+1)]

=
1
S

S∑
s=1

(Mn(x(s)
1:(n+1)))

T
zn+1,

where D denotes the training data (inputs and outputs) as well as the new input xn+1. The posterior mean
takes a form similar to the parametric case, but defined on the subset of datapoints in the same cluster as
the new data point in the current sample:

Sn(x1:(n+1)) = (τ2 + τZ(x1:(n+1))
T
Z(x1:(n+1)))−1

Mn(x1:(n+1)) = τSn(x1:(n+1))Z(x1:(n+1))
T
Y.

where

Z(x1:n) =

 − zi1−
...

− zik
−


and (i1, . . . , ik) are the indices of the data matrix rows in the same cluster as xn+1.

See [5] for a generalization of this idea to other GLMs, including an application to classification.
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