
International Statistical Review (2012), 80, 1, 83–86 doi:10.1111/j.1751-5823.2011.00169.x

Discussion

Alexandre Bouchard-Côté and James V. Zidek
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The last century saw a sustained but largely failed effort to put the emerging discipline of
statistics on a solid foundation. It began well with the pioneers like Fisher who introduced within
a frequency theory framework, a rudimentary foundation for inference, tools for developing
procedures for users and criteria such as unbiasedness by which to assess their performance.
And it produced great success stories like design of experiments. Building on the success of
Neyman and Pearson, Wald developed an axiomatic foundation, decision theory, that seemed
intended to do for statistical science what Kolmogorov’s axioms had done for probability. A
program of largely mathematical research put new and old methods such as the sample average
on the seemingly solid ground provided by those axioms.

But holes began to appear in it. An inexplicable and unintuitive result was published in 1956
by Stein, which cast doubt on some of its cornerstones such as unbiasedness. He showed, with an
early version of the “James-Stein estimator”, that bias could be traded for variance for an overall
gain in overall parameter estimation precision in problems involving a large number p of different
populations from which independent samples of moderate size were drawn. This puzzling result
was only explained later through the notion of exchangeability within the alternate framework
provided by the Bayesian paradigm which by then had emerged as a competitor with another
axiomatic foundation. Not only that but Bayesians like Savage and Lindley saw irresolvable
inconsistencies within the frequency theory framework.

The result was a surge in the popularity of the Bayesian approach, helped by advances in
such things as statistical computation. Subject area scientists embraced it, seemingly convinced
that its foundations had been assured by the statisticians. On the other hand statisticians saw its
success in applications as validating it and thereby licensing them to focus on its development.

But once again holes began to appear. The celebrated work of Kahneman and Tversky cast
doubt on the rationality of human decision makers and hence on the validity of the axioms that
underpinned the paradigm. Meanwhile statisticians began to see difficulties with the subjective
foundations and their suitability as a basis for constructing prior distributions, one of the
cornerstones along with Bayes rule, of the axiomatic theory as it first appeared. So work to
shore up those foundations began. Thus Sir David Cox, in his ASA Presidential Invited Address
at the 2011 Joint Statistical Meetings, was able to find more than half a dozen approaches to
finding those priors, revealing the morass into which the elegant and simple paradigm had sunk
despite its ever-increasing popularity.

So we tucked into this paper with great relish, as it promised a foundation for a principled
choice of a prior. We found that the authors have put together an elaborate and thoughtful case.
But imagine our surprise when it gave us not only a prior but also as one of its main conclusions,
that conventional use of Bayes rule in parametric inference is invalid! That led us to consider
the key elements of their argument and our discussion below will examine them.
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Their theory builds on the key idea that one should focus on the observables and their
distribution. This idea is not new. A notable omission in their citations is the work of Akaike
who also makes this a fundamental ingredient to his very productive approach to the theory of
inference. That remarkably powerful idea yields in addition to the celebrated AIC criterion:

(i) the maximum likelihood estimator;
(ii) the superiority for prediction, of using a predictive distribution for an observable over a

point estimator;
(iii) a derivation of Bayes rule in the parametric case (Akaike, 1978).

Akaike (1974) introduces his basic criterion functional as

−
∫

g(x) log f (x |θ)dx .

He regards f (x |θ) as a predictive distribution for x which has an unknown and unknowable
distribution with density function g. Akaike’s basic criterion is related to the one given in the
paper,

−
∫

log f (x |θ)d F0(x), (1)

with the difference that the former assumes density representations for both the observable and
the parametric families. Both suffer from the technical deficiency that the observable x would as a
measurement have units attached as would therefore f (x |θ). This means that the logarithm cannot
legitimately be evaluated at f (x |θ). This is because the equation 1 + u + u2/2 + · · · = exp u
means exp u and u must be unitless and hence so must v = exp (log v) as well as log v. The
operational difficulties associated with equation (1) can be seen in Subsection 3.1 where the first
and third terms in the expansion of the logarithm are unitless while the second log λ involves λ,
which has units and makes this expression uninterpretable. In his subsequent work (e.g., Akaike,
1978), Akaike replaces this criterion function with

−
∫

g(x) log [ f (x |θ)/g(x)]dx,

which overcomes the problem. Not only that it makes the criterion function invariant under
one-to-one transformation of x as seems sensible. Jaynes (1963) emphasizes the importance of
having such invariance.

It is unclear which prior should be used for the distribution F0. The authors use a Dirichlet
process, but many other choices seem possible. Consider the problem of estimating, say,
tomorrow’s “maximum temperature” for example. In that case, even estimating it by the empirical
distribution function as the authors suggest to get the likelihood function seems unnatural.
Presumably there the observable is measured on a discrete scale with round-off so that Xi would
represent a value of x in an interval Li of length li centred on Xi . In that case, instead of the
empirical distribution used by the authors to estimate F0 one might use an absolutely continuous
alternative such as the one with density function

f̂0(x) =
⎧⎨
⎩

1

l·
, x ∈ Li , i = 1, . . . , n

0, otherwise.
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In that case ∫
log f (x |θ)d F̂0(x) =

n∑
i=1

1

l·

∫
x∈Li

log f (x |θ)dx

�
n∑

i=1

log f (Xi |θ)λi

= log
n∏

i=1

f λi (Xi |θ),

where λi = li/l·. This would reduce to the usual likelihood when the intervals were of equal
length, but that would not always be the case, as when these were interval censored survival
times and the intervals could not for practical reasons be made of equal length. The result is the
logarithm of a weighted likelihood (e.g., Hu & Zidek, 2002; Wang et al. 2004; Wang & Zidek,
2005). Even if one elects to treat F0 as non-parametric in a Bayesian context other options are
available. In fact, one choice would make F0 absolutely continuous with respect to Lebesgue
measure (Kraft, 1964).

The main point is not whether these alternatives would be better or worse, but rather that the
Dirichlet process does not seem canonical a priori. As a more concrete example, why not choose
the more general Pitman-Yor process? Is it the case that all other choices would not yield the
familiar Bayes rule in the parametric families? Or would other choices also yield the familiar
Bayes rule but with different matching priors?

The former case would make the choice of Dirichlet process canonical in this context and
would be highly interesting. However, it would require a formal treatment. The latter case would
shift the burden of selecting a prior to the burden of selecting a predictive non-parametric model.
Of course, this burden can be seen as a freedom as well.

The authors bypass absolute continuity issues by arguing that F0 must be replaced by its
expected valued M0, and later its posterior expected distribution. That step is justified as
computing the expected utility and the need to maximize it under the classical normative
theory. However, the bypass route ignores an interesting issue that arises, since as first defined
in the paper, the optimal parameter value θ∗ = θ∗(F0) (our notation) has a prior and then
posterior distribution inherited from that of (F0). In the case of the non-dimensionalized normal
distribution for example, θ∗(F0) = ∫

xd F0(x), a seemingly natural result.
How does that distribution compare to the one derived from loss matching? Or does the phrase

“assigning a prior π(θ) which reflects beliefs about θ∗” mean a prior about something different
from a prior distribution about the unknown parameter θ∗, for example, about θ∗(E[F0]) �=
E[θ∗(F0)]? The authors rely heavily on the Kullback-Leibler (KL) measure of divergence to
characterize loss (or equivalently utility). At the same time, there are a whole class of such
measures (the α divergences) that contain KL as a special case. It might be worth exploring the
theory in that case. For example, in the simple case where there is a mutual support set equal to
{z1, . . . , zm},

Dα[F0||F(·|θ)] = 1

α − 1
log

m∑
i=1

f 1−α(zi |θ) f α
0 (zi ),

where [ f0(z1), . . . , f0(zm)] has a Dirichlet distribution.
We found the development of the section on loss matching harder to follow. The left hand of

the matching equation which is the scoring function loss of − log π(θ) seems clear enough. The
right-hand side seems less intuitive. The first element, which is where the model component of
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the prior comes into play, turns out to be Fisher’s information I (θ) based on a heuristic argument
that the worth of the model f (·|θ) indexed by θ increases with the degree of its divergence
from its neighbours. The best model would be the one for which this is maximized presumably.
But then this utility function has to be turned into a loss function and then put on the log-scale
“which is where we are operating” to quote the authors. This meaning and justification for this
last step eludes us, especially since Fisher’s information is already computed on the log-scale in
some sense.

The second element, which is constructed entirely within the model space { f (·|θ)}, now
assesses models by their predictive performance as measured by a version of KL. Here the true
distribution and its prior distribution M0 component of the full prior specification comes into
play and the optimal model would be the one indexed by θ(M0) in our notation defined above,
where a priori M0 = E(F0) and a posteriori it would be θ(Mn) with Mn = E(F0|X1, . . . , Xn).

We are not clear about why the two losses should simply accumulate as the authors suggest.
Instead we would see the justification as coming from multi-criteria optimization theory.
Furthermore, we are unclear as to why the resulting linear combination should necessarily
equal the left-hand side. Other criteria could have been used in place of or in addition to those
introduced by the authors. Is there a rationality postulate of some kind that forces the equality
of the two sides?

Finally, the authors make a good case within their framework as to why π(θ |x1, . . . , xn)
should not be found by applying Bayes rule directly to update π(θ). No doubt, this idea will
be controversial for it applies to all Bayesian theory that has been developed as part of the
program begun a half century ago to find an alternative to the frequency theoretical foundation
for statistical inference. It says that since we cannot ever know the true distribution (F0) of the
observable, and that models are always wrong as per George Box’s famous maxim, Bayes rule
can never be applied directly, instead, updating must always be done indirectly by updating the
prior distribution for F0.

However, as we have argued above, a number of issues need to be resolved before the validity of
that conclusion can be accepted and implemented. One important issue is about the discrepancy
between the author’s findings and those of Akaike indicated above, who finds in favour of direct
application of Bayes rule, starting from the same general premises.

Nevertheless, we commend the authors for their thoughtful paper. It is a worthy contribution
to the search for a suitable foundation for Bayesian inference.
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