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Until recently, Markov chain Monte Carlo (MCMC) has been the lone,
faithful workhorse of Bayesian phylogenetics. MCMC methods have turned an
abstract decision theoretic framework into a practical toolbox that has been
applied to most phylogenetic inferential questions.

The theory behind MCMC is now a mature field offering a flexible suite
of methods to approach approximate posterior computations. However, as we
will discuss shortly, there are strong motivations for developing computational
methods that can complement MCMC. The goal of this chapter is to give an
accessible introduction to one promising complementary approach, Sequential
Monte Carlo (SMC, also known as particle filter methods).

Before delving into the theory and practice of SMC methods, we start this
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chapter with an overview of two motivations for applying SMC to Bayesian
phylogenetic inference.

The first motivation is the growing gap between the amount of phylogenetic
data and the computational resources available to analyze these data. It is
not atypical to find in the literature examples of a sampler running for weeks
(Hackett et al., 2008), and these examples can be viewed as symptoms of
a larger problem. Simply put, advances in processor speed no longer seem
able to catch up with the advances in sequencing technologies (Mardis, 2011;
Wetterstrand, 2012). The phylogenetic data storm is coming from many fronts:
more sequenced species (Valentini et al., 2009), more data per species (Wapinski
et al., 2007), and measurements of variations at the population level (Li et al.,
2008; Shah et al., 2009). The main response to this deluge has been to exploit
advances in parallelization, either at the level of processing units (Altekar et al.,
2004; Suchard and Rambaut, 2009) or clusters (Feng et al., 2003). However the
intrinsically serial nature of MCMC makes it nontrivial to adapt it to parallel
architectures. In contrast, we will argue that SMC is an architecture able to
easily tap into these new computational resources.

The second motivation for developing MCMC complements is the growing
gap between the resolution at which we understand molecular evolution, and the
models we use on a day-to-day basis to perform phylogenetic inference. There
are many pieces of information that are currently excluded from phylogenetic
analyses, not from a lack of reasonable models, but from a lack of practical
computational tools. Morrison (2009) discusses the example of slipped strand
mispairings (SSMs). The repeat patterns left by SSMs form a cue commonly
used when manually preprocessing alignments. However this information is
often discarded from subsequent phylogenetic analyses. Another example
comes from RNA or protein structural constraints, which are known to affect
evolutionary inference (Nasrallah et al., 2011). Not all of these cues will
necessarily improve reconstruction accuracy (Pachter, 2007), but it is unlikely
that the cues that are easy to accommodate within MCMC precisely coincide
with the phylogenetically informative ones.

In this chapter, we will focus on the first motivation, the computational
gains brought by SMC methods. By using familiar models in our examples, we
can keep the exposition easier to follow. We will return to the second motivation
in the last section of this chapter, where we discuss future directions.

There is a large and healthy literature on SMC methods, and excellent
books, reviews and tutorials have been written on the subject (Doucet et al.,
2001; Kotecha et al., 2003; Doucet and Johansen, 2009). However most of this
previous work has focussed on either the special case of state space models
(Friedland, 2005) (models with the structure of a hidden Markov model), or
on general setups which are non-trivial to apply to phylogenetics (Moral et al.,
2006). Recent work has started filling this gap, and the main goal of this
chapter is to summarize these results (Teh et al., 2008; Gériir and Teh, 2008;
Bouchard-Coté et al., 2012; Wang, 2012).

This chapter is organized into three parts. In the first part, we describe
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SMC from the user’s perspective, focussing on how to use the output of SMC
for Bayesian phylogenetic analyses. In the second and third parts, we describe
the core algorithm behind SMC and extensions of SMC, respectively.

1.1 Using phylogenetic SMC samplers
1.1.1 Overview

In its most general form, SMC methods cover a wide range of algorithms:
at one end of the spectrum, we end up with a close cousin of MCMC, and at
the other end, with an algorithm with very different computational properties.
In most of this chapter, we will focus on the latter category to give a concrete
example of a different approach to phylogenetic posterior inference. We will
come back to less “radical” SMC flavors in Section 1.3.5.

The most striking difference between the SMC methods discussed here and
MCMC lies in the way they represent hypotheses over phylogenies. At every
intermediate iteration of an MCMC chain, a complete state (fully resolved tree
over the set of taxa under study X) is kept in memory. By fully resolved, we
mean that all the taxa under study are connected through an hypothesized
phylogenetic tree. In contrast, the SMC methods discussed here will maintain
a partially resolved tree in intermediate steps, or partial state for short.

What do we mean by partially resolved? There is again considerable flexi-
bility here, but the most fundamental example of a partially resolved tree is
a forest. Recall that a forest is an acyclic graph, but in contrast to a tree, it
is not required to be connected. Equivalently, a forest can be described as a
collection of disjoint trees. See Figure 1.1(a).

For concreteness, assume for now that inference is performed over clock trees
(how to do SMC inference over non-clock trees is discussed in Section 1.2.5).
Assume also that the evolutionary parameters are known—we will discuss how
this can be relaxed in Section 1.3.5. In this setup, the partial states are sets
of rooted trees such that the set of species X; C X at the leaves of each tree
form a partition of X. By this, we mean that the X;’s satisfy the following two
conditions: (1) the union of the X;’s is the set of species under study, X; (2)
the X;’s are disjoint, i.e. X; N X; = 0 for all i # j.

Two special cases are worth mentioning. First, the case of the completely
disconnected forest, where each observed taxon forms a trivial tree with one
node and zero edges. This extreme case, which we call a trivial forest, denoted
1, will be used to initialize our SMC algorithms. The second special case
consists of forests containing a single tree connecting all the observed taxa, i.e.
a standard phylogeny. We call this state complete.

The partial state representation is close in spirit to neighbor joining, or more
generally, to agglomerative clustering methods (Teh et al., 2008). As in neighbor
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Figure 1.1: (a) An example of a partial state s, a clock forest in this case, i.e.
a collection of clock trees. The set X is the set of leaves for tree t; € s. Note
that the X;’s are disjoint, and their union is X, the set of all leaves. The tree
to is an example of a degenerate tree, with a topology having a single node and
no edge. (b) Examples of particle populations at each generation of an SMC
algorithm, with K = 3. Each particle is a forest s,, ;. associated with a positive
weight w,, ;. Note that the weights do not sum to one within a population;
they need to be normalized before creating the distribution 7, ; associated
with each population. The details of how one population is produced from the
previous one (denoted by black arrows in this figure), is explained in more
detail in Section 1.2.

joining, SMC progresses by “merging” pairs of trees, i.e. by creating a new
tree with one new root node connecting two trees from the previous iteration.
However, in contrast to neighbor joining, SMC is based on a likelihood model
rather than summary distance statistics. SMC is also less greedy than neighbor
joining, entertaining several hypotheses simultaneously at every iteration. This
reflects the fact that the goal of SMC is different than that of neighbor joining,
aiming to sample from the posterior distribution rather than approximating
the maximum of an objective function.

Each of the parallel hypotheses is called a particle (see Figure 1.1(b)). A
particle is composed of a forest as described above, along with a weight, which
is simply a positive number reflecting the algorithm’s current assessment of
the quality of the corresponding hypothesis. This number does not directly
reflect a probability, but we will see shortly how it can be transformed into

1But by being less greedy, SMC can also have an edge in maximization tasks where local
optima are expected (Gériir and Teh, 2008).
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Figure 1.2: Assessment of the quality of the posterior clade estimates from
Bouchard-Coté et al. (2012). Left: the rate at which the partition metric
between the held-out tree used to simulate the data and the consensus tree
decreases as a function of the running time. Running time is measured by the
number of times the Felsenstein recursion is computed (see Section 1.3.1). For
MCMUC, the running time is controlled by the number of MCMC iterations,
for SMC, by the number of particles K. Right: a computational budget is
fixed, and the number of taxa is varied, creating increasingly difficult posterior
inference problems. See Bouchard-Co6té et al. (2012) for detailed experimental
conditions.

a posterior probability estimate. We use the term particle population for a
collection of competing hypotheses represented at one SMC generation. Each
round consisting in selecting one merging operation for each particle is called a
generation. Note that since we merge exactly two trees at each SMC generation,
all the forests found in a given particle population have the same number of
trees.

The output of a phylogenetic SMC algorithm is a particle population
containing complete states. We will describe shortly how this population is
computed, for now, let us look at how we can use this population to answer
phylogenetic questions.

As a first example, consider the problem of assessing the support of a clade
(the posterior probability that a subset of taxa X’ C X are the leaves of a
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subtree of the phylogeny). To approximate this quantity from the population
of complete states output by SMC, proceed as follows. First, compute the
sum of the weights of the particles where the clade of interest is present;
second, divide this number by the sum of all the weights. This gives a number
between zero and one that approximates the posterior clade support. An
important asymptotic result from SMC theory (Crisan and Doucet, 2002) is
that as the number of particles K goes to infinity, this estimate converges
to the posterior clade support. Since asymptotic theory does not guarantee
the quality of approximations based on finite K, Bouchard-Cété et al. (2012)
used simulations to assess the performance of SMC. Instead of evaluating a
single clade posterior at a time, this previous work summarized all of the
clades posteriors by constructing a consensus tree (Felsenstein, 2004). Refer
to Figure 1.2, where two of their simulation results are shown. These results
demonstrate that as the number of particles increases, the consensus tree
constructed from the approximate clade posteriors becomes closer in average
to the “true tree”, i.e. the tree used to generate the data. The results also show
that for a range of computational budgets, SMC achieves a tree reconstruction
error lower than MCMC.

As a second example, let us suppose that we wish to estimate a divergence
time between a pair of species z, 2’ € X using a simple clock model. Given
a phylogenetic tree ¢, let us define the divergence time d, ,(t) as half of the
sum of the branch length separating x to x’ in t. To estimate this quantity
from a weighted population ¢y, wy, we start by looking at the divergence time
dy.o (tx) for each particle ¢y in turn, and we multiply each of these times by the
corresponding weight wy. We then divide the sum of the quantities computed
in the first step by the sum of the weights, obtaining:

Sy oo (ti)wi

25:1 W

Again, this estimate will converge to the correct posterior mean as the number
of particles K goes to infinity.

1.1.2 A general framework for understanding the output of
Monte Carlo algorithms

Before going over the details of how the particle populations are computed,
it is worth discussing in more generality how the output of SMC algorithms
can be used to compute almost any expectation of interest. In particular, we
will be able to put the two examples given at the end of the last section under
the same umbrella.

To achieve this, we start by making the observation that the normalized
weights, denoted by

Wi

Wk =g
D=1 Wk

(1.1)
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can be viewed as discrete probabilities (as they form a list of positive numbers
summing to one). Each of these probabilities is assigned to a location, namely
the sampled tree associated with it. This view gives us a discrete probability
distribution over the space of trees, called the distribution induced by a particle
population, 7. As the number of particles increases, this discrete distribution
can get arbitrarily close to the posterior distribution over trees.

This suggests the following procedure for approaching generic inference
problems. First, identify a function f such that the quantity of interest is ex-
pressed as an expectation under the posterior distribution, E, f(¢) = E[f(¢)|)],
where 7 denotes the posterior distribution of the phylogenetic tree random
variable ¢ given the data ). Second, we simply replace the posterior distribution
7 in the above expectation by the discrete approximation 7 induced from the
particle population output by SMC. This yields the estimator:

Erf(t) ~ Exf(t) (1.2)
K
=) wif(ty) (1.3)

For example, in the first example, f can be taken as the function that is
equal to one if the input tree has the clade of interest X', and zero otherwise.
With such f, (1.3) reduces to the sum of the normalized weights corresponding
to the trees consistent with the clade of interest X'.

In the second example, f can be taken as the function returning the
divergence time of two species in an input phylogeny, i.e. f = d; ;. This also
yields the weighted averaged described before.

Note that if one is interested in d,, .+ for more than one pair of taxa z, z’,
only one posterior approximation 7 needs to be computed, and can be reused
to compute all the required posterior expectations.

The technique described in this section is closely related to the way MCMC
approximations are computed. With MCMC, the same basic equation is used,
equation (1.2), but the discrete approximation 7 is formed differently. The
support of 7 is taken to be the set of distinct phylogenies {tx} visited by
MCMC, and the weight wyg, to be the number of times ¢; was visited by the
sampler (because of rejections, it is possible to find identical phylogenies in
the MCMC output).

1.2 How phylogenetic SMC works

In this section, we elaborate on how the particles are computed. We start
with some background on two related, simpler algorithms: importance sampling
(IS), and sequential importance sampling(SIS). We then present SMC itself,
which adds resampling on top of SIS. These three ideas, importance sampling,
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Figure 1.3: A schematic example from Bouchard-Coté et al. (2012) of the tree
steps used in SMC to produce one particle population to the next population.

sequential proposals, and resampling, form the core of the SMC methodology.
We then give a description of the techniques involved in implementing scalable
samplers.

As in the previous section, 7 is the posterior distribution over trees given
the data. From Bayes’ theorem, this posterior can be written as a density of the
form «(t)/Z, where v is the product of the prior density times the likelihood,
and Z is the marginal probability of the observed data, Z = P()). Note that
the function v can be efficiently evaluated pointwise. This involves summing
over the internal nucleotides while fixing the tree, an operation that can be
carried efficiently using Felsenstein’s peeling recursion (Felsenstein, 1981), a
special case of the sum-product or junction tree algorithm (Bishop, 2006).

Computing Z, on the other hand, is intractable, as it would involve a sum
over all possible tree topologies, as well as an iterated integral over all possible
branch lengths.

1.2.1 The foundations: importance sampling

We start this section by describing importance sampling, an algorithm that
is simpler than SMC but that also shares important similarities with its more
advanced cousin. In particular, the output of an importance sampling has the
same form as the output of an SMC algorithm, i.e. it is a particle population
as described earlier. The main difference with SMC (and SIS) is that this
population is computed in a single step. This generally creates a less reliable
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approximation than the one produced by SMC, which, as we will see, proceeds
in many incremental steps interspersed by resampling steps.

Before using importance sampling, the user is required to design a proposal
distribution ¢imp. This proposal distribution, defined over the space of phylo-
genies, should be chosen according to two criteria. The first criterion concerns
the support of ¢: if a tree ¢ has positive posterior density, then gimp should
assign positive density to ¢ as well. Note that this condition says nothing about
the relative magnitudes of the posterior and proposal. Having the regions of
high probability in the posterior and proposal roughly align will decrease the
number of particles needed to get to a certain level of accuracy, but is not
required to prove asymptotic results. The second criterion is that it should be
computationally easy to sample from gimp, and to evaluate the density gimp(t)
of this sample.

In a Bayesian context, a simple (but often inefficient) way to construct
a proposal for an importance sampling algorithm is to use the prior as the
proposal. This automatically satisfies the first criterion as the support of the
posterior is always a subset of the support of the prior. The second criterion
will also be satisfied for most prior distributions—how this is done is explained
in more detail in the next section. Computing the density under the prior is
also possible using the known closed-form formula for the number of topologies
on | X| leaves.?

Importance sampling creates each particle in the population independently
and in two steps. In the first step, we sample from the proposal distribution with
density gimp to obtain a tree ¢;. In the second step, we correct the discrepancy
between the proposal and the posterior distribution by assigning a weight wy,
to the proposed tree ti. This is done using the following ratio:

wi = ql(p% (1.4)

We now have the ingredients needed to form a particle population. As described
in the first part of the chapter, this population can be used to answer a wide
range of phylogenetic questions.

Note that the form of (1.4) is motivated by the law of large numbers. It
ensures that the approximation 7, defined in Section 1.1.2, converges to the
target posterior distribution 7 as the number of particles K goes to infinity
(see Bishop (2006)).

1.2.2 Towards SMC: sequential importance sampling (SIS)

Sequential importance sampling (SIS), is an equivalent way of viewing
importance sampling, but reparameterized in a way that naturally leads to

2Technically, for importance sampling the normalization of the proposal is not required.
This contrast with SMC, where being able to compute the normalization of the proposal is
important and often overlooked.
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SMC. Instead of computing each particle in one step, as in IS, SIS builds them
in stages or generations. In our phylogenetic setup, the number of stages is
equal to the number of observed taxa minus one. To avoid confusion with
MCMC iterations, we use the terminology of generation for these stages.

It is often natural to break the proposal into smaller steps. For example, a
uniform topology is usually sampled by merging rooted trees in stages. Formally,
assume that at generationn € 1,2,..., N, N = | X|—1, each particle is a forest
of | X| — n rooted trees. We denote the forest or partial state at generation n
and particle index k by s, . Proposing a successor of this particle s, j is done
by sampling one of the (") pairs uniformly at random, that is, by sampling a

2
subset of size two without replacement from the set of trees in the forest.

Proposing branch lengths incrementally is also generally straightforward.
Consider for example the task of sampling from phylogenies equipped with a
Yule prior, and let us define the height of a forest as the height of the tallest
tree in the forest. Sampling branch lengths in this case is equivalent to sampling
increments é between two forests. To mirror the definition of the Yule prior,
we let this increment be distributed according to an exponential distribution
with rate | X| —n + 1.

In order to formalize the proposal used in SIS and SMC, we first need to
introduce some notation. We denote the set of partial states (introduced in
Section 1.1.1) by S, a superset of the set of trees of interest 7. For example, if
T is the set of clock trees, one natural choice for S is the set of forest containing
clock subtrees (we call these clock forests).

The incremental proposals ¢ used for SIS (and SMC) are specified by a
transition probability or density on S. We denote the conditional density of
proposing s, x from s,_1 % by ¢(spk|sn—1,k). Note that proposals for SIS and
SMC are different than those used in IS—the former being conditional densities,
while the latter was just a density over trees.

Since we now propose states incrementally, we also need to discuss how
to weight the intermediate states. In order to do this, we start by rewriting
the monolithic proposal gimp of importance sampling into a sequence of small
conditional probabilities. This is done using the chain rule of probability:

q(tk) = q(S1,k: 52,k - - - s SN k)

=4q
=q(s1,6l L) g(s2,kls1,%) - a(snklSN=1k), (1.5)

where 1 denotes a completely disconnected forest, i.e. a forest where each tree
is degenerate and consists in a single observed taxon and no edge. Note that
(1.5) holds because in the ultrametric case, a tree t; uniquely correspond to a
sequence of partial states sy, S2k, ..., SN,k the correspondence is given by
the sequence of speciation events in their chronological order. In the case of
non-clock tree, the discussion is slightly more involved (see Section 1.2.5).

To obtain intermediate weights w,, », we rewrite the importance sampling
weights, (1.4), into a product of N factors. We combine (1.5) with a telescoping
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product to obtain:

v(tx)
Gimp (tk)
_ v(tk)
q(s1e] L)a(sz,kls1,k) - - a(snk

N <7(L;Y;(S;f:| l)) (V(SI,IC’;EI?Z.;?JSI,M) (V(SN—17k§éig;i SN—1,1~:)>'

W2,k

3N—1,k)

WN,k
(1.6)

Note that all factors of the form ~(-) cancel out, except for the last one,
which is the target v(sn k) = (tx), and the first one, (L), which is constant
for all particles, and therefore disappears after normalizing the weights in (1.3).
Note also that these weights can be updated incrementally as follows:

V(Sn+1,k)
L = O s a ) .

Before going further, let us pause and look at (1.6) more closely. The careful
reader may have noticed that we have not yet formally defined some of the
symbols in this equation: recall that v is a density over phylogenetic trees,
while in several of the factors in (1.6), we feed v with forests. We therefore
need to generalize our definition of 7, to allow not only trees but forests as
arguments.

How should this be done? We show a concrete example in Section 1.2.4, but
surprisingly, the only restriction for the asymptotic correctness of the algorithm
is that v should assign a positive density to all of the proposed forests. The
intuition behind why the numerical value of v for intermediate forests does
not affect asymptotic correctness is that these values all cancel each other in
the telescoping product of (1.6). However, when we will add the resampling
step in the next section, the choice of values 7 assigned to intermediate forests
will have an effect on the quality of the approximation since a finite number
of particles is used in practice. But fortunately, even with resampling, the
asymptotic results still hold under weak conditions.

To summarize, SIS proceeds in N generations, maintaining a population of
particles at each generation. To obtain a new population from the previous one,
the incremental proposal is used to propose a new particle s,41 from each
previous particle s, . Equation (1.7) is then used to compute a new weight
for each particle.
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1.2.3 Resampling

It is apparent from the derivation in (1.6) that the distribution of the final
particle population in SIS is the same as in IS. In particular, both SIS and IS
have serious limitations when the target distribution 7 is defined over a large
space, for example over the space of phylogenies. The main symptom of this
problem is a large weight imbalance: one gets a population where most particles
in the population have a negligible contribution to expectation estimates in
(1.3). This problem is called particle degeneracy.

In this section, we show how this problem can be alleviated by pruning
unpromising particles. Remarkably, this can be done while preserving the
asymptotic properties of the approximation, meaning that as the number of
particles increases, the approximation can still become arbitrarily close to the
true posterior.

It is important to realize that not all pruning strategies would preserve
these asymptotic properties. For example, a deterministic scheme that would
naively pick the k particles of highest weights and create K/k duplicates of
each would not preserve asymptotic correctness.

The solution is to use a randomized scheme instead. In this section, we
describe a simple-to-implement randomized scheme called multinomial resam-
pling (alternatives do exist however, see Douc et al. (2005)). This scheme is an
asymptotically correct method for addressing degeneracy.

Multinomial resampling consists in sampling K times independently from
the probability distribution induced by the particle population from the pre-
vious generation, namely the discrete distribution giving probability w,, ; to
the particle s, ;. To get more intuition on this procedure, assume that the
weights have been normalized already, and that we place the particles in an
arbitrary but fixed order. Having done that, we can think of the weights as
line segments covering the unit interval (see Figure 1.4 (left)). Multinomial
resampling consists in throwing K darts on this one-dimensional target, and
looking at how many darts fall on each segment (particle).

From this picture, we can see that particles with a high weight will generally
get resampled several times, while particles with low weights will generally get
pruned (i.e. get a weight of zero). By construction, this scheme also has the
property that the expected number of times each particle will be resampled
is proportional to the particle weight. This property is key when establishing
that the resampling step preserves the asymptotic results.

After throwing the darts, the weight of each particle is modified. It is set
to the number of darts falling on the corresponding segments, divided by the
total number of darts K.

Note that multinomial resampling can be viewed as a generalization of the
classical bootstrap procedure: if all the weights before resampling were equal
to 1/K, multinomial resampling is equivalent to resampling uniformly with
replacement.

After adding a resampling step between the proposal steps of SIS, we get a
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Figure 1.4: Left: schematic representation of a multinomial resampling step.
After ordering arbitrarily the weights w,, , we can view them as segments on
a stick. We then normalize these weights using (1.1) to obtain @, j. Finally,
we simulate K iid uniform random variables (K = 4 in this example) to get a
new list of particles (1,1,3,4 here). Right: comparison of two SMC proposals,
Prior-Prior and Prior-Post. Experimental conditions are as in Figure 1.2.

first example of an SMC algorithm. We show in Figure 1.5 that this addition
has a big impact in practice. For the SIS algorithm, increasing the number of
particles only improves the performance of the reconstructed tree at a very
slow rate. In contrast, the improvement is substantial with SMC, thanks to
the resampling step.

We summarize in Algorithm 1 all the steps involved in a simple phylogenetic
SMC algorithm for ultrametric trees. In this pseudo-code, we denote the
distribution assigning probability w,_1 % to s,—1, by 7. As a special case,
we get that 7 as defined in Section 1.1.2 coincides with 7.

Note that there is an important difference between the weight equation
for SIS, (1.7) and the counterpart for SMC, (1.8) in the pseudocode of Algo-
rithm 1. In the latter equation, the weight from the previous generation is
not multiplied. This is occasioned by the resampling step: after this step, each
state in 5,-1,1,8n—1,2,--,5n—1,K is equally weighted.
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Algorithm 1 SMC for ultrametric trees

for allk € {1,...,K} do
initialize sg x to L
initialize wq 1 to 1/K
end for
for generationn=1,2,...,N do
for all k€ {1,...,K} do
resample 5,_; j from 7,1
propose s, j from the proposal with density q(:|5,—1,%)

weigh:
s
wn g = — k) (1.8)
’Y(Sn—l,k) q(sn,klsn—l,k)
end for
end for

return @ =

1.2.4 Example: Yule trees

As a concrete example, we show in this section the detailed form of the
proposal, extension, and weight updates in the case of inference over Yule
trees. To do this, we use a notation similar to Bouchard-Cété et al. (2012),
viewing each particle as a set of trees s = {t;}. Each tree has a set of leaves
corresponding to a subset of the observations, denoted by X (¢;) C X. If s’ was
proposed from s, then s’ is obtained from s by removing two trees, t;(s’) and
t.(s') and adding a new tree t,,(s") formed by merging ¢; and t,.. In particular,
X(tm) = X(t;) U X(t,). We also use L(t) to denote the likelihood of the
observations corresponding to X (¢) given t.

As mentioned in Section 1.2.2, the form of the weight update used in
Algorithm 1 assumes that each tree ¢ over X corresponds to a unique sequence
of particles sg, s1, ..., sy starting from the degenerate forest so =L and ending
in tree over all the leaves sy = t. The method we have discussed so far
to achieve this is to ensure that the height of the forest increases at each
generation. Formally, we denote by h(s) = (ho,h1,...,hnes)) the list of the
heights of the forests leading to s. From this, we can derive a list of increments,
0i(s) = h; — hy—1. With this notation, the height increase condition is simply
that d;(s) > 0. The set of successor forests that can be reached from s by
merging a pair and increasing the height will be denoted by S(s).

We can now express the extended density over forests as follows:
n(s)
v(s) oc | TT £6i(s); X —i+1) (H L(O) ;
=1 tes

where o denotes proportionality up to a constant that can depend on s only
through |s|, and f(x;\) denotes the exponential density with rate .
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As for the proposal, it can be written as
q(s'[s) oc 1[s" € S(5)] f(On(sr)(s'); [ X —i+1).

The weight is therefore equal to:

o — ) FERIX] =i+ D) Ltn(s)
ST T LAl L) 1)
L(tn ()

1.2.5 Inferring non-clock trees

We have assumed so far that the trees being sampled are ultrametric. We
review in this section results from Wang (2012) showing how this assumption
can be relaxed. For concreteness, we assume in this section a simple non-clock
model where the prior distribution over topologies is uniform, and the prior
distribution over branch lengths is exponential with rate .

To infer non-clock trees, there are two changes to make to Algorithm 1: a
different proposal, and a different weighting equation.

For non-clock proposals, the simplest construction, denoted gnc, is obtained
by adding one degree of freedom to a clock proposal. This extra degree of
freedom allows the incremental construction of rooted non-clock trees® More
precisely, gnc first picks a pair of rooted non-clock trees to merge, and then
samples from two independent exponential distributions to determine the
lengths of the two edges joining the pair of trees to a new internal node.*

As for the non-clock weight update, it consists in a generalization of the
ultrametric weight formula. The new equation is given by:

 Y(Snk) (Bt klsnk)
Wn,k 3

= - , 1.9
T yBn—1k) anc(SnklSn—1,k) (1.9)

where c is an over-counting function. The theoretical justifications and con-
straints on ¢ are described in more detail in Wang (2012). A simple choice that
works well in practice is to set ¢(s|s’) to the number of non-degenerate trees
in the forest s’, i.e. the number of trees with at least two leaves.

Note that (1.9) superficially looks like a Metropolis-Hastings ratio, but has
the important difference that in general ¢ # gne.

3Even in models where the root is not identifiable, it is advantageous to construct rooted
trees for computational reasons described in Section 1.3.1. The artificial sampled rootings
can always be discarded.

4Except for the merging operation at the last generation N, where only one edge is added,
and consequently only one branch length is sampled.
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1.3 Extensions and implementation issues

After having described the core ideas behind phylogenetic SMC, we now
look at various ways in which the basic algorithm can be made more efficient,
and can be applied to more general setups.

1.3.1 Efficiently computing and storing the particles

The most expensive operation in phylogenetic SMC algorithms is generally
the weight update, shown in (1.8) in Algorithm 1. As shown in Section 1.2.4,
this amounts to evaluating the likelihood L(t), for different subtrees ¢ in a
forest, which in turn involves summing over the internal nucleotides. This is
done using Felsenstein’s tree-peeling algorithm. Note that this computation
is also the bottleneck of MCMC tree sampling algorithms, where it has to be
computed for each proposed tree in order to determine the Metropolis-Hastings
acceptance ratio.

Although tree-peeling is needed in both SMC and MCMC algorithms, an
advantage of SMC is that we can reuse subtree recursion computations across
particle generations. In contrast, even the simplest MCMC proposal, perturbing
a single random branch length, requires recomputing the tree-peeling recursion
for a large portion of the tree (more precisely, recomputation will be needed
for all the edges along the path from the first perturbed edge to the next).

In SMC, the order in which the trees are incrementally constructed mirrors
the order in which the tree-peeling recursion is computed. This means that
by storing the recursion in each tree in the forest, we can avoid redundant
tree-peeling computations.

The storage cost for each recursion is in the order of the number of sites
times the number of characters in the alphabet. When the number of particles is
large, the storage requirements can become problematic. In fact, while MCMC
is time-bound, the simple phylogenetic SMC algorithm described so far is
generally memory bound. Several implementation strategies can be used to
alleviate this memory limitation.?

Additionally, it is possible to exploit the resampling step to trade memory
for space. The key insight is that because of resampling, a large fraction of the
particles will be pruned. It is therefore useless to keep the peeling recursions
in memory for these particles.

In order to do this, we can use a two pass method: in a first pass, we
compute the weight of each particle in the population, but only store the
random seed used by the proposal. In other words, the forest (and peeling
recursion arrays) are stored implicitly in the first pass. This is very memory

5First, identical subtrees will be shared by several particles (because of resampling), so
particles should have pointers to recursion values rather than the values themselves. Second,
when a node is not a root in any particles in the current generation, it can be safely discarded.
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efficient since only two variables are needed per particle at this point. After this
step, since we have the weights for all particles, the resampling step can then
be performed. Finally, the actual particles are reconstructed from the random
seeds, but only for the particles that survived the resampling step, and once
per group of identical particles (since resampling is done with replacement,
there is a positive probability of having duplicate resampled particles).

This scheme takes at most twice the time needed for the standard SMC
implementation, but can significantly reduce the memory requirements. More-
over, since memory writes are slower than floating point operations in modern
architectures, we have observed that in practice the two-pass scheme can
actually be both faster and more memory efficient.

If further memory reductions are needed, one can compose two stages of
multinomial sampling to control the number of distinct particles present in the
final population. This is done by doing a first round of sampling, sampling K’
particles with replacement with K’ < K, and then doing a second round on the
output of the first round, this time sampling K times (also with replacement)
from these K’ particles. Given a memory limit of L distinct particles, the
number of particles K’ in the first generation can be chosen using the formula
for the expected number of distinct particles sampled from a population with
weights wy, i.e. by finding via line search the largest K’ such that

K
K = (1—wa )" <L

k=1

Another option available to reduce the memory footprint is to use Particle
MCMC (PMCMC) methods (Andrieu et al., 2010).

1.3.2 More SMC proposals

So far we have used the simplest possible proposal: picking a pair of trees
in the forest uniformly at random, and a height increment of the forest from an
exponential distribution. In this section, we review some alternative proposals
that have been described in the literature.

The seminal paper by Teh et al. (2008) introduces three proposals, named
“Prior-Prior,” “Prior-Post,” and “Post-Post.” The proposal discussed so far is
the equivalent, adapted to Yule trees, of the Prior-Prior proposal used in this
previous work on coalescent trees. The two other proposals, Prior-Post and
Post-Post, are computationally more expensive, but the hope is that these
particles will be of better quality. In other words, the goal is to construct a
proposal closer to the target distribution by using the information provided in
the observations.

With Prior-Post, gpr-po(s]s), the topology proposal is improved, keeping
the branch length proposal simple and inexpensive. This is done as follows.
First, an increment on the height of the forest, §, is sampled from the same
distribution as in the Prior-Prior proposal. Second, for all unordered pairs of
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trees in the forest, {¢,¢'} C s, the likelihood of merging ¢ and ¢’ to from a new
tree t; 4 5 is computed. Third, a multinomial distribution over the possible
pairs is sampled, with each outcome {¢,¢'} having probability proportional to

Lt 5)

P T L Ley

The weight update (assuming resampling at every step) is equal to

Wk = > Dy (1.10)

{t,t'}es

See Bouchard-Coté et al. (2012) for a derivation of (1.10), as well as an
empirical evaluation of this proposal, reproduced in Figure 1.4(right) for conve-
nience. As in previous similar plots, the running time is measured by the number
of times the peeling recursion was computed, with the four points in each
series obtained using different numbers of particles in {10,100, 1000, 10000}. It
can be seen that in this dataset, for a given number of particles, Prior-Post
slightly outperforms Prior-Prior, but since the particles of Prior-Post are more
expensive to compute, Prior-Prior achieves better performances on a fixed
computational budget. One possible explanation is that Prior-Post spends
too much computational resources for the shallow merging operations relative
to the deeper ones. It might be possible to alleviate this issue by allocating
different numbers of particles at different generations.

The third proposal introduced in Teh et al. (2008), Post-Post, uses the
information in the observation to inform the sampling of both the height of the
new forest, and the pair to merge. At a high level, Post-Post works as follows.
First, a pair to merge is sampled using a process similar to the one described
above for Prior-Post, except that § is marginalized in the weight calculation.
Once a pair is picked, the height of the forest is then sampled proportionally
to 7. The difficulty in this scheme is the first step. The integral involved is
intractable when the likelihood is a general continuous time Markov chain.
However if the likelihood model is a Brownian motion (Felsenstein, 1973), the
integral can be identified as the tail of a generalized inverse Gaussian integral
Jorgensen (1982). Even in this case, the calculation is non-trivial to implement
in practice.%

One benefit of Post-Post is that its proposal over height increments can
have fatter tails than the exponential proposal of Prior-Prior and Prior-Post.
This can be important when the branch lengths of a dataset significantly
deviate from the expected branch lengths of the prior. Note that there might
be simpler ways to achieve these fatter tails, as the height increment proposal
in Prior-Prior is not required to mirror the prior over branch lengths, as the
weights will correct the discrepancy.

61n the first generations of the algorithm, this integral can be shown to be equivalent to a
modified Bessel function of the second kind, but in general, numerical integration computed
in log-space to avoid underflows is necessary.
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Figure 1.5: Error rates of SMC and SIS as a function of the number of particles,
averaged over ten random forty taxon trees and ten executions per tree. Left:
error is measured using the partition metric. Right: error is measured using
the Robinson-Foulds metric. It is clear from these results that the resampling
step plays a crucial role in the performance of phylogenetic SMC samplers.
The experimental conditions are otherwise identical to those of Figure 1.2.

In general, there is more flexibility in designing SMC proposals than in
designing MCMC proposals, in part because the reversed move, ¢(s|s’), does
not need to be considered. The literature has only scratched the surface of the
benefits of this flexibility. One exception is the work of Goriir et al. (2012),
which uses an efficient heuristic to propose pairs to merge in a more informed
fashion.

1.3.3 More on resampling

In this section, we discuss the resampling step in more detail. We start by
describing how to efficiently implement multinomial resampling.

When the number of particles is small to moderate, the naive scheme
described in Section 1.2.3 (throwing dart on the unit length), works reasonably
well. In this regime, most of the computational budget is spent in the proposal
step. However, for large number of particles, the naive resampling algorithm
can become the bottleneck.
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This is because in the naive implementation, each of the K darts requires
as much as K operations to look up which particle the dart falls into. This
means that this implementation can take time in the order of K2, while the
cost of proposals grows in the order of K (but with a much larger constant).

Fortunately, multinomial resampling can also be implemented in time linear
in K, by using classical methods for simulating order statistics (Ripley, 1987;
Doucet, 1997; Pitt and Shephard, 1999; Carpenter et al., 1999). The basic idea
is to sample K + 1 independent exponential random variable with an equal but
arbitrary rate. Since these points can be viewed as a realization of a Poisson
process, their locations after normalization to [0, 1] are uniformly distributed.
We can then traverse the sorted list once to determine the number of particles
of each type to keep in the next generation.

Beyond multinomial resampling, other schemes that preserve the asymptotic
correctness of SMC exist. Examples include residual resampling, stratified
resampling, systematic resampling, and dynamic resampling (see Douc et al.
(2005) for a review). Some of these alternatives have been shown to theoretically
improve over multinomial sampling (Douc et al., 2005).

It may also be advantageous in certain contexts to only do resampling in a
subset of the generations. For example, one may choose to do no resampling
between generation n and n + 1, but to resample between generation n + 1
and n + 2. From an algorithmic point of view, doing this is easy to implement:
skipping resampling can be reduced to the case where resampling is done at
every step but with a transformed proposal. Suppose for example that we only
want to skip resampling between generations n and n + 1. We can construct
a transformed proposal ¢/, equal to the composition of the proposals ¢, and
Gn+1 at generations n and n + 1 in the original list of proposals. By using this
transformed proposal ¢,, we can construct a new SMC algorithm that requires
one fewer generation but that is equivalent to the original SMC algorithm.
The advantage is that this transformed SMC scheme can be handled with the
Algorithm 1.

The most widely used method for determining when to resample is based on
a quantity called the effective sample size (ESS). ESS is typically approximated
using the formula

_
Zk(wn,k)z ’

where w,, , denotes the normalized weights. ESS is maximized when all the
weights have the same value, in which case the effective sample size is equal
to the number of particles K, and minimized when one particle has all the
weight, an extreme case of particle degeneracy. A popular heuristic to select
which subset of the generations to do resampling is to compute the ESS at
each particle generation, and to resample when it falls under a threshold.
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1.3.4 Estimating the marginal likelihood

In addition to computing expectation, another quantity of interest in
Bayesian phylogenetic inference is the marginal likelihood, P()) also known as
the evidence. For example, a popular way to compare two probability models
P and P in the Bayesian framework is to look at their Bayes factor, defined as
the ratio of the marginal likelihood of the data under each model, P())/P'().

SMC provides an easy to implement estimator for the marginal likelihood.
When multinomial resampling is done at each step, this estimator is simply
the product over generations of the weight averages:

) N 1 K
PO) =] 2 D wni- (1.11)
k=1

n=1

This estimator is consistent, i.e. as the number of particles goes to infinity,
P()) converges to P(Y). Compared to the naive marginal likelihood harmonic
estimator from MCMC samples (Newton and Raftery, 1994), or to other
importance sampling methods, the variance of the SMC estimator is generally
better behaved, owing to the resampling step (Doucet and Johansen, 2009).
However we do not know at the moment of empirical or theoretical studies
that compare the behavior of the estimator P()) from SMC against more
sophisticated MCMC estimators (Chib, 1995; Gelman and Meng, 1998; Lartillot
and Philippe, 2006; Xie et al., 2011).

1.3.5 Combining SMC and MCMC

In this section, we review a method for using SMC in combination with
MCMC algorithms. Using such combinations can be motivated by tight mem-
ory constraints (as discussed in Section 1.3.1), or to jointly sample evolutionary
parameters. Both cases are discussed in Wang (2012), and have a firm theoret-
ical foundation based on particle MCMC (PMCMC) methods (Andrieu et al.,
2010).

We limit the discussion in this section to the second motivation, jointly
inferring evolutionary parameters. In this chapter, we have assumed so far that
the parameters are fixed and known. This assumption is clearly unrealistic,
and it defies one of the main motivations behind using Bayesian methods for
phylogenetics: modeling our uncertainty over evolutionary model parameters.
Fortunately, PMCMC provides a solution to this issue by alternating between
evolutionary parameter resampling and SMC tree reconstruction. Formally, a
PMCMC algorithm is an MCMC chain with a powerful proposal distribution
constructed using an SMC algorithm. In this section, we describe one of the
simplest versions of PMCMC, particle marginal Metropolis Hastings (PMMH).
We refer the reader to Andrieu et al. (2010) and Wang (2012) for many other
possibilities of potential interest in Bayesian phylogenetics.

In PMMH, each step in an MCMC chain is computed as follows. First,
we propose a new value 6* for the evolutionary parameter, using a proposal
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that can depend on the current value 6 of the parameter. We then use Algo-
rithm 1 to create a new set of weights wy, ., partial states s}, ., and associated
approximation 7* targeting 7(t) = p(t|6*,)). We select a proposed tree t* by
sampling from 7*. Because the SMC algorithm is run with a finite number of
particles, t* is only approximately distributed according to the posterior given
0%, however in the following we show how to compute an acceptance ratio to
correct this discrepancy.

Computing the acceptance ratio is accomplished by making use of the
approximation of the marginal likelihood introduced in (1.11). More precisely,
we will construct a ratio reminiscent of a Bayes factor comparing the current
population of particles to the previous population—i.e. to the population
produced by the SMC algorithm during the last accepted MCMC step.

We denote the unnormalized weights of this previous population by w(Z b,
the index ¢ indexes MCMC iterations (which can be thought as the outer loop
of the algorithm), the index n and k denote, as before, the particle generation
and index (which become indices for inner loops in PMCMC). Similarly, w
denotes the weights of the proposed population. The population is accepted if
a uniform random number u satisfies:

HnKkakn H kwkn
H sz (z 1) Z w(i—1)

If the proposal is accepted, we set the next population, evolutionary pa-
rameter and tree to the proposed values, w,ii) = w}: e 00 = 0% () = ¢,
Otherwise, we keep the old values, w,(c)n = wk —1) , 00 = gli=1) (1) = ¢(i=1),

For all K, this scheme was shown in Andrleu et al. (2010) to be a valid

MCMC algorithm. In other words, for a function of interest ¢ on the trees and
evolutionary parameters, as the number of MCMC iterations I goes to infinity,

I
1 o
im — @ gy —
Ihm 7 ;:1 IARN) /qb(t,&)w(dt, de),

if weak regularity conditions are satisfied, see Andrieu et al. (2010) for a precise
statement. Note that we do not have to assume an increase of K as the MCMC
iteration index increases. This is important since higher values of K require
more memory, while the cost of higher I is only an increase in time.

While they are not required by the basic consistency result, higher values
of K do help obtaining a faster mixing. In fact, as K goes to infinity, the
acceptance probability converges to one (Andrieu et al., 2010). At the other
end of the spectrum, the case where K = 1 reduces to a standard MCMC
algorithm.



SMC (sequential Monte Carlo) for Bayesian phylogenetics 23

1.4 Discussion

We have reviewed in this chapter various SMC techniques based on incre-
mental construction of forest. These techniques differ from standard MCMC
methods in interesting ways. In particular, new types of proposals can be
considered, and likelihood calculations at a given generation reuse calculations
from previous generations. Even more importantly, multi-core parallelization in
SMC algorithms is easy to implement. The computational bottleneck in most
cases is to sample from the proposal K independent times, so for a large K,
SMC can be qualified as an “embarrassingly parallel algorithm” (Foster, 1995).
This type of parallelization has been tested for phylogenetic SMC samplers
in Wang (2012), yielding promising results on small numbers of cores. Scaling
this technique to hundreds of cores is theoretically possible using the same
techniques.

Some of the benefits of SMC, easy parallelization in particular, can also be
brought to samplers using more traditional state representations and proposals.
In population Monte Carlo samplers, each particle is a complete state (Cappé
et al., 2004), just as in a standard MCMC sampler. Note that this type of
sampler requires a weight update similar to (1.9), based on a backward kernel.
See Cappé et al. (2004) and Moral (2004) for details.

We have focussed so far on purely computational considerations for moti-
vating phylogenetic SMC: computing posterior on bigger datasets but using
existing models. However, there is also a very promising statistical potential.
We conclude this chapter by giving an overview of this future direction.

Let us turn our attention to the continuous time processes used to model
the evolution of a biological sequence along one edge of a phylogenetic tree.
Since the pioneer work by Jukes and Cantor (1969), there has been tremendous
progress in making evolutionary models more realistic. These advances include
using generalized rate models (Tavaré, 1986), local correlations (Goldman
and Yang, 1994), rate variation (Yang, 1996; Thorne et al., 1998), and indel
operations (Thorne et al., 1991).

However, current models are still lacking many known components of
evolution. For example the work of Nasrallah et al. (2011) shows that ignoring
structural constraints, as most current models do, can lead to biased tree
estimates. This issue was shown to be especially severe in the case of RNA
sequences. This motivates the development of more sophisticated likelihood
models that take structural constraints into account.

Serious computational challenges arise in the development of these new
likelihood models, especially within the Bayesian framework. The key diffi-
culty in going beyond independent site models lies in the computation of the
marginal probability of the observed sequences given a tree. This step requires
complicated high-dimensional data augmentations or auxiliary variables (Tan-
ner and Wong, 1987) that can be difficult to resample within the standard
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MCMC methodology. Examples of these auxiliary variables include partially
or fully resolved internal sequences, as well as non-local evolutionary events
localized on a phylogeny.

By sequentially constructing trees, SMC can be used to jointly propose
a population of possible values for the high-dimensional auxiliary variables.
More precisely, in the SMC framework, the problem of proposing auxiliary
values can be reduced to proposing values along a single branch at a time. To
approach these smaller, single branch problems, techniques from end-point
conditioned sampling setups can be used (Hobolth and Stone, 2009).
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