
The Bouncy Particle Sampler: A Non-Reversible
Rejection-Free Markov Chain Monte Carlo Method

Alexandre Bouchard-Côté∗, Sebastian J. Vollmer† and Arnaud Doucet‡

February 21, 2017

∗Department of Statistics, University of British Columbia, Canada.

†Mathematics Institute and Department of Statistics, University of Warwick, UK.

‡Department of Statistics, University of Oxford, UK.

Abstract

Many Markov chain Monte Carlo techniques currently available rely on discrete-time re-
versible Markov processes whose transition kernels are variations of the Metropolis–Hastings
algorithm. We explore and generalize an alternative scheme recently introduced in the physics
literature [27] where the target distribution is explored using a continuous-time non-reversible
piecewise-deterministic Markov process. In the Metropolis–Hastings algorithm, a trial move to
a region of lower target density, equivalently of higher “energy”, than the current state can be
rejected with positive probability. In this alternative approach, a particle moves along straight
lines around the space and, when facing a high energy barrier, it is not rejected but its path
is modified by bouncing against this barrier. By reformulating this algorithm using inhomo-
geneous Poisson processes, we exploit standard sampling techniques to simulate exactly this
Markov process in a wide range of scenarios of interest. Additionally, when the target distri-
bution is given by a product of factors dependent only on subsets of the state variables, such
as the posterior distribution associated with a probabilistic graphical model, this method can
be modified to take advantage of this structure by allowing computationally cheaper “local”
bounces which only involve the state variables associated to a factor, while the other state
variables keep on evolving. In this context, by leveraging techniques from chemical kinetics, we
propose several computationally efficient implementations. Experimentally, this new class of
Markov chain Monte Carlo schemes compares favorably to state-of-the-art methods on various
Bayesian inference tasks, including for high dimensional models and large data sets.

Keywords: Inhomogeneous Poisson process; Markov chain Monte Carlo; Piecewise deterministic Markov
process; Probabilistic graphical models; Rejection-free simulation.

1 Introduction

Markov chain Monte Carlo (MCMC) methods are standard tools to sample from complex high-
dimensional probability measures. Many MCMC schemes available at present are based on the
Metropolis-Hastings (MH) algorithm and their efficiency is strongly dependent on the ability of
the user to design proposal distributions capturing the main features of the target distribution;
see [20] for a comprehensive review. We examine, analyze and generalize here a different approach
to sample from distributions on Rd that has been recently proposed in the physics literature [27].
Let the energy be defined as minus the logarithm of an unnormalized version of the target density.

1

ar
X

iv
:1

51
0.

02
45

1v
6 

 [
st

at
.M

E
] 

 1
7 

Fe
b 

20
17



In this methodology, a particle explores the space by moving along straight lines and, when it
faces a high energy barrier, it bounces against the contour lines of this energy. This non-reversible
rejection-free MCMC method will be henceforth referred to as the Bouncy Particle Sampler (BPS).
This algorithm and closely related schemes have already been adopted to simulate complex physical
systems such as hard spheres, polymers and spin models [19, 22, 23, 25]. For these models, it
has been demonstrated experimentally that such methods can outperform state-of-the-art MCMC
methods by up to several orders of magnitude.

However, the implementation of the BPS proposed in [27] is not applicable to most target distri-
butions arising in statistics. In this article we make the following contributions:

Simulation schemes based on inhomogeneous Poisson processes: by reformulating explic-
itly the bounces times of the BPS as the first arrival times of inhomogeneous Poisson Processes
(PP), we leverage standard sampling techniques [8, Chapter 6] and methods from chemical
kinetics [31] to obtain new computationally efficient ways to simulate the BPS process for a
large class of target distributions.

Factor graphs: when the target distribution can be expressed as a factor graph [32], a represen-
tation generalizing graphical models where the target is given by a product of factors and
each factor can be a function of only a subset of variables, we adapt a physical multi-particle
system method discussed in [27, Section III] to achieve additional computational efficiency.
This local version of the BPS only manipulates a restricted subset of the state components at
each bounce but results in a change of all state components, not just the one being updated
contrary the Gibbs sampler.

Ergodicity analysis: we present a proof of the ergodicity of BPS when the velocity of the particle
is additionally refreshed at the arrival times of an homogeneous PP. When this refreshment
step is not carried out, we exhibit a counter-example where ergodicity does not hold.

Efficient refreshment: we propose alternative refreshment schemes and compare their compu-
tational efficiency experimentally.

Empirically, these new MCMC schemes compare favorably to state-of-the-art MCMC methods
on various Bayesian inference problems, including for high-dimensional scenarios and large data
sets. Several additional original extensions of the BPS including versions of the algorithm which
are applicable to mixed continuous-discrete distributions, distributions restricted to a compact
support and a method relying on the use of curved dynamics instead of straight lines can be found
in [5]. For brevity, these are not discussed here.

The rest of this article is organized as follows. In Section 2, we introduce the basic version of
the BPS, propose original ways to implement it and prove its ergodicity under weak assumptions.
Section 3 presents a modification of the basic BPS which exploits a factor graph representation of
the target distribution and develops computationally efficient implementations of this scheme. In
Section 4, we demonstrate this methodology on various Bayesian models. The proofs are given in
the Appendix and the Supplementary Material.

2 The bouncy particle sampler

2.1 Problem statement and notation

Consider a probability distribution π on Rd, equipped with the Borel σ-algebra B(Rd). We assume
that π admits a probability density with respect to the Lebesgue measure dx and slightly abuse
notation by denoting also this density by π. In most practical scenarios, we only have access to an
unnormalized version of this density, that is

π (x) =
γ (x)

Z
,

2



−2

−1

0

1

2

3

0 1 2 3 4 5
Time

va
lu
e

name
derivative

intensity

3

4

5

6

7

0 1 2 3 4 5
Time

va
lu
e

name
energy

−10

−8

−6

−4

−2

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

●

●

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

xBounds

yB
ou
nd
s

Contour plot of the energy, U(x) = - log !(x) Energy

First bounce event

Second 
bounce 
event

Refreshment 
event

x(0)

τ1 v
(0)

τ2 v
(1)

x(1)

x(2)

τ3 v
(2)

x(3)τ4 v
(3)

τ2

τ* - log V 

- log V 

Figure 1: Illustration of BPS on a standard bivariate Gaussian distribution. Left and top right:
see Section 2.2; bottom right: see Example 1.

where γ : Rd → (0,∞) can be evaluated pointwise but the normalizing constant Z =
´
Rd γ (x) dx

is unknown. We call
U (x) = −log γ (x)

the associated energy, which is assumed continuously differentiable, and we denote by ∇U (x) =(
∂U(x)
∂x1

, . . . , ∂U(x)
∂xd

)>
the gradient of U evaluated at x. We are interested in approximating numer-

ically the expectation of arbitrary test functions ϕ : Rd → R with respect to π.

2.2 Algorithm description

The BPS methodology introduced in [27] simulates a continuous piecewise linear trajectory {x (t)}t≥0

in Rd. It has been informally derived as a continuous-time limit of the Metropolis algorithm in
[27]. Each segment in the trajectory is specified by an initial position x(i) ∈ Rd, a length τi+1 ∈ R+

and a velocity v(i) ∈ Rd (example shown in Figure 1, left). We denote the times where the velocity
changes by ti =

∑i
j=1 τj for i ≥ 1, and set t0 = 0 for convenience. The position at time t ∈ [ti, ti+1)

is thus interpolated linearly, x (t) = x(i) + v(i) (t− ti), and each segment is connected to the next,
x(i+1) = x(i) + v(i)τi+1. The length of these segments is governed by an inhomogeneous PP of
intensity function λ : Rd × Rd → [0,∞)

λ (x, v) = max {0, 〈∇U (x) , v〉} . (1)

When the particle bounces, its velocity is updated in the same way as a Newtonian elastic collision
on the hyperplane tangential to the gradient of the energy. Formally, the velocity after bouncing
is given by

R (x) v =

(
Id − 2

∇U (x) {∇U (x)}>

‖∇U (x)‖2

)
v = v − 2

〈∇U (x) , v〉
‖∇U (x)‖2

∇U (x) , (2)

where Id denotes the d× d identity matrix, ‖ · ‖ the Euclidean norm, and 〈w, z〉 = wtz the scalar

3



product between column vectors w, z. 1[27] also refresh the velocity at periodic times. We slightly
modify their approach by performing a velocity refreshment at the arrival times of a homogeneous
PP of intensity λref ≥ 0, λref being a parameter of the algorithm. A similar refreshment scheme
was used for a related process in [22]. Throughout the paper, we use the terminology “event” for
a time at which either a bounce or a refreshment occurs. The basic version of the BPS algorithm
proceeds as follows:

Algorithm 1 Basic BPS algorithm

1. Initialize
(
x(0), v(0)

)
arbitrarily on Rd×Rd and let T denote the requested trajectory length.

2. For i = 1, 2, . . .

(a) Simulate the first arrival time τbounce ∈ (0,∞) of a PP of intensity

χ (t) = λ(x(i−1) + v(i−1)t, v(i−1)).

(b) Simulate τ ref ∼ Exp
(
λref

)
.

(c) Set τi ← min (τbounce, τ ref) and compute the next position using

x(i) ← x(i−1) + v(i−1)τi. (3)

(d) If τi = τ ref , sample the next velocity v(i) ∼ N (0d, Id).

(e) If τi = τbounce, compute the next velocity v(i) using

v(i) ← R
(
x(i)
)
v(i−1). (4)

(f) If ti =
∑i
j=1 τj ≥ T exit For Loop (line 2).

In the algorithm above, Exp (δ) denotes the exponential distribution of rate δ and N (0d, Id) the
standard normal on Rd. Refer to Figure 1 for an example of a trajectory generated by BPS on a
standard bivariate Gaussian target distribution. An example of a bounce time simulation is shown
in Figure 1, top right, for the segment between the first and second events—the intensity χ(t)
(turquoise) is obtained by thresholding

〈
∇U

(
x(1) + v(1)t

)
, v(1)

〉
(purple, dashed); arrival times of

the PP of intensity χ(t) are denoted by stars.

We will show further that the transition kernel of the BPS process admits π as invariant distribution
for any λref ≥ 0 but it can fail to be irreducible when λref = 0 as demonstrated in Section 4.1.
It is thus critical to use λref > 0. Our proof of invariance and ergodicity can accommodate some
alternative refreshment steps 2d. One such variant, which we call restricted refreshment, samples
v(i) uniformly on the unit hypersphere Sd−1 =

{
x ∈ Rd : ‖x‖ = 1

}
. We compare experimentally

these two variants and others in Section 4.3.

2.3 Algorithms for bounce time simulation

Implementing BPS requires sampling the first arrival time τ of a one-dimensional inhomogeneous
PP Π of intensity χ(t) = λ(x + vt, v) given by (1). Simulating such a process is a well-studied
problem; see [8, Chapter 6, Section 1.3]. We review here three methods and illustrate how they
can be used to implement BPS for examples from Bayesian statistics. The first method described
in Section 2.3.1 will be particularly useful when the target is log-concave, while the two others
described in Section 2.3.2 and Section 2.3.3 can be applied to more general scenarios.

1Computations of the form R(x)v are implemented via the right-hand side of Equation 2 which takes time O(d)
rather than the left-hand side, which would take time O(d2).

4



2.3.1 Simulation using a time-scale transformation

If we let Ξ (t) =
´ t

0
χ (s) ds, then the PP Π satisfies

P(τ > u) = P(Π ∩ [0, u) = ∅) = exp(−Ξ(u)),

and therefore τ can be simulated from a uniform variate V ∼ U (0, 1) via the identity

τ = Ξ−1(− log(V )), (5)

where Ξ−1 denotes the quantile function of Ξ, Ξ−1(p) = inf {t : p ≤ Ξ(t)} . Refer to Figure 1,
top right for a graphical illustration. This identity corresponds to the method proposed in [27] to
determine the bounce times and is also used in [22, 23, 25] to simulate related processes.

In general, it is not possible to obtain an analytical expression for τ . However, when the target
distribution is strictly log-concave and differentiable, it is possible to solve Equation (5) numerically
(see Example 1 below).

Example 1. Log-concave densities. If the energy is strictly convex (see Figure 1, bottom right),
we can minimize it along the line specified by (x, v)

τ∗ = argmint:t≥0 U (x+ vt) ,

where τ∗ is well defined and unique by strict convexity. On the interval [0, τ∗), which might be
empty, we have dU (x+ vt) /dt < 0 and dU (x+ vt) /dt ≥ 0 on [τ∗,∞). The solution τ of (5) is
thus necessarily such that τ ≥ τ∗ and (5) can be rewritten using the gradient theorem as

ˆ τ

τ∗

dU (x+ vt)

dt
dt = U (x+ vτ)− U (x+ vτ∗) = − log V. (6)

Even if we only compute U pointwise through a black box, we can solve (6) through line search
within machine precision.

We note that (6) also provides an informal connection between the BPS and MH algorithms.
Exponentiating this equation, we get indeed

π(x+ vτ)

π(x+ vτ∗)
= V.

Hence, in the log-concave case, and when the particle is climbing the energy ladder (i.e., τ∗ = 0),
BPS can be viewed as “swapping” the order of the steps taken by the MH algorithm. In the latter,
we first sample a proposal and second sample a uniform V to perform an accept-reject decision.
With BPS, V is first drawn then the maximum distance allowed by the same MH ratio is travelled.
As for the case of a particle going down the energy ladder, the behavior of BPS is simpler to
understand: bouncing never occurs. We illustrate this method for Gaussian distributions.

Multivariate Gaussian distributions. Let U (x) = ‖x‖2, then simple calculations yield

τ =
1

‖v‖2

−〈x, v〉+

√
−‖v‖2 log V if 〈x, v〉 ≤ 0,

−〈x, v〉+

√
〈x, v〉2 − ‖v‖2 log V otherwise.

(7)

2.3.2 Simulation using adaptive thinning

When it is difficult to solve (5), the use of an adaptive thinning procedure provides an alternative.
Assume we have access to local-in-time upper bounds χ̄s (t) on χ(t), that is

χ̄s(t) = 0 for all t < s,

χ̄s(t) ≥ χ(t) for all s ≤ t ≤ s+ ∆(s),

5



where 4 is a positive function (standard thinning corresponds to ∆ = +∞). Assume additionally
that we can simulate the first arrival time of the PP Π̄s with intensity χ̄s(t). Such bounds can be
constructed based on upper bounds on directional derivatives of U provided the remainder of the
Taylor expansion can be controlled. Algorithm 2 shows the pseudocode for the adaptive thinning
procedure.

Algorithm 2 Simulation of the first arrival time of a PP through thinning

1. Set s← 0, τ ← 0.

2. Do

(a) Set s← τ .

(b) Sample τ as the first arrival point of the PP Π̄s of intensity χ̄s.

(c) If Π̄s = {∅} then set τ ← s+4(s).

(d) If s+4(s) ≤ τ set s← s+4(s) and go to (b).

(e) While V > {χ (τ) /χ̄s (τ)} where V ∼ U (0, 1).

3. Return τ .

The case V > {χ (τ) /χ̄s (τ)} corresponds to a rejection step in the thinning algorithm but, in
contrast to rejection steps that occur in standard MCMC samplers, in the BPS algorithm this
means that the particle does not bounce and just coasts. Practically, we would like ideally 4 and
the ratio χ (τ) /χ̄s (τ) to be large. Indeed this would avoid having to simulate too many candidate
events from Π̄s which would be rejected as these rejection steps incur a computational cost.

2.3.3 Simulation using superposition and thinning

Assume that the energy can be decomposed as

U (x) =

m∑
j=1

U [j] (x) , (8)

then

χ (t) ≤
m∑
j=1

χ[j] (t) ,

where χ[j](t) = max
(
0,
〈
∇U [j](x+ tv), v

〉)
for j = 1, ...,m. It is therefore possible to use the

thinning algorithm of Section 2.3.2 with χ̄0(t) =
∑m
j=1 χ

[j] (t) for t ≥ 0 (and ∆ = +∞), as we
can simulate from Π̄0 via superposition by simulating the first arrival time τ [j] of each PP with
intensity χ[j] (t) ≥ 0 then returning

τ = minj=1,...,m τ [j].

Example 2. Exponential families. Consider a univariate exponential family with parameter x,
observation y, sufficient statistic φ(y) and log-normalizing constant A(x). If we assume a Gaussian
prior on x, we obtain

U(x) = x2/2︸︷︷︸
U [1](x)

+−xφ(y)︸ ︷︷ ︸
U [2](x)

+ A(x)︸ ︷︷ ︸
U [3](x)

.

The time τ [1] is computed analytically in Example 1 whereas the times τ [2] and τ [3] are given by

τ [2] =

{
log V [2]

vφ(y) if vφ(y) < 0,

+∞ otherwise,

6



and

τ [3] =

{
τ̃ [3] if τ̃ [3] > 0,

+∞ otherwise,

with τ̃ [3] = (A−1(− log V [3] + A(x))− x)/v and V [2], V [3] ∼ U (0, 1). For example, with a Poisson
distribution with natural parameter x, we obtain

τ̃ [3] =
log(− log V [3] + exp(x))− x

v
.

Example 3. Logistic regression. The class label of the data point r ∈ {1, 2, . . . , R} is denoted
by yr ∈ {0, 1} and its covariate k ∈ {1, 2, . . . , d} by ιr,k where we assume that ιr,k ≥ 0 (this
assumption can be easily relaxed as demonstrated but would make the notation more complicated;
see [11] for details). The parameter x ∈ Rd is assigned a standard Gaussian prior density denoted
by ψ, yielding the posterior density

π(x) ∝ ψ(x)

R∏
r=1

exp(yr 〈ιr, x〉)
1 + exp 〈ιr, x〉

. (9)

Using the superposition and thinning method (Section 2.3.3), simulation of the bounce times can
be broken into subproblems corresponding to R+1 factors: one factor coming from the prior, with
corresponding energy

U [R+1](x) = − logψ(x) = ‖x‖2/2 + constant, (10)

and R factors coming from the likelihood of each datapoint, with corresponding energy

U [r](x) = log(1 + exp 〈ιr, x〉)− yr 〈ιr, x〉 . (11)

Simulation of τ [R+1] is covered in Example 1. Simulation of τ [r] for r ∈ {1, 2, . . . , R} can be
approached using thinning. In Appendix C.1, we show that

χ[r](t) ≤ χ̄[r] =

d∑
k=1

1[vk(−1)yr ≥ 0]ιr,k|vk|. (12)

Since the bound is constant for a given v, we sample τ [r] by simulating an exponential random
variable.

2.4 Estimating expectations

Given a realization of x (t) over the interval [0, T ], where T is the total trajectory length, the
expectation

´
Rd ϕ (x)π (dx) of a function ϕ : Rd → R with respect to π can be estimated using

1

T

ˆ T

0

ϕ (x (t)) dt =
1

T

(
n−1∑
i=1

ˆ τi

0

ϕ
(
x(i−1) + v(i−1)s

)
ds+

ˆ tn−T

0

ϕ
(
x(n−1) + v(n−1)s

)
ds

)
;

see, e.g., [7]. When ϕ (x) = xk, k ∈ {1, 2, . . . , d}, we have
ˆ τi

0

ϕ
(
x(i−1) + v(i−1)s

)
ds = x

(i−1)
k τi + v

(i−1)
k

τ2
i

2
.

When the above integral is intractable, we may just discretize x (t) at regular time intervals to
obtain an estimator

1

L

L−1∑
l=0

ϕ (x (lδ)) ,

7



where δ > 0 is the mesh size and L = 1 + bT/δc. Alternatively, we could approximate these
univariate integrals through quadrature.

2.5 Theoretical results

An informal proof establishing that the BPS with λref = 0 admits π as invariant distribution is
given in [27]. As the BPS process z (t) = (x (t) , v (t)) is a piecewise deterministic Markov process,
the expression of its infinitesimal generator can be established rigourously using [7]. We show here
that this generator has invariant distribution π whenever λref ≥ 0 and prove that the resulting
process is additionally ergodic when λref > 0. We denote by Ez [h (z (t))] the expectation of h (z (t))
under the law of the BPS process initialized at z (0) = z.

Proposition 1. For any λref ≥ 0, the infinitesimal generator L of the BPS is defined for any
sufficiently regular bounded function h : Rd × Rd → R by

Lh(z) = lim
t↓0

Ez [h (z (t))]− h(z)

t

= 〈∇xh (x, v) , v〉+ λ (x, v) {h(x,R (x) v)− h(z)}

+λref

ˆ
(h(x, v′)− h(x, v))ψ (v′) dv′, (13)

where we recall that ψ (v) denotes the standard multivariate Gaussian density on Rd.

This transition kernel of the BPS is non-reversible and admits ρ as invariant probability measure,
where the density of ρ w.r.t. Lebesgue measure on Rd × Rd is given by

ρ(z) = π (x)ψ (v) . (14)

If we add the condition λref > 0, we get the following stronger result.

Theorem 1. If λref > 0 then ρ is the unique invariant probability measure of the transition kernel
of the BPS and for ρ-almost every z (0) and h integrable with respect to ρ

lim
T→∞

1

T

ˆ T

0

h(z (t))dt =

ˆ
h(z)ρ(z)dz a.s.

In fact, Lemma 3 establishes a minorization so it is only left to establish a Lyapunov function in
order to establish polynomial or geometric ergodicity in total variation. We exhibit in Section 4.1
a simple example where Pt is not ergodic for λref = 0.

3 The local bouncy particle sampler

3.1 Structured target distribution and factor graph representation

In numerous applications, the target distribution admits some structural properties that can be
exploited by sampling algorithms. For example, the Gibbs sampler takes advantage of conditional
independence properties. We present here a “local” version of the BPS introduced in [27, Section
III] which can similarly exploit these properties and, more generally, any representation of the
target density as a product of positive factors

π (x) ∝
∏
f∈F

γf (xf ) , (15)

8



−2 −1 0 1−2 −1 0 1−2 −1 0 1−2 −1 0 1

0123

0
5

10
15

20
tim

e

position −2 −1 0 1−2 −1 0 1−2 −1 0 1−2 −1 0 1

0123

0
5

10
15

20
tim

e

position −2 −1 0 1−2 −1 0 1−2 −1 0 1−2 −1 0 1
0123

0
5

10
15

20
tim

e

position −2 −1 0 1−2 −1 0 1−2 −1 0 1−2 −1 0 1

0123

0
5

10
15

20
tim

e

position

Ti
m
e

x1 x2 x3 x4

x1(0)

x1(1)

x1(2)

x2(0)

x2(1)
x2(2)

x2(3)

x2(4)

x1(3) x2(5)

x3(0)

x3(1)
x3(2)

x4(0)

fa fb fc

t

*

!

Figure 2: Top: a factor graph with d = 4 variables and 3 binary factors, F = {fa, fb, fc}. Bottom:
sample paths of (xi(t))t≥0 for i = 1, ..., 4 for the local BPS. See Sections 3.2 and 3.3.1.

where xf is a restriction of x to a subset Nf ⊆ {1,2,. . . ,d} of the components of x, and F is an
index set called the set of factors. Hence the energy associated to π is of the form

U (x) =
∑
f∈F

Uf (x) (16)

with ∂Uf (x) /∂xk = 0 for any variable absent from factor f , i.e. for any k ∈ {1, 2, . . . , d} \Nf .

Such a factorization of the target density can be formalized using factor graphs (Figure 2, top). A
factor graph is a bipartite graph, with one set of vertices N called the variables, each corresponding
to a component of x (|N | = d), and a set of vertices F corresponding to the local factors (γf )f∈F .
There is an edge between k ∈ N and f ∈ F if and only if k ∈ Nf . This representation generalizes
undirected graphical models [32, Chap. 2, Section 2.1.3] as, for example, factor graphs can have
distinct factors connected to the same set of components (i.e. f 6= f ′ with Nf = Nf ′) as in the
example of Section 4.6.

3.2 Local BPS: algorithm description

Similarly to the Gibbs sampler, each step of the local BPS manipulates only a subset of the d
components of x. Contrary to the Gibbs sampler, the local BPS does not require sampling from any
full conditional distribution and each local calculation results in a change of all state components,
not just the one being updated—how this can be done implicitly without manipulating the full
state at each iteration is described below. Related processes exhibiting similar characteristics have
been proposed in [19, 22, 23, 25].

For each factor f ∈ F , we define a local intensity function λf : Rd×Rd → R+ and a local bouncing
matrix Rf : Rd → Rd×d by

λf (x, v) = max {0, 〈∇Uf (x) , v〉} , (17)

Rf (x) v = v − 2
〈∇Uf (x) , v〉∇Uf (x)

‖∇Uf (x)‖2
. (18)

We can check that Rf (x) satisfies

k ∈ {1, 2, . . . , d} \Nf =⇒ {Rf (x)v}k = vk. (19)

9



When suitable, we will slightly abuse notation and write Rf (xf ) for Rf (x) as Rf (xf , x−f ) =

Rf

(
xf , x

′
−f

)
for any x−f , x′−f ∈ Rd−|Nf |, where |S| denotes the cardinality of a set S. Similarly,

we will use λf (xf , vf ) for λf (x, v).

We define a collection of PP intensities based on the previous event position x(i−1) and velocity
v(i−1): χf (t) = λf (x(i−1) + v(i−1)t, v(i−1)). In the local BPS, the next bounce time τ is the first
arrival of a PP with intensity χ(t) =

∑
f∈F χf (t). However, instead of modifying all velocity

variables at a bounce as in the basic BPS, we sample a factor f with probability χf (τ)/χ(τ)
and modify only the variables connected to the sampled factor. More precisely, the velocity vf
is updated using Rf (xf ) defined in (18). A generalization of the proof of Proposition 1 given in
the Supplementary Material shows that the local BPS algorithm results in a π−invariant kernel.
In the next subsection, we describe various computationally efficient procedures to simulate this
process.

For all these implementations, it is useful to encode trajectories in a sparse fashion: each variable
k ∈ N only records information at the times t(1)

k , t
(2)
k , . . . where an event (a bounce or refreshment)

affected it. By (19), this represents a sublist of the list of all event times. At each of those times
t
(i)
k , the component’s position x(i)

k and velocity v(i)
k right after the event is stored. Let Lk denote

a list of triplets (x
(i)
k , v

(i)
k , t

(i)
k )i≥0, where x

(0)
k and v(0)

k denote the initial position and velocity and
t
(0)
k = 0 (see Figure 2, where the black dots denote the set of recorded triplets). This list is sufficient
to compute xk(t) for t ≤ t

(|Lk|+1)
k . This procedure is detailed in Algorithm 3 and an example is

shown in Figure 2, where the black square on the first variable’s trajectory shows how Algorithm
3 reconstructs x1(t) at a fixed time t: it identifies i(t, 1) = 3 as the index associated to the largest
event time t(3)

1 before time t affecting x1 and return x1 (t) = x
(3)
1 + v

(3)
1 (t− t(3)

1 ).

Algorithm 3 Computation of xk(t) from a list of events.

1. Find the index i = i(t, k) associated to the largest time t(i)k verifying t(i)k ≤ t.

2. Set xk(t)← x
(i(t,k))
k + (t− t(i(t,k))

k )v
(i(t,k))
k .

3.3 Local BPS: efficient implementations

3.3.1 Implementation via priority queue

We can sample arrivals from a PP with intensity χ(t) =
∑
f∈F χf (t) using the superposition method

of Section 2.3.3, the thinning step therein being omitted. To implement this technique efficiently,
we store potential future bounce times (called “candidates”) tf , one for each factor, in a priority
queue Q: only a subset of these candidates will join the lists Lk which store past, “confirmed”
events. We pick the the smallest time in Q to determine the next bounce time and the next factor
f to modify. The priority queue structure ensures that finding the minimum element of Q or
inserting/updating an element of Q can be performed with computational complexity O(log |F |).
When a bounce occurs, a key observation behind efficient implementation of the local BPS is that
not all the other candidate bounce times need to be resimulated. Suppose that the bounce was
associated with factor f . In this case, only the candidate bounce times tf ′ corresponding to factors
f ′ with Nf ′ ∩ Nf 6= ∅ need to be resimulated. For example, consider the first bounce in Figure
2 (shown in purple), which is triggered by factor fa (rectangles represent candidate bounce times
tf ; dashed lines connect bouncing factors to the variables that undergo an associated velocity
change). Then only the velocities for the variables x1 and x2 need to be updated. Therefore,
only the candidate bounce times for factors fa and fb need to be re-simulated while the candidate
bounce time for fc stays constant (this is shown by an exclamation mark in Figure 2).

The method is detailed in Algorithm 4. Several operations of the BPS such as step 4, 6.iii, 6.iv
and 7.ii can be easily parallelized.

10



Algorithm 4 Local BPS algorithm (priority queue implementation)

1. Initialize
(
x(0), v(0)

)
arbitrarily on Rd × Rd.

2. Initialize the global clock T ← 0.

3. For k ∈ N do

(a) Initialize the list Lk ←
(
x

(0)
k , v

(0)
k , T

)
.

4. Set Q← new queue
(
x(0), v(0), T

)
.

5. Sample tref ∼ Exp
(
λref

)
.

6. While more events i = 1, 2, . . . requested do

(a) (t, f)← smallest candidate bounce time and associated factor in Q.

(b) Remove (t, f) from Q.

(c) Update the global clock, T ← t.

(d) If T < tref then

i. (vf )k ← v
(|Lk|−1)
k for all k ∈ Nf .

ii. xf ← xf (T ) (computed using Algorithm 3).
iii. For k ∈ Nf do

A. x(|Lk|)
k ← x

(|Lk|−1)
k + (T − t(|Lk|−1)

k )v
(|Lk|−1)
k , where t(|Lk|−1)

k and v
(|Lk|−1)
k are

retrieved from Lk.
B. v(|Lk|)

k ← {Rf (xf ) vf}k.

C. Lk ←
{
Lk,

(
x

(|Lk|)
k , v

(|Lk|)
k , T

)}
(add the new sample to the list).

iv. For f ′ ∈ F : Nf ′ ∩Nf 6= ∅ (note: this includes the update of f) do
A. for all k ∈ Nf ′ .
B. xf ′ ← xf ′(T ) (computed using Algorithm 3).
C. Simulate the first arrival time τf ′ of a PP of intensity λf ′ (xf ′ + tvf ′ , vf ′) on

[0,+∞).
D. Set in Q the candidate bounce time associated to f ′ to the value tf ′ = T + τf ′ .

(e) Else

i. Sample v′ ∼ N (0d, Id).
ii. Q← new queue (x (tref) , v

′, tref) where x (tref) is computed using Algorithm 3.
iii. Set tref ← tref + τref where τref ∼ Exp

(
λref

)
.

7. Return the samples encoded as the lists Lk, k ∈ N .

Algorithm 5 New Queue (x, v, T )

1. For f ∈ F do

(a) (vf )k ← v
(|Lk|−1)
k for all k ∈ Nf .

(b) xf ← xf (T ) (computed using Algorithm 3).

(c) Simulate the first arrival time τf of a PP of intensity λf (xf + tvf , vf ) on [0,+∞).

(d) Set in Q the time associated to f to the value T + τf .

2. Return Q.

11



3.3.2 Implementation via thinning

When the number of factors involved in Step 6(d)iv is large, the previous queue-based implemen-
tation can be computationally expensive. Implementing the local BPS in this setup is closely
related to the problem of simulating stochastic chemical kinetics and innovative solutions have
been proposed in this area. We adapt here the algorithm proposed in [31] to the local BPS con-
text. For ease of presentation, we present the algorithm without refreshment and only detail the
simulation of the bounce times. This algorithm relies on the ability to compute local-in-time up-
per bounds on λf for all f ∈ F . More precisely, we assume that given a current position x and
velocity v, and ∆ ∈ (0,∞], we can find a positive number χ̄f , such that for any t ∈ [0,∆), we
have χ̄f ≥ λf (x + vt, v). We can also use this method on a subset G of F and combine it with
the previously discussed techniques to sample candidate bounce times for factors in F\G but we
restrict ourselves to G = F to simplify the presentation.

Algorithm 6 Local BPS algorithm (thinning implementation)

1. Initialize
(
x(0), v(0)

)
arbitrarily on Rd × Rd.

2. Initialize the global clock T ← 0.

3. Initialize T̄ ←4 (time until which local upper bounds are valid).

4. Compute local-in-time upper bounds χ̄f for f ∈ F such that χ̄f ≥ λf (x(0) + v(0)t, v(0)) for
all t ∈ [0,∆).

5. While more events i = 1, 2, . . . requested do

(a) Sample τ ∼ Exp (χ̄) where χ̄ =
∑
f∈F χ̄f .

(b) If
(
T + τ > T̄

)
then

i. x(i) ← x(i−1) + v(i−1)(T̄ − T ).
ii. v(i) ← v(i−1).
iii. For all f ∈ F , update χ̄f to ensure that χ̄f ≥ λf (x(i) + v(i)t, v(i)) for t ∈ [0,∆).
iv. Set T ← T̄ , T̄← T̄ +4.

(c) Else

i. x(i) ← x(i−1) + v(i−1)τ .
ii. Sample F ∈ F where P (F = f) = χ̄f/χ̄.

iii. If V < λF
(
x(i), v(i−1)

)
/χ̄F where V ∼ U (0, 1) then a bounce for factor F occurs

at time T .
A. v(i)← RF

(
x(i)
)
v(i−1).

B. For all f ′ ∈ F : Nf ′ ∩ NF 6= ∅, update χ̄f ′ to ensure that χ̄f ′ ≥ λf ′(x
(i) +

v(i)t, v(i)) for t ∈ [0, T̄ − T − τ).
iv. Else

A. v(i) ← v(i−1).
v. Set T ← T + τ .

Algorithm 6 will be particularly useful in scenarios where summing over the bounds (Step 5a)
and sampling a factor (Step 5(c)ii) can be performed efficiently. A scenario where it is possible to
implement these two operations in constant time is detailed in Section 4.6. Another scenario where
sampling quickly from F is feasible is if the number of distinct upper bounds is much smaller than
the number of factors. For example, we only need to sample a factor F uniformly at random if
Λ = χ̄f = χ̄f ′ for all f, f ′ in F and χ̄ = |F | ·Λ (that is no factor needs to be inspected in order to
execute Algorithm 5(c)ii) and the thinning procedure in Step 5(c)iii boils down to

12



V ≤
|F |max

(
0,
〈
∇Uf (x(i)), v(i−1)

〉)
χ̄

. (20)

A related approach has been adopted in [4] for the analysis of big data. In this particular scenario,
an alternative local BPS can also be implemented where s > 1 factors F = (F1, . . . ,Fs) are
sampled uniformly at random without replacement from F , the thinning occurs with probability

|F |
sχ̄

max

0,

s∑
j=1

〈
∇UFj

(x(i)), v(i−1)
〉 (21)

and the components of x belonging to NF bounce based on
∑s
j=1∇UFj

(x). One can check that
the resulting dynamics preserves π as an invariant distribution. In contrast to s = 1, this is not
an implementation of local BPS described in Algorithm 6, but instead this corresponds to a local
BPS update for a random partition of the factors.

4 Numerical results

4.1 Gaussian distributions and the need for refreshment

We consider an isotropic multivariate Gaussian target distribution, U (x) = ‖x‖2, to illustrate the
need for refreshment. Without refreshment, we obtain from Equation (7)

〈
x(i), v(i)

〉
=

{
−
√
− log Vi if

〈
x(i−1), v(i−1)

〉
≤ 0,

−
√〈

x(i−1), v(i−1)
〉2 − log Vi otherwise,

and

∥∥∥x(i)
∥∥∥2

=

{∥∥x(i−1)
∥∥2 −

〈
x(i−1), v(i−1)

〉2 − log Vi if
〈
x(i−1), v(i−1)

〉
≤ 0,∥∥x(i−1)

∥∥2 − log Vi otherwise,

see Supplementary Material for details. In particular, these calculations show that if
〈
x(i), v(i)

〉
≤ 0

then
〈
x(j), v(j)

〉
≤ 0 for j > i so that ‖x(i)‖2 =

∥∥x(1)
∥∥2−

〈
x(1), v(1)

〉2−log Vi for i ≥ 2. In particular
for x(0) = e1 and v(0) = e2 with ei being elements of standard basis of Rd, the norm of the position
at all points along the trajectory can never be smaller than 1 as illustrated in Figure 3.

In this scenario, we show that BPS without refreshment admits a countably infinite collection of
invariant distributions. Let us define r (t) = ‖x (t)‖ and m (t) = 〈x (t) , v (t)〉 / ‖x (t)‖ and denote
by χk the probability density of the chi distribution with k degrees of freedom.

Proposition 2. For any dimension d ≥ 2, the process (r (t) ,m (t))t≥0 is Markov and its transition
kernel is invariant with respect to the probability densities

{
fk(r,m) ∝ χk(

√
2r) · (1−m2)(k−3)/2; k ∈ {2, 3, . . .}

}
.

The proof is given in Appendix 2. By Theorem 1, we have a unique invariant measure as soon as
λref > 0.

Next, we look at the scaling of the Effective Sample Size (ESS) per CPU second of the basic
BPS algorithm for ϕ (x) = x1 when λref = 1 as the dimension d of the isotropic normal target
increases. The ESS is estimated using the R package mcmcse [10] by evaluating the trajectory
on a fine discretization of the sampled trajectory. The results in log-log scale are displayed in
Figure 3. The curve suggests a decay of roughly d−1.47, slightly inferior to the d−1.25 scaling for

13



●

●

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

xBounds

yB
ou
nd
s

●

●

1

2

3

4

2.0 2.5 3.0 3.5 4.0
log10(d)

lo
g1

0(
es

sP
er

S
ec

)

Figure 3: Left: the 200 first segments/bounces of a BPS path for λref = 0 (for clarity the first 15
segments are in black, the following ones in light grey): the center of the space is never explored.
Right, solid line: ESS per CPU second as a function of d (log-log scale), along with 95% confidence
intervals based on 40 runs (the intervals are small and difficult to see). Dashed line: linear regression
curve. See Section 4.1 for details.

●●●

●

●

●●

●

●

●

●

●
●
●

●

●
●●●

●

●

●●● ●

●
●
●

●
●

●

●
●
●●
●

●●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●●
●
●●

●

●
●

●

●

●

●

●

●●

●

●●●●

●

●

●
●

●

●

●●

●●

●

●

●

●
●
●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●●●

●

●

●
●
●
●
●●

●
●●

●

●

●
●

●

●●

●

●● ●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●●

●

●

●
●
●
●

●

●

●

●
●●

●●

●●

●

●●●●
●

●

●●

●
●●

●

●
●

●

●

●

●●

●●
●●
●●●●●

●

●
●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

1e−04

1e−02

1e+00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pairwise precision parameter

R
el

at
iv

e 
er

ro
r

is_local
false

true

Figure 4: Boxplots of relative errors over 100 local BPS runs for Gaussian chain-shaped fields of
pairwise precisions 0.1-0.9 .

an optimally tuned Hamiltonian Monte Carlo (HMC) algorithm [6, Section III], [24, Section 5.4.4].
It should be noted that BPS achieves this scaling without varying any tuning parameter, whereas
HMC’s performance critically depends on tuning two parameters (leap-frog stepsize and number
of leap-frog steps). Both BPS and HMC compare favorably to the d−2 scaling of the optimally
tuned random walk MH [28].

4.2 Comparison of the global and local schemes

We compare the basic “global” BPS of Section 2 to the local BPS of Section 3 on a sparse Gaussian
field. We use a chain-shaped undirected graphical model of length d = 1000 and perform separate
experiments for various pairwise precision parameters for the interaction between neighbors in the
chain. Both methods are run for 60 seconds. We compare the Monte Carlo estimate of the variance
of x500 to its true value. The results are shown in Figure 4. The smaller computational complexity
per local bounce of the local BPS offsets significantly the associated decrease in expected trajectory
segment length. Moreover, both versions appear insensitive to the pairwise precision used in this
sparse Gaussian field.

14



4.3 Comparisons of alternative refreshment schemes

In Section 2, the velocity was refreshed using a Gaussian distribution. We compare here this global
refreshment scheme to three alternatives:

Local refreshment: if the local BPS is used, the factor graph structure can be exploited to
design computationally cheaper refreshment operators. We pick one factor f ∈ F uniformly
at random and resample only the components of v with indices in Nf . By the same argument
used in Section 3, each refreshment requires bounce time recomputation only for the factors
f ′ with Nf ∩Nf ′ 6= ∅.

Restricted refreshment: the velocities are refreshed according to φ (v), the uniform distribution
on Sd−1, and the BPS admits now ρ (z) = π (x)φ (v) as invariant distribution.

Restricted partial refreshment: a variant of restricted refreshment where we sample an angle
θ by multiplying a Beta(α, β)-distributed random variable by 2π. We then select a vector
uniformly at random from the unit length vectors that have an angle θ from v. We used
α = 1, β = 4 to favor small angles.

We compare these methods for different values of λref , the trade-off being that too small a value
can lead to a failure to visit certain regions of the space, while too large a value leads to a random
walk behavior.

The rationale behind the partial refreshment procedure is to suppress the random walk behavior of
the particle path arising from a refreshment step independent from the current velocity. Refresh-
ment is needed to ensure ergodicity but a “good” direction should only be altered slightly. This
strategy is akin to the partial momentum refreshment strategy for HMC methods [17], [24, Section
4.3] and could be similarly implemented for global refreshment. It is easy to check that all of the
above schemes preserve π as invariant distribution. We tested these schemes on the chain-shaped
factor graph described in the previous section (with the pairwise precision parameter set to 0.5).
All methods are provided with a computational budget of 30 seconds. The results are shown in
Figure 5. The results show that local refreshment is less sensitive to λref , performing as well or
better than global refreshment. The performance of the restricted and partial methods appears
more sensitive to λref and generally inferior to the other two schemes.

One limitation of the results in this section is that the optimal refreshment scheme and refreshment
rate will in general be problem dependent. Adaptation methods used in the HMC literature could
potentially be adapted to this scenario [16, 33], but we leave these extensions to future work.

4.4 Comparisons with HMCmethods on high-dimensional Gaussian dis-
tributions

We compare the local BPS with no partial refreshment and λref = 1 to advanced adaptive versions
of HMC implemented using Stan [16] on a 100-dimensional Gaussian example from [24, Section
5.3.3.4]. For each method, we compute the relative error on the estimated marginal variances
after a wall clock time of 30 seconds, excluding from this time the time taken to compile the Stan
program. The adaptive HMC methods use 1000 iterations of adaptation. When only the leap-frog
stepsize is adapted (“adapt=true”), HMC provides several poor estimates of marginal variances.
These deviations disappear when adapting a diagonal metric (denoted “fit-metric”) and/or using
advanced auxiliary variable methods to select the number of leap-frog steps (denoted “nuts”). Given
that adaptation is critical to HMC in this scenario, it is encouraging that BPS without adaptation
is competitive (Figure 6).

Next, we compare the local BPS to NUTS (“adapt=true,fit_metric=true,nuts=true”) as the di-
mension d increases. Experiments are performed on the chain-shaped Gaussian Random Field of
Section 4.2 with the pairwise precision parameter set to 0.5. We vary the length of the chain (10,

15



●
●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●●

●

●

●●●
●

●

●

●
●
●

●

●

●

●

●

●●●●
●

1e−04

1e−02

1e+00

1e−04

1e−02

1e+00

100
1000

GLOBAL LOCAL PARTIAL RESTRICTED
Refreshment type

R
el

at
iv

e 
er

ro
r

Ref. rate

0.01

0.1

1

10

Figure 5: Comparison of refreshment schemes for d = 100 (top) and d = 1000 (bottom). Each
boxplot summarizes the relative error for the variance estimates (in log scale) of x50 over 100 runs
of BPS.

● ●● ●

●●●●

●● ●

● ●●● ●● ●

BPS(adapt=false,fit_metric=false)

Stan/HMC(adapt=true,fit_metric=false,nuts=false)

Stan/HMC(adapt=true,fit_metric=false,nuts=true)

Stan/HMC(adapt=true,fit_metric=true,nuts=false)

Stan/HMC(adapt=true,fit_metric=true,nuts=true)

1e−04 1e−02
Relative error

Figure 6: Box plots showing the relative absolute error of variance estimates for a fixed computa-
tional budget.

16



10 100 1000

0.01

0.10

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Percent of samples processed

R
el

at
iv

e 
er

ro
r 

(lo
g 

sc
al

e) method

BPS

Stan

Figure 7: Relative error for d = 10 (left), d = 100 (middle) and d = 1000 (right), averaged over 10
of the dimensions and 40 runs. Each d uses a fixed computational budget.

0 50

−2

−1

0

1

2

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
Percent of samples processed

S
am

pl
e

method

BPS

Stan

Figure 8: Simulated paths for x0 and x50 for d = 100. Each state of the HMC trajectory is obtained
by leap-frog steps (not displayed), these latter cannot be used to estimate Monte Carlo averages
as HMC relies on a MH step. In contrast, BPS exploits the full path.

100, 1000), and run Stan’s implementation of NUTS for 1000 iterations + 1000 iterations of adap-
tation. We measure the wall-clock time (excluding the time taken to compile the Stan program)
and then run our method for the same wall-clock time 40 times for each chain size. The absolute
value of the relative error averaged on 10 equally spaced marginal variances is measured as a func-
tion of the percentage of the total computational budget used; see Figure 7. The gap between the
two methods widens as d increases. To visualize the different behavior of the two algorithms, three
marginals of the Stan and BPS paths for d = 100 are shown in Figure 8. Contrary to Section 4.1,
BPS outperforms here HMC as its local version is able to exploit the sparsity of the random field.

4.5 Poisson-Gaussian Markov random field

Let x = (xi,j : i, j ∈ {1, 2, . . . , 10}) denote a grid-shaped Gaussian Markov random field with
pairwise interactions of the same form as those used in the previous chain examples (pairwise
precision set to 0.5) and let yi,j be Poisson distributed, independent over i, j given x, with rate
exp(xi,j). We generate a synthetic dataset y = (yi,j : i, j ∈ {1, 2, . . . , 10}) from this model and
approximate the resulting posterior distribution of x. We first run Stan with default settings
(“adapt=true,fit_metric=true,nuts=true”) for 16, 32, 64, . . . , 4096 iterations. For each number of
Stan iterations, we run local BPS for the same wall-clock time as Stan, using a local refreshment
(λref = 1) and the method from Example 2 for the bouncing time computations. We repeat
these experiments 10 times with different random seeds. Figure 9 displays the boxplots of the

17



0 55

●

●

●

●

●

●

●

●
●

●

●

●

●

●
0.2

0.4

0.6

16 32 64 128 256 512 1024 2048 4096 16 32 64 128 256 512 1024 2048 4096
Number of Stan iterations (BPS ran with Stan's wall clock time as time limit)

E
st

im
at

e

sampling_method
BPS

Stan

Figure 9: Boxplots of estimates of the posterior variance of x0,0 (left) and x5,5 (right) using Stan
implementation of HMC and local BPS.

estimates of the posterior variances of the variables x0,0 and x5,5 summarizing the 10 replications.
As expected, both methods converge to the same value, but BPS requires markedly less computing
time to achieve any given level of accuracy.

4.6 Bayesian logistic regression for large data sets

Consider the logistic regression model introduced in Example 3 when the number of data R is large.
In this context, standard MCMC schemes such as the MH algorithm are computationally expensive
as they require evaluating the likelihood associated to the R observations at each iteration. This
has motivated the development of techniques which only evaluate the likelihood of a subset of
the data at each iteration. However, most of the methods currently available introduce either
some non-vanishing asymptotic bias, e.g. the subsampling MH scheme proposed in [2], or provide
consistent estimates converging at a slower rate than regular MCMC algorithms, e.g. the Stochastic
Gradient Langevin Dynamics introduced in [30, 34]. The only available algorithm which only
requires evaluating the likelihood of a subset of data at each iteration yet provides consistent
estimates converging at the standard Monte Carlo rate is the Firefly algorithm [21].

In this context, we associate R + 1 factors to the target posterior distribution: one for the prior
and one for each data point with xf = x for all f ∈ F . As a uniform upper bound on the
intensities of these local factors is available for restricted refreshment, see Appendix C.1, we could
use (21) in conjunction with Algorithm 6 to provide an alternative to the Firefly algorithm which
selects at each bounce a subset of s data points uniformly at random without replacement. For
s = 1, a related algorithm has been recently explored in [4]. In presence of outliers, this strategy
can be inefficient as the uniform upper bound becomes very large, resulting in a computationally
expensive implementation. After a pre-computation step of complexity O(R logR) only executed
once, we show here that Algorithm 6 can be implemented using data-dependent bounds mitigating
the sensitivity to outliers while maintaining the computational cost of each bounce independent of
R. We first pre-compute the sum of covariates over the data points, ιck =

∑R
r=1 ιr,k1[yr = c], for

k ∈ {1, . . . , d} and class label c ∈ {0, 1}. Using these quantities, it is possible to compute

χ̄ =

R∑
r=1

χ̄[r] =

d∑
k=1

|vk| ι1[vk<0]
k ,

with χ̄[r] given in (12). If d is large, we can keep the sum χ̄ in memory and add-and-subtract any
local updates to it. The implementation of Step 5(c)ii relies on the alias method [8, Section 3.4].
A detailed description of these derivations and of the algorithm is presented in Appendix C.

We compare the local BPS with thinning to the MAP-tuned Firefly algorithm implementation
provided by the authors. This version of Firefly outperforms experimentally significantly the
standard MH in terms of ESS per-datum likelihood [21]. The two algorithms are here compared

18



10−5

10−4

10−3

10−2

10−1

101 102 103 104 105

Number of datapoints (R)

E
S

S
 p

er
 li

ke
lih

oo
d 

ev
al

ua
tio

n

Algorithm BPS constant refresh rate Tuned FireFly

Figure 10: ESS per-datum likelihood evaluation for Local BPS and Firefly.

in terms of this criterion, where the ESS is averaged over the d = 5 components of x. We generate
covariates ιrk

i.i.d.∼ U(0.1, 1.1) and data yr ∈ {0, 1} for r = 1, . . . , R according to (9) and set a
zero-mean normal prior of covariance σ2Id for x. For the algorithm, we set λref = 0.5, σ2 = 1 and
∆ = 0.5, which is the length of the time interval for which a constant upper bound for the rate
associated with the prior is used, see Algorithm 7. Experimentally, local BPS always outperforms
Firefly, by about an order of magnitude for large data sets. However, we also observe that both
Firefly and local BPS have an ESS per datum likelihood evaluation decreasing in approximately 1/R
so that the gains brought by these algorithms over a correctly scaled random walk MH algorithm
do not appear to increase with R. The rate for local BPS is slightly superior in the regime of up
to 104 data points, but then returns to the approximate 1/R rate. To improve this rate, one can
adapt the control variate ideas introduced in [3] for the MH algorithm to these schemes. This has
been proposed in [4] for a related algorithm and in [11] for the local BPS.

4.7 Bayesian inference of evolutionary parameters

We analyze a dataset of primate mitochondrial DNA [15] at the leaves of a fixed reference tree
[18] containing 898 sites and 12 species. We want to approximate the posterior evolutionary
parameters x encoded into a rate matrix Q. A detailed description of this phylogenetic model can
be found in the Supplementary Material. The global BPS is used with restricted refreshment and
λref = 1 in conjunction with an auxiliary variable-based method similar to the one described in
[35], alternating between two moves: (1) sampling continuous-time Markov chain paths along the
tree given x using uniformization, (2) sampling x given the path (in which case the derivation of
the gradient is simple and efficient). The only difference compared to [35] is that we substitute the
HMC kernel by the kernel induced by running BPS for a fixed trajectory length. This auxiliary
variable method is convenient because, conditioned on the paths, the energy function is convex
and hence we can simulate the bouncing times using the method described in Example 1.

We compare against a state-of-the-art HMC sampler [33] that uses Bayesian optimization to adapt
the key parameters of HMC, the leap-frog stepsize and the number of leap-frog steps, while pre-
serving convergence to the target distribution. Both our method and this HMC method are im-
plemented in Java and share the same gradient computation code. Refer to the Supplementary
Material for additional background and motivation behind this adaptation method.

We first perform various checks to ensure that both BPS and HMC chains are in close agreement
given a sufficiently large number of iterations. After 20 millions HMC iterations, the credible

19



0.0

0.5

1.0

1.5

2.0

2.5

3.0

max median min
statistic (across parameters)

RF: ESS/s for different statistics

●

●

●

●

0.0

0.5

1.0

1.5

2.0

2.5

3.0

max median min
statistic (across parameters)

HMC: ESS/s for different statistics

Figure 11: Boxplots of maximum, median and minimum ESS per second for BPS (left) and HMC
(right).

intervals estimates from the HMC method are in close agreement with those obtained from BPS
(result not shown) and both methods pass the Geweke diagnostic [12].

To compare the effectiveness of the two samplers, we look at the ESS per second of the model
parameters. We show the maximum, median, and maximum over the 10 parameter components
for 10 runs, for both BPS and HMC in Figure 11. We observe a speed-up by a factor two for all
statistics considered (maximum, median, minimum). In the supplement, we show that the HMC
chain displays much larger autocorrelations than the BPS chain.

5 Discussion

Most MCMC methods currently available, such as the MH and HMC algorithms, are discrete-time
reversible processes. There is a wealth of theoretical results showing that non-reversible Markov
processes mix faster and provide lower variance estimates of ergodic averages [26]. However, most
of the non-reversible processes studied in the literature are diffusions and cannot be simulated
exactly. The BPS is an alternative continuous-time Markov process which, thanks to its piecewise
deterministic paths, can be simulated exactly for many problems of interest in statistics.

As any MCMC method, the BPS can struggle in multimodal scenarios and when the target exhibits
very strong correlations. However, for a range of applications including sparse factor graphs,
large datasets and high-dimensional settings, we have observed empirically that BPS is on par or
outperforms state-of-the art methods such as HMC and Firefly. The main practical limitation of
the BPS compared to HMC is that its implementation is model-specific and requires more than
knowing ∇U pointwise. An important open problem is therefore whether its implementation, and
in particular the simulation of bouncing times, can be fully automated. However, the techniques
described in Section 2.3 are already sufficient to handle many interesting models. There are also
numerous potential methodological extensions of the method to study. In particular, it has been
shown in [13] how one can exploit the local geometric structure of the target to improve HMC and
it would be interesting to investigate how this could be achieved for BPS. More generally, the BPS
is a specific continuous-time piecewise deterministic Markov process [7]. This class of processes
deserves further exploration as it might provide a whole new class of efficient MCMC methods.

Acknowledgements

Alexandre Bouchard-Côté’s research is partially supported by a Discovery Grant from the Na-
tional Science and Engineering Research Council. Arnaud Doucet’s research is partially supported

20



by the Engineering and Physical Sciences Research Council (EPSRC), grants EP/K000276/1,
EP/K009850/1 and by the Air Force Office of Scientific Research/Asian Office of Aerospace Re-
search and Development, grant AFOSRA/AOARD-144042. Sebastian Vollmer’s research is par-
tially supported by the EPSRC grants EP/K009850/1 and EP/N000188/1. We thank Markus
Upmeier for helpful discussions of differential geometry as well as Nicholas Galbraith, Fan Wu,
and Tingting Zhao for their comments.

References

[1] R.J. Adler and J.E. Taylor. Topological Complexity of Smooth Random Functions, volume 2019
of Lecture Notes in Mathematics. Springer, Heidelberg, 2011. École d’Été de Probabilités de
Saint-Flour XXXIX.

[2] R. Bardenet, A. Doucet, and C.C. Holmes. Towards scaling up MCMC: An adaptive subsam-
pling approach. In Proceedings of the 31st International Conference on Machine Learning,
2014.

[3] R. Bardenet, A. Doucet, and C.C. Holmes. On Markov chain Monte Carlo methods for tall
data. 2015. Technical report arXiv:1505.02827.

[4] J. Bierkens, P. Fearnhead, and G. O. Roberts. The zig-zag process and super-efficient Monte
Carlo for Bayesian analysis of big data. 2016. Technical report arXiv:1607.03188.

[5] A. Bouchard-Côté, S.J. Vollmer, and A. Doucet. The bouncy particle sampler: a non-reversible
rejection-free Markov chain Monte Carlo method. 2015. Technical report arxiv:1510.02451v1.

[6] M. Creutz. Global Monte Carlo algorithms for many-fermion systems. Physical Review D,
38(4):1228–1237, 1988.

[7] M.H.A. Davis. Markov Models & Optimization, volume 49. CRC Press, 1993.

[8] L. Devroye. Non-uniform Random Variate Generation. Springer-Verlag, New York, 1986.

[9] M. Einsiedler and T. Ward. Ergodic Theory: with a view towards Number Theory, volume 259
of Graduate Texts in Mathematics. Springer-Verlag, London, 2011.

[10] J.M. Flegal, J. Hughes, and D. Vats. mcmcse: Monte Carlo Standard Errors for MCMC,
2015. R package version 1.1-2.

[11] N. Galbraith. On Event-Chain Monte Carlo Methods. Master’s thesis, Department of Statis-
tics, Oxford University, 9 2016.

[12] J. Geweke. Evaluating the accuracy of sampling-based approaches to the calculation of pos-
terior moments. Bayesian Statistics, 4:169–193, 1992.

[13] M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian Monte
Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
73(2):123–214, 2011.

[14] M. Hairer. Convergence of Markov processes. http://www.hairer.org/notes/Convergence.
pdf, 2010. Lecture notes, University of Warwick.

[15] K. Hayasaka, Takashi G., and Satoshi H. Molecular phylogeny and evolution of primate
mitochondrial DNA. Molecular Biology and Evolution, 5:626–644, 1988.

[16] M.D. Hoffman and A. Gelman. The no-U-turn sampler: Adaptively setting path lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(4):1593–1623, 2014.

[17] A.M. Horowitz. A generalized guided Monte Carlo algorithm. Physics Letters B, 268(2):247–
252, 1991.

21

http://www.hairer.org/notes/Convergence.pdf
http://www.hairer.org/notes/Convergence.pdf


[18] J.P. Huelsenbeck and F. Ronquist. MRBAYES: Bayesian inference of phylogenetic trees.
Bioinformatics, 17(8):754–755, 2001.

[19] T.A. Kampmann, H.H. Boltz, and J. Kierfeld. Monte Carlo simulation of dense polymer melts
using event chain algorithms. Journal of Chemical Physics, (143):044105, 2015.

[20] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2008.

[21] D. Maclaurin and R.P. Adams. Firefly Monte Carlo: Exact MCMC with subsets of data. In
Uncertainty in Artificial Intelligence, volume 30, pages 543–552, 2014.

[22] M. Michel, S.C. Kapfer, and W. Krauth. Generalized event-chain Monte Carlo: Constructing
rejection-free global-balance algorithms from infinitesimal steps. Journal of Chemical Physics,
140(5):054116, 2014.

[23] M. Michel, J. Mayer, and W. Krauth. Event-chain Monte Carlo for classical continuous spin
models. Europhysics Letters, (112):20003, 2015.

[24] R.M. Neal. Markov chain Monte Carlo using Hamiltonian dynamics. In Handbook of Markov
Chain Monte Carlo. Chapman & Hall/CRC, 2011.

[25] Y. Nishikawa, M. Michel, W. Krauth, and K. Hukushima. Event-chain Monte Carlo algorithm
for the Heisenberg model. Physical Review E, (92):063306, 2015.

[26] M. Ottobre. Markov chain Monte Carlo and irreversibility. Reports on Mathematical Physics,
77:267–292, 2016.

[27] E.A. J. F. Peters and G. de With. Rejection-free Monte Carlo sampling for general potentials.
Physical Review E, 85:026703, 2012.

[28] G. O. Roberts and J.S. Rosenthal. Optimal scaling for various Metropolis-Hastings algorithms.
Statistical Science, 16(4):351–367, 2001.

[29] S. Tavaré. Some probabilistic and statistical problems in the analysis of DNA sequences.
Lectures on Mathematics in the Life Sciences, 17:56–86, 1986.

[30] Y. W. Teh, A. H. Thiéry, and S. J. Vollmer. Consistency and fluctuations for stochastic
gradient Langevin dynamics. Journal of Machine Learning Research, 17:1–33, 2016.

[31] V.H. Thanh and C. Priami. Simulation of biochemical reactions with time-dependent rates
by the rejection-based algorithm. Journal of Chemical Physics, 143(5):054104, 2015.

[32] M.J. Wainwright and M.I. Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.

[33] Z. Wang, S. Mohamed, and N. de Freitas. Adaptive Hamiltonian and Riemann manifold
Monte Carlo. In Proceedings of the 30th International Conference on Machine Learning,
pages 1462–1470, 2013.

[34] M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. In
Proceedings of the 28th International Conference on Machine Learning, pages 681–688, 2011.

[35] T Zhao, Z. Wang, A. Cumberworth, J. Gsponer, N. de Freitas, and A. Bouchard-Côté.
Bayesian analysis of continuous time Markov chains with application to phylogenetic mod-
elling. Bayesian Analysis, 11:1203–1237, 2016.

22



A Proofs of Section 2

A.1 Proof of Proposition 1

The BPS process is a specific piecewise-deterministic Markov process so the expression of its
generator follows from [7, Theorem 26.14]. Its adjoint is given in [27] and a derivation of this
expression from first principles can be found in the Supplementary Material. To establish the
invariance with respect to ρ, we first show that

´
Lh(z)ρ (z) dz = 0. We have

ˆ ˆ
Lh(z)ρ (z) dz =

ˆ ˆ
〈∇xh (x, v) , v〉 ρ (z) dz (22)

+

ˆ ˆ
λ(x, v)[h (x,R (x) v)− h (x, v)]ρ (z) dz (23)

+λref

ˆ ˆ ˆ
(h(x, v′)− h(x, v))ψ (dv′) ρ (z) dz (24)

As ρ (z) = π (x)ψ (v), the term (24) is trivially equal to zero, while a change-of-variables shows
that ˆ ˆ

λ (x, v)h(x,R (x) v)ρ (z) dz =

ˆ ˆ
λ (x,R (x) v)h(x, v)ρ (z) dz (25)

as R−1 (x) v = R (x) v and‖R (x) v‖ = ‖v‖ implies ψ (R (x) v) = ψ (v). Additionally, by integration
by parts, we obtain as h is bounded

ˆ ˆ
〈∇xh (x, v) , v〉 ρ (z) dz =

ˆ ˆ
〈∇U (x) , v〉h (x, v) ρ (z) dz. (26)

Substituting (25) and (26) into (22)-(23)-(24), we obtain
ˆ ˆ

Lh(z)ρ (z) dz =

ˆ ˆ
[〈∇U (x) , v〉+ λ (x,R (x) v)− λ (x, v)]h(x, v)ρ (z) dz.

Now we haveˆ ˆ
Lh(z)ρ (z) dz =

ˆ ˆ
[〈∇U (x) , v〉+ λ (x,R (x) v)− λ (x, v)]h(x, v)ρ (z) dz.

=

ˆ ˆ
[〈∇U (x) , v〉+ max{0, 〈∇U(x), R (x) v〉} −max{0, 〈∇U(x), v〉}]h(x, v)ρ (z) dz

=

ˆ ˆ
[〈∇U (x) , v〉+ max{0,−〈∇U(x), v〉} −max{0, 〈∇U(x), v〉}]h(x, v)ρ (z) dz

= 0,

where we have used 〈∇U(x), R (x) v〉 = −〈∇U(x), v〉 and max{0,−f} −max{0, f} = −f for any
f . The result now follows by [7, Proposition 34.7].

A.2 Proof of Theorem 1

Informally, our proof of ergodicity relies on showing that refreshments allow the process to explore
the entire space of velocities and positions, Rd × Rd. To do so, it will be useful to condition
on an event E on which paths are “tractable.” Since two refreshment events are sufficient to
reach any given destination point, we would like to focus on such paths (only one refreshment
is not sufficient since a destination point specifies both a final position and a final velocity). In
particular, refreshments are simpler to analyze than bouncing events, so we would like to condition
on an event on which no bouncing occurs in a time interval of interest.

To formalize this idea, we make use of the time-scale implementation of the BPS algorithm (Section
2.3.1). This allows us to express E in terms of simple independent events. We start by introducing

23



some notation for the time-scale implementation of the BPS algorithm. Let i ≥ 1 denote the index
of the current event being simulated, and assume without loss of generality that λref =1. Let
x0, v0 denote the initial position and velocity, while the positions and velocities at the event times,
zi = (xi, vi), i ∈ {1, 2, . . . } are defined as in Algorithm 1, we use the notation (xi, vi) instead of
(x(i), v(i)) to slightly simplify notation. At event time i, we simulate three independent random
variables: two exponentially distributed, e(bounce)

i , τ
(ref)
i ∼ Exp(1), and one d-dimensional normal,

ni ∼ N (0, I). The candidate time to a refreshment is given by τ (ref)
i and the candidate time to a

bounce event is defined as τ (bounce)
i = Ξ−1

zi−1
(e

(bounce)
i ), where Ξ−1

z is the quantile function of Ξz(t) =´ t
0
χz(s) ds, and χx,v(s) = λ(x+ vs, v). The time to the next event is τi = min

{
τ

(bounce)
i , τ

(ref)
i

}
.

The random variable ni is only used if τi = τ
(ref)
i , otherwise the bouncing operator is used to

update the velocity in a deterministic fashion.

We can now define our tractable set and establish its key properties.

Lemma 1. Let t > 0, and assume the initial point of the BPS, satisfies ‖x0‖ ≤ t, ‖v0‖ ≤ 1. If
‖∇U‖∗ = sup {‖∇U(x)‖ : ‖x‖ ≤ 3t} then the event

E =
(
τ
(ref)
1 + τ

(ref)
2 ≤ t < τ

(ref)
1 + τ

(ref)
2 + τ

(ref)
3

)
︸ ︷︷ ︸

E1

∩
⋂

i∈{1,2}

(‖ni‖ ≤ 1)

︸ ︷︷ ︸
E2

∩
⋂

i∈1,2,3

(
e
(bounce)
i ≥ t‖∇U‖∗

)
︸ ︷︷ ︸

E3

has the following properties:

1. On the event E , we have ‖v(t′)‖ ≤ 1 and ‖x(t′)‖ ≤ 2t for all t′ ∈ [0, t],

2. On the event E , there are exactly two refreshments and no bouncing in the interval (0, t), i.e.
τ1 = τ

(ref)
1 , τ2 = τ

(ref)
2 , and τ1 + τ2 ≤ t ≤ τ1 + τ2 + τ3,

3. P(E ) is a strictly positive constant that does not depend on z(0) = (x0, v0),

4. vi|E
i.i.d.∼ ψ≤1(0, I) for i ∈ {1, 2}, where ψ≤1 denotes the truncated Gaussian distribution,

with ‖vi‖ ≤ 1,

5.
(
τ
(ref)
1 , τ

(ref)
2

)
|E ∼ U

({
(τ1, τ2) ∈ (0, t)2 : τ1 + τ2 ≤ t

})
.

Proof. To prove Part 1 and 2, we will make use of this preliminary result: on E3, ‖vi−1‖ ≤
1, ‖xi−1‖ ≤ 2t implies τ (bounce)

i ≥ t for i ∈ {1, 2, 3}. Indeed, ‖vi−1‖ ≤ 1 and ‖xi−1‖ ≤ 2t imply that
χzi−1(t′) ≤ ‖∇U‖∗ for all t′ ∈ [0, t]. It follows that Ξzi−1(t) ≤ ‖∇U‖∗t. Hence, by the continuity
of Ξzi−1 and standard properties of the quantile function, τ (bounce)

i = Ξ−1
zi−1

(e
(bounce)
i ) ≥ t.

Part 1 and 2: by the assumption on x0 and v0 and our preliminary result, τ (bounce)
1 ≥ t, and

hence, combining with E1 and E2 we have τ1 = τ
(ref)
1 ≤ t and ‖v1‖ = ‖n1‖ ≤ 1. Also, by the

triangle inequality, ‖x1‖ ≤ ‖x0‖ + ‖x1 − x0‖ ≤ t + τ
(ref)
1 ≤ 2t. We can therefore apply our

preliminary result again and obtain τ (bounce)
2 ≥ t, and hence, combining again with E1 and E2, we

have τ2 = τ
(ref)
2 , τ1 + τ2 ≤ t, ‖v2‖ = ‖n2‖ ≤ 1. Applying the triangle inequality a second time

yields ‖x2‖ ≤ t + τ
(ref)
1 + τ

(ref)
2 ≤ 2t. We apply our preliminary result one last time to obtain

τ
(bounce)
3 ≥ t. Hence, if τ (ref)

3 > τ
(bounce)
3 , τ1 + τ2 + τ3 = τ

(ref)
1 + τ

(ref)
2 + τ

(bounce)
3 ≥ t, while if

τ
(ref)
3 ≤ τ (bounce)

3 , we can use E1 to conclude that τ1 + τ2 + τ3 = τ
(ref)
1 + τ

(ref)
2 + τ

(ref)
3 ≥ t. It follows

from the triangle inequality that ‖x(t′)‖ ≤ 2t for all t′ ∈ [0, t].

Part 3, 4 and 5: these follow straightforwardly from the construction of E .

Note that the statement and proof of Part 4 is simple because E3 ∈ σ(e
(bounce)
i : i ∈ {1, 2, 3}). In

contrast, conditioning on conceptually simpler events of the form (τ
(bounce)
i > t) ∈ σ

(
e
(bounce)
i , zi−1

)
leads to conditional distributions on vk which are harder to characterize.

24



In the following, BR (x) denotes the d-dimensional Euclidean ball of radius R centered at x.

Lemma 2. For all ε, t > 0 such that ε ≤ t/6, and v, v2 ∈ B1(0), x, x′ ∈ Bε(0), 0 ≤ τ1 ≤ t
6 , and

2t
3 ≤ τ2 ≤

5t
6 , we have ‖v1‖ ≤ 1, where v1 is defined by:

v1 =
(x′ − (t− τ1 − τ2)v2)− (x+ τ1v)

τ2
. (27)

Proof. By the triangle inequality:

‖v1‖ ≤
‖x′‖+ (t− τ1 − τ2)‖v2‖+ ‖x‖+ τ1‖v‖

τ2

≤ ε+ (t− τ1 − τ2) + ε+ τ1
τ2

≤ 1.

The next lemma formalizes the idea that refreshments allow the BPS to explore the whole space.
We use vol(A) to denote the Lebesgue volume of a measurable set A ∈ Rd × Rd and Pt (z,A) is
the probability z (t) ∈ A given z (0) = z under the BPS dynamics.

Lemma 3. 1. For all ε, t > 0 such that ε ≤ t/6, there exist δ > 0 such that for all z = (x, v) ∈
B = Bε(0)×B1(0) and measurable set A ⊂ Rd × Rd,

Pt (z,A) ≥ δ vol(A ∩B). (28)

2. For all t0 > 0, z = (x, v) ∈ Rd×Rd and open set W ⊂ Rd×Rd there exists an integer n ≥ 1
such that Pnt0(z,W ) > 0.

Proof of Lemma 3. Part 1: We have

Pt(z,A) = Ez[1A(z(t))]

≥ P(E )Ez[1A(z(t))|E ]

= P(E )Ez[1A(x+ τ
(ref)
1 v + τ

(ref)
2 v1 + (t− τ (ref)

1 − τ (ref)
2 )v2|E ],

where we used Part 2 of Lemma 1, which holds since ‖x‖ ≤ t/6 ≤ t. By Lemma 1, Part 3, it is
enough to show Ez[1A(z(t))|E ] ≥ δ′ vol(A ∩B) for some δ′ > 0.

Using Lemma 1, Parts 4 and 5, we can rewrite the above conditional expectation as:

Ez[1A(z(t))|E ] =

˘
1A∩B (x+ τ1v + τ2v1 + (t− τ1 − τ2) v2)ψ≤1(v1)ψ≤1(v2)p(τ1, τ2) dv2 dv1 dτ2 dτ1.

We will use the coarea formula to reorganize the order of integration, see e.g. Section 3.2 of [1].
We start by introducing some notation.

For C1 Riemannian manifolds M and N of dimension m and n, a differentiable map F : M → N
and h a measurable test function, the coarea formula can be written as:

ˆ
M

h(F (y))dHm(y) =

ˆ
N

dHn(u)h(u)

ˆ
F−1(u)

dHm−n(x)
1

JF (x)
.

Here Hm, Hn and Hm−n denote the volume measures associated with the Riemannian metric on
M , N and F−1(u) (with the induced metric ofM). In the above equations, JF is a generalization of
the determinant of the Jacobian JF :=

√
det g(∇fi,∇fj) where g is the corresponding Riemannian

25



metric and f is the representation of F in local coordinates, see [1]. Here JF=
√

detDF DF> where
DF is defined in equation (30) below.

We apply the coarea formula toM =
{

(τ1, τ2) ∈ (0, t)2 : τ1 + τ2 ≤ t
}
×B1(0)×B1(0), N = Bt(x)×

B1(0), Fz(τ1, v1, τ2, v2) = (x+ τ1v + τ2v1 + (t− τ1 − τ2)v2, v2) , m = 2d+ 2, n = 2d and obtain:

Ez[1A(z(t))|E ] =

ˆ
N

dz′1A∩B(z′)

ˆ
F−1

z (z′)

dH2(τ1, τ2, v1, v2)ψ≤1(v1)ψ≤1(v2)p(τ1, τ2)

JFz(τ1, τ2, v1, v2)︸ ︷︷ ︸
Iz(z′)

, (29)

where p(τ1, τ2) denotes the joint conditional density of τ1, τ2|E described in Part 5 of Lemma 1,
and:

DFz =

(
v − v2 τ2I v1 − v2 (t− τ1 − τ2) I

0 0 0 I

)
, (30)

DFz DF
>
z =

(
(v − v2)(v − v2)> + (v1 − v2) (v1 − v2)

>
+
(
τ2
2 + (t− τ1 − τ2)

2
)
I (t− τ1 − τ2) I

(t− τ1 − τ2) I I

)
,

JFz =
√

detDFz DF>z .

We define δ′ = inf {Iz(z′) : z, z′ ∈ B}, and obtain the following inequality

ˆ
N

dz′1A∩B(z′)Iz(z
′) ≥ δ′

ˆ
N

dz′1A∩B(z′)

= δ′ vol(A ∩B).

It is therefore enough to show that δ′ > 0. To do so, we will derive the following bounds related
to the integral in Iz(z′):

1. Its domain of integration F−1
z (z′) is guaranteed to contain a set of positive H2 measure.

2. Its integrand is bounded below by a strictly positive constant.

To establish 1, we let z′ = (x′, v′) = (x′, v2), and notice that rearranging

x′ = x+ τ1v + τ2v1 + (t− τ1 − τ2)v2

yields an expression for v1 given in (27). From Lemma 2, it follows that

Cz(z
′) :=

{(
τ1,

(x′ − (t− τ1 − τ2)v′)− (x+ τ1v)

τ2
, τ2, v

′
)

: 0 ≤ τ1 ≤
t

6
,

2t

3
≤ τ2 ≤

5t

6

}
⊆ F−1

z (z′),

and H2(Cz(z
′)) ≥ (t/6)2 since the surface of the graph of a function is larger than the surface of

the domain.

26



To establish 2, we start by analyzing JFz. Exploiting its block structure, we obtain:

JF 2
z = detDFz DF

>
z

= det((v − v2)(v − v2)> + (v1 − v2) (v1 − v2)
>

+ τ2
2 I)

≤

(
‖v − v2‖2 + ‖v1 − v2‖2

d
+ τ2

2

)d
≤
(
8 + t2

)d
Moreover, it follows from basic properties of the truncated Gaussian distribution ψ≤1 and of
p(τ1, τ2) that

inf {ψ≤1(v1)ψ≤1(v2)p(τ1, τ2) : (τ1, v1, τ2, v2) ∈M} = K > 0.

Combining (29) to 1 and 2, we obtain,

Iz(z
′) ≥ K

(8 + t2)d

ˆ
F−1

z (z′)

dH2(τ1, τ2, v1, v2)

≥ K

(8 + t2)d
H2(Cz(z

′))

≥ K

(8 + t2)d

(
t

6

)2

,

and hence, δ′ > 0.

To prove Part 2 of the lemma, we divide the trajectory of length nt0 into three “phases” namely a
deceleration, travel, and acceleration phases, or respective lengths td + tt + ta = nt0 defined below
(see also Supplement for a figure illustrating the notation used in this part of the lemma). This
allows us to use Part 1 of the present lemma which requires velocities bounded in norm by one.
We require an acceleration phase since W may not necessarily include velocities of norms bounded
by one.

First, we show that we decelerate with positive probability by time td = t0. Let R denote the
event that there is exactly one refreshment in the interval (0, t0), and that the refreshed velocity
has norm bounded by one. Define also r0 = t0 max {1, ‖v‖}, which bounds the distance travelled
in (0, t0) for outcomes in R, since bouncing does not change the norm of the velocity. We have:

Pt0(z,Br0(x)×B1(0)) ≥ Pz(R) = (t0λ
ref) exp(−t0λref)ψ(B1(0)) =: K ′ > 0.

Next, to prepare applying the first part of the lemma, set

ε = 1 + max {‖x‖+ r0, r
′} ,

r′ = inf
{
‖x′‖ : ∃ v′ ∈ Rd with (x′, v′) ∈W

}
.

Informally, ε is selected so that the ball of radius ε around the origin contains both any position
attained after deceleration, as well as ball around a point x? in W . Indeed, since W is open
and that ε > r′, there exists some r > 0, (x?, v?) ∈ W such that Br(x?) × Br(v

?) ⊆ W and
Bε(0) ⊇ Br0(x) ∪Br(x?). Let also n = 2 +

⌈
6ε
t0

⌉
.

Of the total time nt0, we reserve time ta = min
{
t0, (2(‖v?‖/r + 1))−1, r/2

}
to accelerate. This

time is selected so that (a) t0− ta ≥ 0, and (b), if we start with a position in Br/2(x?), move with a
velocity bounded in norm by v̄ = max {1, ‖v?‖+ r} for a time ∆t ≤ min

{
(2(‖v?‖/r + 1))−1, r/2

}
,

we have that the final position is in Br(x
?). This holds since the distance travelled is bounded

by v̄∆t ≤ r/2. Hence, by a similar argument as used for deceleration, we have, for all z′′ ∈

27



Br/2(x?)×B1(0),

Pta(z′′, Br(x
?)×Br(v?)) ≥ (taλ

ref) exp(−taλref)ψ(Br(v
?)) =: K ′′ > 0.

With these definitions, we can apply the first part of the present lemma with tt = (n − 2)t0 +
(t0 − ta) ≥ 6ε and obtain a constant δ > 0 such that Ptt(z′, A) ≥ δ vol(A∩ (Bε(0)×B1(0))) for all
z′ ∈ Bε(0)×B1(0) and measurable set A ⊆ R2d. We thus obtain:

Pnt0(z,W ) ≥ Pnt0(z,Br(x
?)×Br(v?))

=

ˆ ˆ
Ptd(z, dz′)Ptt(z

′, dz′′)Pta(z′′, Br(x
?)×Br(v?))

≥
ˆ
z′∈Br0

(x)×B1(0)

ˆ
z′′∈Br/2(x?)×B1(0)

Ptd(z, dz′)Ptt(z
′, dz′′)Pta(z′′, Br(x

?)×Br(v?))

≥ K ′K ′′δ vol(Br/2(x?)×B1(0)) > 0.

We can now exploit this Lemma to prove Theorem 1.

Proof of Theorem 1. Suppose BPS is not ergodic, then it follows from standard results in ergodic
theory that there are two measures µ1 and µ2 such that µ1 ⊥ µ2 and µiPt0 = µi; see e.g. [14,
Theorem 1.7]. Thus there is a measurable set A ⊂ Rd × Rd such that

µ1(A) = µ2(Ac) = 0. (31)

Let A1 = A, A2 = Ac, and B = B1(0) × B1(0). Because of Lemma 3 Part 2 and Lemma 2.2 of
[14] the support of the µi is Rd × Rd. Thus, µi(B) > 0 for i ∈ {1, 2}. At least one of A1 ∩ B or
A2 ∩ B has a positive Lebesgue volume, hence, we can denote by i? ∈ {1, 2} an index satisfying
vol(Ai? ∩ B) > 0. Now, we pick t = 6 and obtain from Lemma 3 Part 1 that there is some δ > 0
such that Pt(z,Ai?) ≥ δ vol(Ai? ∩B) for all z ∈ B. By invariance we have

µi?(Ai?) =

ˆ
µi? ( dz)Pt(z,Ai?)

≥
ˆ
B

µi? ( dz)Pt(z,Ai?)

≥
ˆ
B

µi? ( dz) δ vol(Ai? ∩B)

= µi?(B)δ vol(Ai? ∩B) > 0.

This contradicts that µi(Ai) = 0 for i ∈ {1, 2}.

The law of large numbers then follows by Birkhoff’s pointwise ergodic theorem; see e.g. [9, Theorem
2.30, Section 2.6.4].

B Proof of Proposition 2

The dynamics of the BPS can be lumped into a two-dimensional Markov process involving only the
radius r (t) = ‖x (t)‖ and m (t) = 〈x (t) , v (t)〉 / ‖x (t)‖ for any dimensionality d ≥ 2. The variable
m (t) can be interpreted (via arccos(m (t))) as the angle between the particle position x (t) and
velocity v (t). Because of the strong Markov property we can take τ1 = 0 without loss of generality

28



and let t be some time between the current event and the next, yielding:

r (t) =
√
〈x (0) + v (0) · t, x (0) + v (0) · t〉 =

√
r2
0 + 2m (0) r (0) t+ t2 (32)

m (t) =
〈x (0) + v (0) · t, v (0)〉
‖x (0) + v (0) · t‖

=
m (0) r (0) + t

r (t)

If there is a bounce at time t, then r (t) is not modified butm (t) = −m (t).The bounce happens with
intensity λ(x + tv, v) = max (0, 〈x+ vt, v〉). These processes can also be written as an Stochastic
Differential Equation (SDE) driven by a jump process whose intensity is coupled to its position.
This is achieved by writing the deterministic dynamics given in (32) between events as the following
Ordinary Differential Equation (ODE):

d

dt
r (t) =

2m (t) r (t)

2r (t)
= m (t)

d

dt
m (t) =

r (t)− (r (t)m (t))m (t)

(r (t))
2 =

1− (m (t))
2

r (t)
.

Taking the bounces into account turns this ODE into an SDE with

dr (t) = m (t) dt

dm (t) =
1− (m (t))

2

r (t)
dt− 2m (t) dNt. (33)

where Nt is the counting process associated with a PP with intensity max (0, r (t)m (t)).

Now consider the push forward measure ofN
(
0, 1

2Ik
)
⊗U(Sk−1) under the map (x, v) 7→ (‖x‖ , 〈x, v〉 / ‖x‖)

where U(Sk−1) is the uniform distribution on Sk−1. This yields the collection of measures with
densities fk(r,m). One can check that fk(r,m) is invariant for (33) for all k ≥ 2.

C Bayesian logistic regression for large datasets

C.1 Bounds on the intensity

We derive here a datapoint-specific upper bound χ̄[r] to χ[r](t). First, we need to compute the
gradient for one datapoint:

∇U [r](x) = ιr(logistic 〈ιr, x〉 − yr),

where:
logistic(a) =

ea

1 + ea
.

We then consider two sub-cases depending on yr = 0 or yr = 1. Suppose first yr = 0, and let

29



x(t) = x+ tv

χ[r](t) = max{0, 〈∇Ur(x(t)), v〉}

= max

{
0,

d∑
k=1

ιr,kvklogistic 〈ιr, x(t)〉

}

≤
d∑
k=1

1[vk > 0]ιr,kvklogistic 〈ιr, x(t)〉

≤
d∑
k=1

1[vk > 0]ιr,kvk︸ ︷︷ ︸
χ̄[r]

Similarly, we have for yr = 1

χ[r](t) = max

{
0,

d∑
k=1

ιr,kvk(logistic 〈ιr, x(t)〉 − 1)

}

= max

{
0,

d∑
k=1

ιr,k(−vk)(1− logistic 〈ιr, x(t)〉)

}

≤
d∑
k=1

1[vk < 0]ιr,k(−vk)(1− logistic 〈ιr, x(t)〉)

=

d∑
k=1

1[vk < 0]ιr,k|vk|(1− logistic 〈ιr, x(t)〉)

≤
d∑
k=1

1[vk < 0]ιr,k|vk|︸ ︷︷ ︸
χ̄[r]

.

Combining these terms we obtain

χ̄[r] =

d∑
k=1

1[vk(−1)yr ≥ 0]ιr,k|vk|.

When implementing Algorithm 6, we need to bound
∑R
r=1 χ

[r](t). We have

χ̄ =

R∑
r=1

χ̄[r] ≥
R∑
r=1

χ[r](t)

=

R∑
r=1

d∑
k=1

1[vk(−1)yr ≥ 0]ιr,k |vk|

=

d∑
k=1

|vk|
R∑
r=1

1[vk(−1)yr ≥ 0]ιr,k

=

d∑
k=1

|vk| ι(1[vk<0])
k ,

where

ι
(c)
k :=

R∑
r=1

1[(−1)c+yr ≥ 0]ιr,k.

30



The bound χ̄ is constant between bounce events and only depends on the magnitude of v. If we
further assume that we use restricted refreshment then this bound is valid for any t > 0 allowing
us to implement Algorithm 6 using (20) or (21).

C.2 Sampling the thinned factor

We show here how to implement Step 5(c)ii of Algorithm 6 without enumerating over the R
datapoints. We begin by introducing some required pre-computed data structures. The pre-
computation is executed only once at the beginning of the algorithm, so its running time, O(R logR)
is considered negligible (the number of bouncing events is assumed to be greater than R). For
each dimensionality k and class label c, consider the categorical distribution with the following
probability mass function over the datapoints:

µ
(c)
k (r) =

ιr,k1[yr = c]

ι
(c)
k

.

This is just the distribution over the datapoints that have the given label, weighted by the covariate
k. An alias sampling data-structure [8, Section 3.4] is computed for each k and c. This pre-
computation takes total time O(R logR). This allows subsequently to sample in time O(1) from
the distributions µ(c)

k .

We now show how this pre-computation is used to to implement Step 5(c)ii of Algorithm 6. We
denote the probability mass function we want to sample from by

q(r) =
χ̄[r]

χ̄
.

To sample this distribution efficiently, we construct an artificial joint distribution over both data-
points and covariate dimension indices

q(r, k) =
1[vk(−1)yr ≥ 0]ιr,k |vk|

χ̄
.

We denote by qk(k), respectively qr|k(r|k), the associated marginal, respectively conditional
distribution. By construction, we have

d∑
k=1

q(r, k) = q(r).

It is therefore enough to sample (r, k) and to return r. To do so, we first sample (a) k ∼ qk(·) and
then (b) sample r|k ∼ qr|k(·|k).

For (a), we have

qk(k) =
|vk| ι(1[vk<0])

k

χ̄
,

so this sampling step again does not require looping over the datapoints thanks the pre-computations
described earlier.

For (b), we have
qr|k(r|k) = µ

(1[vk<0])
k (r),

and therefore this sampling step can be computed in O(1) thanks to the pre-computed alias sam-
pling data structure.

31



C.3 Algorithm description

Algorithm 7 contains a detailed implementation of the local BPS with thinning for the logistic
regression example (Example 4.6).

32



Algorithm 7 Local BPS algorithm for Logistic Regression with Large Datasets

1. Precompute the alias tables µ(c)
k (r) for k = 1, . . . , d, c ∈ {0, 1} in order to sample from

qr|k(·|k).

2. Initialize
(
x(0), v(0)

)
arbitrarily on Rd × Rd.

3. Initialize the global clock T ← 0.

4. Initialize T̄ ←4. (time until which local upper bounds are valid)

5. Compute local-in-time upper bound on the prior factor as χ̄prior =
σ−2 max

(
0,
〈
x(0) + v(0)∆, v(0)

〉)
(notice the rate associated with the prior is monoton-

ically increasing).

6. While more events i = 1, 2, . . . requested do

(a) Compute the local-in-time upper bound on the data factors in O(d)

χ̄ =

d∑
k=1

|v(i−1)
k | ι(1[v

(i−1)
k <0])

k .

(b) Sample τ ∼ Exp
(
χ̄prior + χ̄+ λref

)
.

(c) If
(
T + τ > T̄

)
then

i. x(i) ← x(i−1) + v(i−1)(T̄ − T ).
ii. v(i) ← v(i−1).
iii. Compute the local-in-time upper bound χ̄prior = σ−2 max

(
0,
〈
x(i) + v(i)∆, v(i)

〉)
.

iv. Set T ← T̄ , T̄← T̄ +4.
(d) Else

i. x(i) ← x(i−1) + v(i−1)τ .
ii. Sample j from Discrete( χ̄

χ̄prior +χ̄+λref ,
λref

χ̄prior +χ̄+λref ,
χ̄prior

χ̄prior +χ̄+λref ) .
iii. If j = 1

A. Sample k according to qk(k) = |v(i−1)
k | ι(1[v

(i−1)
k <0])

k /χ̄.
B. Sample r ∼ qr|k(·|k) using the precomputed alias table.

C. If V <
max(0,〈∇U [r](x(i)),v(i−1)〉)

χ̄[r] where V ∼ U (0, 1) .
v(i) ← Rr(x

(i))v(i−1) where Rr is the bouncing operator associated with the
r-th data item .

D. Else v(i) ← v(i−1).
iv. If j = 2

A. v(i) ∼ N (0d, Id).
v. If j = 3

A. If V <
σ−2 max(0,〈x(i),v(i−1)〉)

χprior
where V ∼ U (0, 1).

v(i) ← Rprior(x
(i))v(i−1) where Rprior is the bouncing operator associated with

the prior.

B. Else v(i) ← v(i−1).
vi. Compute the local-in-time upper bound

χ̄prior = σ−2 max
(

0,
〈
x(i) + v(i)

(
T̄ − T − τ

)
, v(i)

〉)
.

vii. Set T ← T + τ .

33



  

+0

+

+

x

x*

W (projected to space of 
positions)

r0
r
r/2

!

Deceleration
phase

Acceleration
phase

Travel phase

rʹ

Figure S1: TIllustration of the notation used in the proof of Lemma 3, part (2) (this figure is best
viewed in colour). We consider trajectories divided into three phases, namely deceleration (blue),
travel (red), and acceleration (green). The ball around the initial point, x, is used when bringing
the velocity down to a norm bounded by one (deceleration phase). This allows us to use Lemma
3, part (1) in order to bound the probability of travel to a ball centered at x? of radius r/2 (travel
phase). Finally, since W may not contain points with velocity bounded by one, the ball centered
at x? of radius r is used to reach velocities contained in W while ensuring position coordinates are
also still in W .

Supplemental Material: The Bouncy Particle Sampler
A Non-Reversible Rejection-Free Markov Chain Monte Carlo Method

D Illustration for Lemma 3

The following figure illustrates the different phases considered in the proof of Lemma 3.

E Direct proof of invariance

Let µt be the law of z (t). In the following, we prove invariance by explicitly verifying that the time
evolution of the density dµt

dt = 0 is zero if the initial distribution µ0 is given by ρ(z) = π (x)ψ (v)
in Proposition 1. This is achieved by deriving the forward Kolmogorov equation describing the
evolution of the marginal density of the stochastic process. For simplicity, we start by presenting
the invariance argument when λref = 0.

Notation and description of the algorithm. We denote a pair of position and velocity by
z = (x, v) ∈ Rd × Rd and we denote translations by Φt(z) = (Φpos

t (z),Φdir
t (z)) = (x+ vt, v). The

time of the first bounce coincides with the first arrival T1 of a PP with intensity χ(t) = λ(Φt(z))
where:

λ(z) = max {0, 〈∇U (x) , v〉} . (S1)

It follows that the probability of having no bounce in the interval [0, t] is given by:

Not(z) = exp

(
−
ˆ t

0

λ(Φs(z))ds

)
, (S2)

1



and the density of the random variable T1 is given by:

q(t1; z) = 1[t1 > 0] d
dt1

(1−Not1(z)) (S3)
= 1[t1 > 0]Not1(z)λ(Φt1(z)). (S4)

If a bounce occurs, then the algorithm follows a translation path for time T1, at which point the
velocity is updated using a bounce operation C(z), defined as:

C (z) = (x,R (x) v) (S5)

where
R (x) v = v − 2

〈∇U (x) , v〉∇U (x)

‖∇U (x)‖2
. (S6)

The algorithm then continues recursively for time t− T1, in the following sense: a second bounce
time T2 is simulated by adding to T1 a random increment with density q(·;C ◦ Φt1(z)). If T2 > t,
then the output of the algorithm is Φt−t1 ◦C ◦Φt1(z), otherwise an additional bounce is simulated,
etc. More generally, given an initial point z and a sequence t = (t1, t2, . . . ) of bounce times, the
output of the algorithm at time t is given by:

Ψt,t (z) =

{
Φt(z) if t1 > 0 or t = ( ),

Ψt′,t−t1 (z) ◦ C ◦ Φt1(z) otherwise,
(S7)

where ( ) denotes the empty list and t′ the suffix of t: t′ = (t2, t3, . . . ). As for the bounce times,
they are distributed as follows:

T1 ∼ q( · ; z) (S8)

Ti − Ti−1|T1:i−1 ∼ q
(
· ; ΨT1:i−1,Ti−1(z)︸ ︷︷ ︸

Pos. after collision i− 1

)
, i ∈ {2, 3, 4, . . . } (S9)

where T1:i−1 = (T1, T2, . . . , Ti−1) .

Decomposition by the number of bounces. Let h denote an arbitrary non-negative mea-
surable test function. We show how to decompose expectations of the form E[h(ΨT,t(z))] by the
number of bounces in the interval (0, t). To do so, we introduce a function #Colt(t), which returns
the number of bounces in the interval (0, t):

#Colt(t) = min {n ≥ 1 : tn > t} − 1. (S10)

From this, we get the following decomposition:

E[h(ΨT,t(z))] = E[h(ΨT,t(z))

∞∑
n=0

1[#Colt(T) = n]] (S11)

=

∞∑
n=0

E[h(ΨT,t(z))1[#Colt(T) = n]]. (S12)

On the event that no bounce occurs in the interval [0, t), i.e. #Colt(T) = 0, the function ΨT,t(z)
is equal to Φt(z), therefore:

E[h(ΨT,t(z))1[#Colt(T) = 0]] = h(Φt(z))P(#Colt(T) = 0) (S13)
= h(Φt(z))Not(z). (S14)

Indeed, on the event that n ≥ 1 bounces occur, the random variable h(Φt(z)) only depends on a
finite dimensional random vector, (T1, T2, . . . , Tn), so we can write the expectation as an integral

2



with respect to the density q̃(t1:n; t, z) of these variables:
E[h(ΨT,t(z))1[#Colt(T) = n]] (S15)
= E

[
h(ΨT,t(z))1[0 < T1 < · · · < Tn < t < Tn+1]

]
=

ˆ
· · ·
ˆ

0<t1<···<tn<t<tn+1h(Ψt1:n,t(z))q(t1; z)

n+1∏
i=2

q(t− ti−1; Ψt1:i−1,ti−1 (z))dt1:n+1

=

ˆ
· · ·
ˆ

0<t1<···<tn<th(Ψt1:n,t(z))q̃(t1:n; t, z)dt1:n, (S16)

where:

q̃(t1:n; t, z) = q(t1; z)×

{
Not−t1(Φt1(z)) if n = 1

Not−tn(Φt1:n,tn(z))
∏n
i=2 q

(
ti − ti−1; Ψt1:i−1,ti−1

(z)
)

if n ≥ 2.

To include Equations (S14) and (S16) under the same notation, we define t1:0 to the empty list,
( ), q̃(( ); t, z) = Not(z), and abuse the integral notation so that for all n ∈ {0, 1, 2, . . . }:

E[h(ΨT,t(z))1[#Colt(T) = n]] =

ˆ
· · ·
ˆ

0<t1<···<tn<t h(Ψt1:n,t(z))q̃(t1:n; t, z)dt1:n. (S17)

Marginal density. Let us fix some arbitrary time t > 0. We seek a convenient expression for
the marginal density at time t, µt(z), given an initial vector Z ∼ ρ, where ρ is the hypothesized
stationary density ρ(z) = π (x)ψ (v) on Z. To do so, we look at the expectation of an arbitrary
non-negative measurable test function h:

E[h(ΨT,t(Z))] = E
[
E[h(ΨT,t(Z))|Z]

]
(S18)

=

∞∑
n=0

E
[
E[h(ΨT,t(Z))1[#Colt(T) = n]|Z]

]
(S19)

=

∞∑
n=0

ˆ
Z
ρ(z)

ˆ
· · ·
ˆ

0<t1<···<tn<th(Ψt1:n,t(z))q̃(t1:n; t, z)dt1:ndz (S20)

=
∞∑
n=0

ˆ
· · ·
ˆ

0<t1<···<tn<t

ˆ
Z
ρ(z)h(Ψt1:n,t(z))q̃(t1:n; t, z)dzdt1:n (S21)

=
∞∑
n=0

ˆ
· · ·
ˆ

0<t1<···<tn<t

ˆ
Z
ρ(Ψ−1

t1:n,t
(z′))h(z′)q̃(t1:n; t,Ψ−1

t1:n,t
(z′))

∣∣∣detDΨ−1
t1:n,t

∣∣∣ dz′dt1:n
=

ˆ
Z
h(z′)

∞∑
n=0

ˆ
· · ·
ˆ

0<t1<···<tn<tρ(Ψ−1
t1:n,t

(z′))q̃(t1:n; t,Ψ−1
t1:n,t

(z′))dt1:n︸ ︷︷ ︸
µt(z′)

dz′. (S22)

We used the following in the above derivation successively the law of total expectation, equa-
tion (S12), equation (S18), Tonelli’s theorem and the change of variables, z′ = Ψt1:n,t(z), justified
since for any fixed 0 < t1 < t2 < · · · < tn < t < tn+1, Ψt1:n,t(·) is a bijection (being a composition
of bijections). Now the absolute value of the determinant is one since Ψt,t (z) is a composition
of unit-Jacobian mappings and, by using Tonelli’s theorem again, we obtain that the expression
above the brace is necessarily equal to µt(z′) since h is arbitrary.

Derivative. Our goal is to show that for all z′ ∈ Z

dµt(z
′)

dt
= 0.

Since the process is time homogeneous, once we have computed the derivative, it is enough to show
that it is equal to zero at t = 0. To do so, we decompose the computation according to the terms

3



In in Equation (S22):

µt(z
′) =

∞∑
n=0

In(z′, t) (S23)

In(z′, t) =

ˆ
· · ·
ˆ

0<t1<···<tn<tρ(Ψ−1
t1:n,t(z

′))q̃(t1:n; t,Ψ−1
t1:n,t(z

′))dt1:n. (S24)

The categories of terms in Equation (S23) to consider are:

No bounce: n = 0, Ψt1:n,t(z) = Φt(z), or,

Exactly one bounce: n = 1, Ψt1:n,t(z) = Ft,t1 := Φt−t1 ◦ C ◦ Φt1(z) for some t1 ∈ (0, t), or,

Two or more bounces: n ≥ 2, Ψt1:n,t(z) = Ψt−t2 ◦ C ◦ Ft2,t1(z) for some 0 < t1 < t2 < t

In the following, we show that the derivative of the terms in the third category, n ≥ 2, are all equal
to zero, while the derivative of the first two categories cancel each other.

No bounce in the interval. From Equation (S14):

I0(z′, t) = ρ(Φ−t(z
′))Not(Φ−t(z

′)). (S25)

We now compute the derivative at zero of the above expression:

d

dt
I0(z′, t)

∣∣∣∣
t=0

= No0 (Φ0(z′))
dρ(Φ−t(z

′))

dt

∣∣∣∣
t=0

+

ρ(Φ0(z′))
dNot(Φ−t(z

′))

dt

∣∣∣∣
t=0

(S26)

The first term in the above equation can be simplified as follows:

No0(Φ0(z′))
dρ(Φ−t(z

′))

dt
=

dρ(Φ−t(z
′))

dt
(S27)

=

〈
∂ρ(Φ−t(z

′))

∂Φpos
−t (z′)

,
dΦpos
−t (z′)

dt

〉
+〈

∂ρ(Φ−t(z
′))

∂Φdir
−t(z

′)
,

dΦdir
−t(z

′)

dt︸ ︷︷ ︸
=0

〉
(S28)

=

〈
∂ρ(z)

∂x
,−v′

〉
(S29)

=

〈
∂

∂x

1

Z
exp (−U(x))ψ (v) ,−v′

〉
= ρ(Φ−t(z

′)) 〈∇U(x), v′〉 , (S30)

where x = Φpos
−t (z′). The second term in Equation (S26) is equal to:

ρ(Φ0(z′))
dNot(Φ−t(z

′))

dt

∣∣∣∣
t=0

= −ρ(Φ0(z′))No0(z′)λ(Φ0(z′)) (S31)

= −ρ(z′)λ(z′), (S32)

using Equation (S4). In summary, we have:

d

dt
I0(z′, t)

∣∣∣∣
t=0

= ρ(z′) 〈∇U(x′), v′〉 − ρ(z′)λ(z′).

Exactly one bounce in the interval. From Equation (S16), the trajectory consists in a bounce
at a time T1, occurring with density (expressed as before as a function of the final point z′)

4



q(t1;F−1
t,t1(z′)), followed by no bounce in the interval (T1, t], an event of probability:

Not−t1(C ◦ Φt1(z)) = Not−t1(C ◦ Φt1 ◦ F−1
t,t1(z′)) (S33)

= Not−t1(Φt1−t(z
′)), (S34)

where we used that C−1 = C. This yields:

I1(z′, t) =

ˆ t

0

q(t1;F−1
t,t1(z′))ρ(Ψ−1

t1:1,t(z
′))Not−t1(Φt1−t(z

′))dt1. (S35)

To compute the derivative of the above equation at zero, we use again Leibniz’s rule:

d

dt
I1(z′, t)

∣∣∣∣
t=0

= ρ(C(z′))λ(C(z′)).

Two or more bounces in the interval. For a number of bounce, we get:

In(z′, t) =

ˆ t
0

[ ˆ
· · ·
ˆ
t2:n:t1<t2···<tn<tρ(Ψ−1

t1:n,t
(z′))q̃(t1:n; t,Ψ−1

t1:n,t
(z′))dt2:n︸ ︷︷ ︸

Ĩ(t1,t,z′)

]
dt1, (S36)

and hence, using Leibniz’s rule on the integral over t1:

d

dt
In(z′, t)

∣∣∣∣
t=0

= Ĩ(0, 0, z′) = 0. (S37)

Putting all terms together. Putting everything together, we obtain:

dµt(z
′)

dt

∣∣∣∣
t=0

= ρ(z′) 〈∇U(x′), v′〉−ρ(z′)λ(z′) + ρ(C(z′))λ(C(z′)).︸ ︷︷ ︸ (S38)

From the expression of λ(·), we can rewrite the two terms above the brace as follows:

− ρ(z′)λ(z′) + ρ(C(z′))λ(C(z′))

=− ρ(z′)λ(z′) + ρ(z′)λ(C(z′))

=− ρ(z′) max{0, 〈∇U(x′), v′〉}+ ρ(z′) max{0, 〈∇U(x′), R (x′) v′〉}
=− ρ(z′) max{0, 〈∇U(x′), v′〉}+ ρ(z′) max{0, 〈∇U(x′), R (x′) v′〉}
=− ρ(z′) max{0, 〈∇U(x′), v′〉}+ ρ(z′) max{0,−〈∇U(x′), v′〉}
=− ρ(z′) 〈∇U(x′), v′〉 ,

where we used that ρ(z′) = ρ(C(z′)), 〈∇U(x′), R (x′) v′〉 = −〈∇U(x′), v′〉 and −max{0, f} +

max{0,−f} = −f for any function f . Hence we have dµt(z
′)

dt

∣∣∣
t=0

= 0, establishing that that the

bouncy particle sampler λref = 0 admits ρ as invariant distribution. The invariance for λref > 0
then follows from Lemma 4 given below.

Lemma 4. Suppose Pt is a continuous time Markov kernel and Q is a discrete time Markov kernel
which are both invariant with respect to µ. Suppose we construct for λref > 0 a Markov process P̂t
as follows: at the jump times of an independent PP with intensity λref we make a transition with
Q and then continue according to Pt, then P̂t is also µ-invariant.

Proof. The transition kernel is given by

P̂t = e−λtPt +

ˆ t

0

dt1λe
λt1e−λ(t−t1)Pt−t1QPt1

+

ˆ t

0

dt1

ˆ t2

t1

dt2λ
2eλt1eλ(t2−t1)e−λ(t−t2)Pt−t2QPt2−t1QPt1 + . . .

5



Therefore

µP̂t = µ

(
e−λt + λte−λt +

(λt)
2

2
e−λt . . .

)
= µ.

Hence P̂t is µ-invariant.

F Invariance of the local sampler

The generator of the local BPS is given by

Lh(z) = 〈∇xh (x, v) , v〉 (S39)

+
∑
f∈F

λf (x, v) {h(x,Rf (x) v)− h(x, v)}

+λref

ˆ
(h(x, v′)− h(x, v))ψ ( dv′) .

The proof of invariance of the local BPS is very similar to the proof of Propostion 1. We have
ˆ
Lh(z)ρ (z) dz =

ˆ ˆ
〈∇xh (x, v) , v〉 ρ (z) dz (S40)

+

ˆ ˆ ∑
f∈F

λf (x, v) {h(x,Rf (x) v)− h(x, v)}]ρ (z) dz (S41)

+λref

ˆ ˆ ˆ
(h(x, v′)− h(x, v))ψ ( dv′) ρ (z) dz (S42)

where the term (S42) is straightforwardly equal to 0 while, by integration by parts, the term (S40)
satisfies ˆ ˆ

〈∇xh (x, v) , v〉 ρ (z) dz =

ˆ ˆ
〈∇U (x) , v〉h (x, v) ρ (z) dz. (S43)

as h is bounded. Now a change-of-variables shows that for any f ∈ F
ˆ ˆ

λf (x, v)h(x,Rf (x) v)ρ (z) dz =

ˆ ˆ
λ (x,Rf (x) v)h(x, v)ρ (z) dz (S44)

as R−1
f (x) v) = R (x) v and ‖Rf (x) v‖ = ‖v‖ implies ψ (Rf (x) v) = ψ (v). So the term (S41)

satisfies ˆ ˆ ∑
f∈F

λf (x, v) {h(x,Rf (x) v)− h(z)}]ρ (z) dz

=

ˆ ˆ ∑
f∈F

[λ (x,Rf (x) v)− λ (x, v)]h(x, v)ρ (z) dz

=

ˆ ˆ ∑
f∈F

[max{0, 〈∇Uf (x), R (x) v〉} −max{0, 〈∇Uf (x), v〉}]h(x, v)ρ (z) dz

=

ˆ ˆ ∑
f∈F

[max{0,−〈∇Uf (x), v〉} −max{0, 〈∇Uf (x), v〉}]h(x, v)ρ (z) dz

= −
ˆ ˆ ∑

f∈F

[〈∇Uf (x) , v〉]h(x, v)ρ (z) dz

= −
ˆ ˆ

〈∇U (x) , v〉]h(x, v)ρ (z) dz, (S45)

6



where we have used 〈∇Uf (x), Rf (x) v〉 = −〈∇Uf (x), v〉 and max{0,−f} − max{0, f} = −f for
any f . Hence, summing (S43)-(S45)-(S42), we obtain

´
Lh(z)ρ (z) dz = 0 and the result follows by

[S7, Proposition 34.7].

G Calculations in the isotropic normal case

As we do not use refreshment, it follows from the definition of the collision operator that

〈
x(i), v(i)

〉
=

〈
x(i), v(i−1) −

2
〈
x(i), v(i−1)

〉∥∥x(i)
∥∥2 x(i)

〉
= −

〈
x(i), v(i−1)

〉
= −

〈
x(i−1), v(i−1)

〉
− τi

=

{
−
√
− log Vi if

〈
x(i−1), v(i−1)

〉
≤ 0

−
√〈

x(i−1), v(i−1)
〉2 − log Vi otherwise

,

and therefore

∥∥∥x(i)
∥∥∥2

=

{∥∥x(i−1)
∥∥2 −

〈
x(i−1), v(i−1)

〉2 − log Vi if
〈
x(i−1), v(i−1)

〉
≤ 0∥∥x(i−1)

∥∥2 − log Vi otherwise.
.

It follows that
〈
x(j), v(j)

〉
≤ 0 for j > 0 if

〈
x(0), v(0)

〉
≤ 0 so, in this case, we have

∥∥∥x(i)
∥∥∥2

=
∥∥∥x(i−1)

∥∥∥2

−
〈
x(i−1), v(i−1)

〉2

− log Vi

=
∥∥∥x(i−1)

∥∥∥2

+ log Vi−1 − log Vi

=
∥∥∥x(i−2)

∥∥∥2

−
〈
x(i−1), v(i−1)

〉2

− log Vi−1 + log Vi−1 − log Vi

...
...

=
∥∥∥x(1)

∥∥∥2

−
〈
x(1), v(1)

〉2

− log Vi

In particular for x(0) = e1 and v(0) = e2 with ei being elements of standard basis of Rd, the norm
of the position at all points along the trajectory can never be smaller than 1.

H Supplementary information on the evolutionary parame-
ters inference experiments

H.1 Model

We consider an over-parameterized generalized time reversible rate matrix [S29] with d = 10 cor-
responding to 4 unnormalized stationary parameters x1, . . . , x4, and 6 unconstrained substitution
parameters x{i,j}, which are indexed by sets of size 2, i.e. where i, j ∈ {1, 2, 3, 4} , i 6= j. Off-
diagonal entries of Q are obtained via qi,j = πj exp

(
x{i,j}

)
, where

πj =
exp (xj)∑4
k=1 exp (xk)

.

7



logDensity

0.0

0.4

0.8

0 10 20 30 40 50
Lag

A
ut

oc
or

re
la

tio
n

BPS
logDensity

0.0

0.4

0.8

0 10 20 30 40 50
Lag

A
ut

oc
or

re
la

tio
n

HMC

Figure S2: Estimate of the ACF of the log-likelihood statistic for BPS (left) and HMC (right). A
similar behavior is observed for the ACF of the other statistics.

We assign independent standard Gaussian priors on the parameters xi.We assume that a matrix of
aligned nucleotides is provided, where rows are species and columns contains nucleotides believed to
come from a shared ancestral nucleotide. Given x =

(
x1, . . . , x4, x{1,2}, . . . , x{3,4}

)
, and hence Q,

the likelihood is a product of conditionally independent continuous time Markov chains over {A, C,
G, T}, with “time” replaced by a branching process specified by the phylogenetic tree’s topology and
branch lengths. The parameter x is unidentifiable, and while this can be addressed by bounded or
curved parameterizations, the over-parameterization provides an interesting challenge for sampling
methods, which need to cope with the strong induced correlations.

H.2 Baseline

We compare the BPS against a state-of-the-art HMC sampler [S33] that uses Bayesian optimization
to adapt the the leap-frog stepsize ε and trajectory length L of HMC. This sampler was shown in
[S35] to be comparable or better to other state-of-the-art HMC methods such as NUTS. It also
has the advantage of having efficient implementations in several languages. We use the author’s
Java implementation to compare to our Java implementation of the BPS. Both methods view the
objective function as a black box (concretely, a Java interface supporting pointwise evaluation
and gradient calculation). In all experiments, we initialize at the mode and use a burn-in of 100
iterations and no thinning. The HMC auto-tuner yielded ε = 0.39 and L = 100. For our method,
we use the global sampler and the global refreshment scheme.

H.3 Additional experimental results

To ensure that BPS outperforming HMC does not come from a faulty auto-tuning of HMC param-
eters, we look at the ESS/s for the log-likelihood statistic when varying the stepsize ε. The results
in Figure S3(right) show that the value selected by the auto-tuner is indeed reasonable, close to
the value 0.02 found by brute force maximization. We repeat the experiments with ε = 0.02 and
obtain the same conclusions. This shows that the problem is genuinely challenging for HMC.

The BPS algorithm also exhibits sensitivity to λref . We analyze this dependency in Figure S3(left).
We observe an asymmetric dependency, where values higher than 1 result in a significant drop in
performance, as they bring the sampler closer to random walk behavior. Values one or more orders
of magnitudes lower than 1 have a lower detrimental effect. However for a range of values of λref

covering six orders of magnitudes, BPS outperforms HMC at its optimal parameters.

8



●

●

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1e−06 1e−05 1e−04 0.001 0.01 0.1 1 10 100 1000
refresh rate

BPS: ESS/s for different refresh rates

●

●

●

●

●

●

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0025 0.005 0.01 0.02 0.04
epsilon

HMC: ESS/s for different values of epsilon

Figure S3: Left: sensitivity of BPS’s ESS/s on the log likelihood statistic. Right: sensitivity of
HMC’s ESS/s on the log likelihood statistic. Each setting is replicated 10 times with different
algorithmic random seeds.

9


	1 Introduction
	2 The bouncy particle sampler
	2.1 Problem statement and notation 
	2.2 Algorithm description
	2.3 Algorithms for bounce time simulation
	2.3.1 Simulation using a time-scale transformation
	2.3.2 Simulation using adaptive thinning
	2.3.3 Simulation using superposition and thinning

	2.4 Estimating expectations
	2.5 Theoretical results

	3 The local bouncy particle sampler
	3.1 Structured target distribution and factor graph representation
	3.2 Local BPS: algorithm description 
	3.3 Local BPS: efficient implementations
	3.3.1 Implementation via priority queue
	3.3.2 Implementation via thinning


	4 Numerical results
	4.1 Gaussian distributions and the need for refreshment
	4.2 Comparison of the global and local schemes
	4.3 Comparisons of alternative refreshment schemes
	4.4 Comparisons with HMC methods on high-dimensional Gaussian distributions
	4.5 Poisson-Gaussian Markov random field
	4.6 Bayesian logistic regression for large data sets
	4.7 Bayesian inference of evolutionary parameters

	5 Discussion
	A Proofs of Section ??
	A.1 Proof of Proposition ??
	A.2 Proof of Theorem ?? 

	B Proof of Proposition ??
	C Bayesian logistic regression for large datasets
	C.1 Bounds on the intensity
	C.2 Sampling the thinned factor
	C.3 Algorithm description

	D Illustration for Lemma 3
	E Direct proof of invariance
	F Invariance of the local sampler
	G Calculations in the isotropic normal case
	H Supplementary information on the evolutionary parameters inference experiments
	H.1 Model
	H.2 Baseline
	H.3 Additional experimental results


