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Abstract

Many problems of practical interest rely on
Continuous-time Markov chains (CTMCs) de-
fined over combinatorial state spaces, rendering
the computation of transition probabilities, and
hence probabilistic inference, difficult or impos-
sible with existing methods. For problems with
countably infinite states, where classical methods
such as matrix exponentiation are not applicable,
the main alternative has been particle Markov
chain Monte Carlo methods imputing both the
holding times and sequences of visited states.
We propose a particle-based Monte Carlo ap-
proach where the holding times are marginalized
analytically. We demonstrate that in a range of
realistic inferential setups, our scheme dramati-
cally reduces the variance of the Monte Carlo ap-
proximation and yields more accurate parameter
posterior approximations given a fixed computa-
tional budget. These experiments are performed
on both synthetic and real datasets, drawing from
two important examples of CTMCs having com-
binatorial state spaces: string-valued mutation
models in phylogenetics and nucleic acid folding
pathways.

1. Introduction

Continuous-time Markov chains (CTMCs) play a cen-
tral role in applications as diverse as queueing theory,
phylogenetics, genetics, and models of chemical interac-
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tions (Huelsenbeck & Ronquist, 2001; Munsky & Kham-
mash, 2006). The process can be thought of as a timed
random walk on a directed graph where the countable, but
potentially infinite, set of graph nodes are the values that
the process can take on. There are probabilities of transi-
tion associated with the edges of the graph, and the holding
time, or length of time between two transitions, is expo-
nentially distributed with a rate depending on the current
node. A path simulated from this random process is an or-
dered list of the nodes visited and the times at which they
are reached.

In leveraging the modelling capabilities of CTMCs, the
bottleneck is typically the computation of the transition
probabilities: the conditional probability that a trajectory
ends in a given end state, given a start state and a time inter-
val. This computation involves the marginalization over the
uncountable set of end-point conditioned paths. Although
we focus on the Bayesian framework in this work, where
the transition probabilities appear in Metropolis-Hastings
ratios, the same bottleneck is present in the frequentist
framework, where transition probabilities are required for
likelihood evaluation. When the state space is small, exact
marginalization can be done analytically via the matrix ex-
ponential. Unfortunately, this approach is not directly ap-
plicable to infinite state spaces, and is not computationally
feasible in large state spaces because of the cubic running
time of matrix exponentiation.

We propose an efficient Monte Carlo method to approach
inference in CTMCs with weak assumptions on the state
space. Our method can approximate transition probabilities
as well as estimate CTMC parameters for this general class
of processes. More precisely, we are interested in count-
ably infinite state space CTMCs that satisfy the following
two criteria. First, we require the construction of a cer-
tain type of potential on the state space. We describe this
potential in more detail in Section 2, and show in Section 3
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that such potentials can be easily constructed even for com-
plex models. Second, the CTMC should be explosion-free
to avoid pathologies (i.e., we require that there is a finite
number of transitions with probability one in any bounded
time interval).

In contrast, classical uniformization methods assume that
there is a fixed bound on all the rates (Grassmann, 1977), a
much stronger condition than our explosion-free assump-
tion. For example, in the first of the two application
domains that we investigated, inference in string-valued
CTMC:s for phylogenetics, the models are explosion-free
but do not have a fixed bound on the rates. Other
approaches, based on performing Markov chain Monte
Carlo (MCMC) with auxiliary variables, relax the bounded
rate assumption (Rao & Teh, 2011; 2012), but they have a
running time that depends linearly on the size of the state
space in the sparse case and quadratically in the dense case.

Particle-based methods offer an interesting complementary
approach, as they have a time complexity per particle that
depends on the imputed number of transitions between the
two end points instead of on the size of the state space.

In the simplest case, one can implement this idea using a
proposal distribution equal to the generative process over
paths initialized at the start point. The weight of a parti-
cle is then equal to one if the end point of the generated
path coincides with observed end point, and zero other-
wise. We call this proposal the forward sampling proposal.
This idea can be turned into a consistent estimator of pos-
terior distributions over parameters using pseudo-marginal
methods (Beaumont, 2003; Andrieu & Roberts, 2009) (or
in more complicated setups, particle MCMC methods (An-
drieu et al., 2010)).

Unfortunately, the forward sampling method has two seri-
ous limitations. First, the requirement of imputing wait-
ing times between each transition means that the proposal
distribution is defined over a potentially high-dimensional
continuous space. This implies that large numbers of par-
ticles are required in practice. Second, in problems where
each state has a large number of successors, the probabil-
ity of reaching the end state can become extremely small,
which for example further inflates the number of particles
required to obtain non degenerate Metropolis-Hastings ra-
tios in particle MCMC (Andrieu et al., 2010) algorithms.

End point informed proposals over transitions and waiting
times have been developed in previous work (Fan & Shel-
ton, 2008), but this previous work is tailored to dynamic
Bayesian models rather than to the combinatorial problems
studied here. Our method greatly simplifies the develop-
ment of end point informed proposals by marginalizing all
continuous variables. There has also been work on related
end-point conditioning problems in the rare event simula-

tion literature (Juneja & Shahabuddin, 2006), but this pre-
vious work has focused on the discrete-time setting.

2. Methodology

For expositional purposes, we start by describing the sim-
plest setup in which our method can be applied: computing
the probability that a CTMC with known rate parameters
occupies state y € & at time 7" given that it occupies state
x € X at time 0, where X is a countable set of states. The
main contributions of this paper can be understood in this
simple setup. We then show that our method can be ex-
tended to certain types of partial or noisy observations, to
more than two observations organized as a time series or a
tree (branching process), and to situations where some or
all the parameters of the CTMC are unknown.

Notation. Let v(z,y) denote the transition probability
from state x € X to state y € X given that a state jump oc-
curs (le. 3o, v(z,y) = Lv(z,z) = 0). Let A(x) de-
note the rate of the exponentially-distributed holding time
at state x (A : X — [0,00)).! We only require efficient
point-wise evaluation of A(-),v(-,-) and efficient simula-
tion from v(x, ) for all z € X. We start by assuming that
v and A are fixed, and discuss their estimation afterward.
We define some notation for paths sampled from this pro-
cess. Let X1, Xs,... denote the list of visited states with
X; # Xjy1, called the jump chain, and Hy, Ho, . . ., the list
of corresponding holding times. The model is character-
ized by the following distributions: X, 1|X; ~ v(X;,-),
H;|X; ~ F(\(X;)), where F()\) is the exponential dis-
tribution CDF with rate A\. Given a start state X; = x,
we denote by PP, the probability distribution induced by
this model. Finally, we denote by /N the number of states
visited, counting multiplicities, in the interval [0,T7], i.e.
(N =n)= (T4 H <T < Ly Hi).

Overview of the inference method. Using the simple
setup introduced above, the problem we try to solve is to
approximate P, (X = y), which we approach using an
importance sampling method. Each proposed particle con-
sists of a sequence (a list of variable finite length) of states,
z* = (x1,...,x,) € X*, starting at = and ending at y.
In other words, we marginalize the holding times, hence
avoiding the difficulties involved with sequentially propos-
ing times constrained to sum to the time 7" between the end

points.

Concretely, our method is based on the following elemen-
tary property, proved in the Supplement:

Proposition 1. If we let m(z*) = v(a*)/P(Xn = ¥),

!Note that this is a reparameterization of the standard rate ma-
trixX gz,y, With ¢o,e = —A(z), and gz,y = A(z)v(z,y) forz # y.
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where,
n—1
v(z") =L(zn =) (H V(fﬂi,ffiﬂ)) X M
=1

n—1 n
P(ZH¢§T<ZH¢ X*=x*>,
=1 i=1

where the H;’s are sampled according to F(\(X;)) inde-
pendently given X* = (X1,--- , Xn) and where n = |z*
then 7 is a normalized probability mass function.

s

As our notation for v, T suggests, we use this result as fol-
lows (see Algorithm 1 in the Supplement for details). First,
we define an importance sampling algorithm that targets
the unnormalized density ~(2*) via a proposal P(X* =
x*). Let us denote the k-th particle produced by this algo-
rithm by z*(k) € X*, k € {1,..., K}, where the num-
ber of particles K is an approximation accuracy parameter.
Each of the K particles is sampled independently accord-
ing to the proposal P. Second, we exploit the fact that the
sample average of the unnormalized importance weights
w(z*(k)) = y(z*(k))/P(X* = 2*(k)) generated by this
algorithm provide a consistent estimator for the normalizer
of ~. Finally, by Proposition 1, this normalizer coincides
with the quantity of interest here, P, (Xy = y). The only
formal requirement on the proposal is that P, (X* = z*) >
0 should imply If”(X * = x*) > 0. However, to render this
algorithm practical, we need to show that it is possible to
define efficient proposals, in particular proposals such that
P.(X* = z) > 0if and only if P(X* = z*) > 0 (in
order to avoid particles of zero weight). We also need to
show that v can be evaluated point-wise efficiently, which
we establish in Proposition 2.

Proposal distributions. Our proposal distribution is based
on the idea of simulating from the jump chain, i.e. of se-
quentially sampling from v until y is reached. However this
idea needs to be modified for two reasons. First, (1) since
the state is countably infinite in the general case, there is
a potentially positive probability that the jump chain sam-
pling procedure will never hit y. Even when the state is
finite, it may take an unreasonably large number of steps to
reach y. Second, (2) forward jump chain sampling, assigns
zero probability to paths visiting y more than once.

We address (1) by using a user-specified potential p¥
X — N centred at the target state y (see Supplement for
the conditions we impose on p¥). For example we used the
Levenshtein (i.e., minimum number of insertion, deletion,
and substitution required to change one string into another)
and Hamming distances for the string evolution and RNA
kinetics applications respectively. Informally, the fact that
this distance favors states which are closer to y is all that we
need to bias the sampling of our new jump process towards
visiting y.

How do we bias the proposal sampling of the next state?
Let D(x) C X be the set of states that decrease the po-
tential from x. The proposed jump-chain transitions are
chosen with probability

ED(X7;+1 =z |Xi =) = )
v ) (V(ﬂii,miﬂ)l{xiﬂ S D(mz)}>

Zz;+1 €D (x;) V(xi7 x;«&»l)

+ (1 oy ) (V(wi,xi+1)(1 — 1{$i+1 S D(IEJ})) .

b Zwﬂl%D(%) V(@i Ti11)

We show in the Supplement that under weak conditions,
we will hit target y in finite time with probability one if we
pick o¥ = max{«, Zx;HeD(ac,-) v(zi,zj,,)}. Here o >
1/2 is a tuning parameter. We discuss the sensitivity of this
parameter, as well as strategies for setting it in Section 3.2.

Point (2) can be easily addressed by simulating a
geometrically-distributed number of excursions where the
first excursion starts at x, and the others at y, and each ex-
cursion ends at y. We let 5 denote the parameter of this
geometric distribution, a tuning parameter, which we also
discuss at the end of Section 3.2.

Analytic jump integration. In this section, we describe
how the unnormalized density y(z*) defined in Equa-
tion (1) can be evaluated efficiently for any given path
T e X*.

It is enough to show that we can compute the following in-
tegral for H;|X* ~ F(A(X;)) independently conditionally
on X*:

n—1 n
P <Z H,<T <)Y H
i=1 i=1

// g(h1,ha, ... hy)dhy dhs ... dho,
hi>0:3"7_ | h;=T

g(hi,ha,... ,hy) =

X" —:r*) = 3)

where
{H s A(m))} (1= F(hns Mzn)))

and where f is the exponential density function. Unfor-

tunately, there is no efficient closed form for this high-
dimensional integral, except for special cases (for example,
if all rates are equal) (Akkouchi, 2008). This integral is
related to those needed for computing convolutions of non-
identical independent exponential random variables. While
there exists a rich literature on numerical approximations to
these convolutions, these methods either add assumptions
on the rate multiplicities (e.g. [{\(z1),...,A(zn)}] =
|(A(z1),...,A(xN))|), or are computationally intractable
(Amari & Misra, 1997).

We propose to do this integration using the construction of
an auxiliary, finite state CTMC with an 4+ 1 by n + 1 rate

matrix Q (to be defined shortly). The states of Q corre-
spond to the states visited in the path (x1, z, ..., x,) with
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multiplicities plus an extra state s,,+1. All off-diagonal en-
tries of () are set to zero with the exception of transitions

going from z; to x;11, fori € {1,...,n}. More specifi-
cally, Q is
—A(Il) A(ml) 0 cee 0 0
0 —)\(332) )\(1’2) ce 0 0
)
0 0 0 “Azn) AMzn)
0

0 0 0 -o 0

This construction is motivated by the following property
which is proven in the Supplement:
Proposition 2. For any finite proposed path

(x1,%2,...,2n), if Q is defined as in Equation (4),
then

n—1 n
(exp(TQ)), , =P (Z H,<T <) Hi|X" = a:) 6))
=1 i=1

where exp(A) denotes the matrix exponential of A.>

Trees and sequences of observation. We have assumed
so far that the observations take the form of a single branch
with the state fully observed at each end point. To approach
more general types of observations, for example a series of
partially observed states, or a phylogenetic tree with ob-
served leaves, our method can be generalized by replacing
the importance sampling algorithm by a sequential Monte
Carlo (SMC) algorithm. We focus on the tree case in this
work which we describe in detail in Section 3, but we out-
line here how certain partially observed sequences can also
be approached to start with something simpler.

Consider a setup where the observation at time 7T; is
aset A, C X (ie. we condition on (X(T;) €
A;;i € {1,...,m}) which arises for example in (Saeedi &
Bouchard-Coté, 2011)). In this case, the importance sam-
pling algorithm described in the previous section can be
used at each iteration, with the main difference being that
the potential p is modified to compute a distance to a set A;
rather than a distance to a single point y. See Algorithm 5
in the Supplement for details.

For other setups, the construction of the potential is more
problem-specific. One limitation of our method arises
when the observations are only weakly informative of the
hidden state. We leave these difficult instances for future
work and reiterate that many interesting and challenging
problems fall within the reach of our method (for example,
the computational biology problems presented in the next
section).

>Multiplicities of the rates in Q greater than one will break
diagonalization-based methods of solving exp(7'Q), but other ef-
ficient matrix exponentiation methods such as the squaring and
scaling method are still applicable in these cases.

Parameter estimation. So far, we have assumed that the
parameters v and A\ governing the dynamics of the process
are known. We now consider the case where we have a
parametric family with unknown parameter # € © for the
jump transition probabilities vy and for the holding time
mean function Ag. We denote by IP;, ¢ the induced distribu-
tion on paths and by p a prior density on 6. To approximate
the posterior distribution on #, we use pseudo-marginal
methods (Beaumont, 2003; Andrieu & Roberts, 2009) in
the fixed end-point setup and particle MCMC methods
(Andrieu et al., 2010) in the sequences and trees setup.
While our algorithm can be combined with many variants
of these pseudo-marginal and particle MCMC methods, in
this section, for simplicity we describe the grouped inde-
pendence Metropolis-Hastings (GIMH) approach.

At each MCMC iteration ¢, the algorithm keeps in memory

a pair z(t) = (), Z(gfz)) containing a current parameter

) and an approximation Z éfz) of the marginal probability

of the observations® ) given ), ZAéfz) ~ Py (V). This
approximation is obtained from the algorithm described in
the previous subsections. Even though this approximation
is inexact for a finite number of particles, the GIMH sam-
pler is still guaranteed to converge to the correct stationary
distribution (Andrieu et al., 2010).

The algorithm requires the specification of a proposal den-
sity on parameter ¢(6'|6). At the beginning of each MCMC
iteration, we start by proposing a parameter 0* from this
proposal ¢. We then use the estimate Zg- of Py~ () given
by the average of the weights w(2*(*)(k)) to form the ra-
tio r(G(t),Q*), below, where k is the index for particles.
We accept (6%, Zg*), or remain as before, according to a
Bernoulli distribution with probability min{1,r(8(*), 6*)}
where

p(0") Zo- q(8")0%)

p(D) 20 g(660)

r(0®,6%) =
See Algorithm 4 in the Supplement for details.

3. Numerical examples
3.1. String-valued evolutionary models

Molecular evolutionary models, central ingredients of
modern phylogenetics, describe how biomolecular se-
quences (RNA, DNA, or proteins) evolve over time via
a CTMC where jumps are character substitutions, inser-
tions and deletions (indel), and states are biomolecular
sequences. Previous work focused on the relatively re-
stricted range of evolutionary phenomena for which com-
puting marginal probabilities of the form P, (X = y) can

3For example, in the single branch setting, J =
z, XN =y).
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be done exactly.

In particular, we are not aware of existing methods for do-
ing Bayesian inference over context-dependent indel mod-
els, i.e. models where insertions and deletions can depend
on flanking characters. Modelling the context of indels is
important because of a phenomenon called slipped strand
mispairing (SSM), a well known explanation for the evo-
lution of repeated sequences (Morrison, 2009; Hickey &
Blanchette, 2011; Arribas-Gil & Matias, 2012). For exam-
ple, if a DNA string contains a substring of “TATATA”, the
non-uniform error distribution in DNA replication is likely
to lead to a long insertion of extra “7TA” repeats.

Model. In order to describe our SSM-aware model, it is
enough to describe its behavior on a single branch of a tree,
say of length T'. Each marginal variable X, is assumed to
have the countably infinite domain of all possible molecular
sequences. We define A\(x), as a function of the mutation
rate per base 0y, the global point insertion (i.e. insertion of
a single nucleotide) rate Ay, the point deletion rate per base
Hpt> the global SSM insertion rate Assm (which copies a
substring of length up to three to the right of that substring),
and the SSM deletion rate per valid SSM deletion location
ussm (deletion of a substring of length up to three at the
right of an identical substring):

A(x) = m(z)0sub + Apt + m(-T)/Lpt + Assm + k(z) pssm

where m(x) is the length of the string = and k(z)
is the number of valid SSM deletion locations in
x. We denote these evolutionary parameters by 6 =
(Bsub, Apts Upt, Assm, fssm). The jump transition probabil-
ities from x to x’ are obtained by normalizing each of the
above rates. For example the probability of deleting the
first character given that there is a change from sequence z
is ppe/A(z). Note that since the total insertion rate does not
depend on the length of the string, the process is explosion-
free for all 8. At the same time, there is no fixed bound on
the deletion rate, ruling out classical methods such as uni-
formization or matrix exponentiation.

Validation on a special case. Before moving on to more
complex experiments, we started with a special case of
our model where the true posterior can be computed nu-
merically. This is possible by picking a single branch,
and setting Assm = pssm = 0, in which case the pro-
cess reduces to a process for which analytic calculation
of P, o(Xn = y) is tractable (Bouchard-Coté & Jordan,
2012). We fixed the substitution parameter g, and com-
puted as a reference the posterior by numerical integration
on Ay, i truncated to [0, 3]? and using 1002 bins.

We generated 200 pairs of sequences along with their se-
quence alignments*, with 7' = 3/10,A = Ay = 2,u =

*A sequence alignment is a graph over the observed nu-

tpe = 1/2 and held out the mutations and the true value of
parameters A and . We put an exponential prior with rate
1.0 on each parameter. We approximate the posterior using
our method, initializing the parameters to A = p = 1, using
a = 2/3,8 = 19/20, 64 particles, and a proposal ¢ over
parameters given by the multiplicative proposal of Lakner
et al. (Lakner et al., 2008). We show the results of \ in
Figure 1a and in the Supplement Figure: results of param-
eter 1. In both cases the posterior approximation is shown
to closely mirror the numerical approximation. The evolu-
tion of the Monte Carlo quartiles computed on the prefixes
of Monte Carlo samples also shows that the convergence is
rapid (Figure 1b).

Next, we compared the performance of a GIMH algorithm
computing ZA(,m using our method, with a GIMH algorithm
computing Zéfz) using forward sampling. We performed
this comparison by computing the Effective Sample Size
(ESS) after a fixed computational budget (3 days). For the
parameter A, our method achieves an ESS of 1782.7 versus
44.6 for the forward sampling GIMH method; for the pa-
rameter y, our method achieves an ESS of 6761.2 versus
90.2 for the forward sampling GIMH method. In those ex-
periments, we used 100 particles per MCMC step, but we
also tried different values and observed the same large gap
favoring our method (see Supplement Figure: Varying the
number of particles per MCMC step).

We also generated three datasets based on branch lengths
from {0.15,0.3,0.6}, each containing 10 pairs of se-
quences (z,y) along with their sequence alignments and
estimated the transition probability P, (Yy = y) using our
method (denoted Time-Integrated Path Sampling, TIPS),
and using forward simulation (denoted forward sampling,
FS). We compared the two methods in Figure 1c by look-
ing at the absolute log error of the estimate p, error(p) =
|logp — logP,. (XN = y)|. We performed this experiment
with a range of numbers of particles, {2!,22,...,22°} and
plotted the relative errors as a function of the wall clock
time needed for each approximation method. We also com-
puted the variances of the importance weights for specific
alignments and compared these variances for FS and TIPS
(see Figure 1d). We observed that the variances were con-
sistently two orders of magnitudes lower with our method
compared to FS.

Tree inference via SMC. We now consider the general
case, where inference is on a phylogenetic tree, and the
SSM parameters are non-zero. To do this, we use existing
SMC algorithms for phylogenetic trees (Teh et al., 2008;
Bouchard-Coté et al., 2012; Wang, 2012), calling our algo-
rithm at each proposal step. We review phylogenetic infer-
ence in the Supplement where we also give in Algorithm 6
the details of how we combined our method with phyloge-

cleotides linking the nucleotides that have a common ancestor.
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Figure 1. a) Validation of the posterior estimate on the Poisson Indel Process dataset. The histogram and the density estimate in red
is obtained from 35,000 GIMH iterations; the black curve is obtained by numerical integration. The generating value is Ay = 2. b)
Convergence of percentiles computed from prefixes of the GIMH output. c) Relative errors on the transition probabilities for branch
lengths from {0.15,0.3,0.6}. d) Estimated variance of the weights. e) Reconstruction error on tree distances.

netic SMC.

To evaluate our method, we sampled 10 random trees
from the coalescent on 10 leaves, along each of which we
simulated 5 sets of molecular sequences according to our
evolutionary model. We used the following parameters:
SSM length=3, 0s,, = 0.03, A\py = 0.05, ppr = 0.2,
Assy = 2.0, and psspyr = 2.0. One subset of simulated
data is shown in the Supplement Figure: Sequence Sim-
ulation. The unaligned sequences on leaves are used for
tree reconstruction using our method. We summarized the
posterior over trees using a consensus tree optimizing the
posterior expected pairwise distances (Felsenstein, 1981).
Figure le shows tree distances using the partition metric
(Felsenstein, 2003) between generated trees and consen-
sus trees reconstructed using our evolutionary model. The
tree distance decreases as the number of particles increases,
and a reasonable accuracy is obtained with only 100 parti-
cles, suggesting that it is possible to reconstruct phyloge-
nies from noisy data generated by complex evolutionary
mechanisms.

3.2. RNA folding pathways

Nucleic acid folding pathways predict how RNA and DNA
molecules fold in on themselves via intra-molecular inter-
actions. The state space of our stochastic process that de-
scribes folding is the set of all folds, or secondary struc-
tures, of the nucleic acid molecule which is a combinato-
rial object. For RNA molecules, the secondary structure
is the primary determiner of RNA function. For DNA its
fold can help determine gene transcription rates. Under-
standing the folding pathways can be useful for designing
nano-scale machines that have potential health applications
(Venkataraman et al., 2010). For these reasons, it is of-
ten useful in applications to get an accurate estimate of the
probability that a nucleic acid molecule beginning in one
secondary structure, x, will transition in the given time, 7',
to a target structure, y. This is called the transition proba-
bility, and it is typically computed by either solving a sys-
tem of linear differential equations or by computing a ma-

trix exponential of a large matrix. Here, we will use our
method (denoted as TIPS) to approximate these transition
probabilities.

Model. An RNA fold can be characterized by a set of base
pairs, either C-G, A-U, or G-U, each of which specifies the
sequence positions of the two bases involved in the pairing.
We will default the discussion to RNA sequences where we
are interested in pseudo-knot-free RNA structures. These
secondary structures can be represented as a planar circle
graph with the sequence arrayed along a circle and non-
crossing arcs between positions of the sequence which are
base paired. Here, we will use structure to mean secondary
structure. The folding of a molecule into secondary struc-
tures happens in a dynamic fashion.

In the pathway model we consider, successive structures X;
and X, ; must differ by exactly one base pair. Let X; = x
and Xy = y where x is the given start structure and y is
the given final structure. See for example Figure 5 of the
Supplement, where a folding path is given for a short RNA
(holding times not shown) with z being the unfolded state
and y being the Minimum Free Energy (MFE) structure.

To formalize the folding pathway, we need to introduce
the generator matrix, (). This matrix contains an en-
try for every possible pair of secondary structures. The
Kawasaki rule gives the rate of the probabilistic process
moving from structure x to structure x’ as A(z)v(x,z’)
exp (E(z) — E(x'))/(kT) if ' € R(z), and zero other-
wise where E(z) is the energy of structure z, R(z) is the
set of secondary structures within one base pair of structure
x and k is the Boltzmann constant. When given a nucleic
acid sequence of m bases, there are at most O(3™) sec-
ondary structures that can be created from it, making the
size of the generator matrix exponential in the sequence
length. This model was described by Flamm et al. (Flamm
et al., 2000).

Results. In this section, we compare the accuracy of
the transition probability estimates given by our method
(TIPS) to those obtained by forward sampling method (FS)
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which is still widely used in the field of RNA folding path-
ways (Flamm et al., 2000; Schaeffer, 2012). We used the
RNA molecules shown in Supplement Table: Biological
RNA Sequences.

For each method (TIPS and FS) and molecule, we first ap-
proximated the probability P, (X = y) that beginning in
its unfolded structure x, the molecule would end, after fold-
ing time 7', in its MFE structure y. We then computed, as a
reference, the probability of this transition using an expen-
sive matrix exponential. Computing the matrix exponential
on the full state space was only possible for the RNAs of
no more than 12 nucleotides. For the longer RNAs, we re-
stricted the state space to a connected subset S of secondary
structures (Kirkpatrick et al., 2013). While our method
scales to longer RNAs, we wanted to be able to compare
against forward sampling and to the true value obtained by
matrix exponentiation.

We ran the experiments with a range of number of parti-
cles, {5',52,--- 56}, for 30 replicates on folding times
from {0.125,0.25, - - - , 8}. Here, similarly to the previous
example, we compare the performance of the two methods
by looking at the absolute log error of the estimate p (i.e.,
error(p) = |logp — log P,.(Xn = y)|) over all replicates.
The parameters used for the TIPS method are as follows:
o = 2 and B = max(0.25,1 — L) where T is the speci-
fied folding time interval.

Figures 2a, 2d show the performance of the FS and TIPS
methods on selective folding times, {0.25,1,4}. Figures
2b, 2e show the CPU times (in milliseconds) corresponding
to the minimum number of particles required to satisfy the
certain accuracy level, I = {p : error(p) < 1.0} on all the
folding times. Supplement Figure: Performance vs. fold-
ing time shows similar plots for two other RNA molecules.

The variances of FS and TIPS weights, for 56 = 15625 par-
ticles, are also computed and compared on different folding
times (see Figures 2c, 2f).

The graphs show that our novel method (TIPS) outperforms
FS in estimating the probability of transition from x to y in
shorter folding times, since it needs many fewer particles
(and correspondingly faster CPU times) than FS to be able
to precisely estimate the probability. For instance, for the
RNA21 molecule with folding time 0.25, FS cannot satisfy
the accuracy level I, given above, even with 15625 parti-
cles, however TIPS only needs 5 particles with 16 ms of
CPU time to satisfy the same accuracy level. Similarly, the
variance of our method is smaller by a larger margin (note
that the variance is shown in log scale in Figures 2c, 2f).

For longer folding times in Figure 2, the performance of
the TIPS and FS methods would be comparable (in terms
of the obtained errors and CUP times) slightly in favour of
forward sampling. For example, for the HIV23 molecule

with folding time 4.0, TIPS and FS require 5 and 25 parti-
cles, and CPU times, 12 ms and 5 ms, respectively to satisfy
1.

One caveat of these results is that in contrast to the phylo-
genetic setup, where TIPS was not sensitive to a range of
values of the tuning parameters «, (3, it was more sensitive
to these tuning parameters in the RNA setup. See Supple-
ment Figure: Tuning parameter «. We believe that the be-
havior of our method is more sensitive to «, 8 in the RNA
case because the sampled jump chains are typically longer.
Intuitively, for longer folding times, the transition proba-
bilities are more influenced by the low probability paths, as
these low probability paths comprise a greater percent of all
possible paths. This means that any setting of « that heavily
biases the sampled paths to be from the region just around
z and y will need to sample a large number of paths in order
to approximate the contribution of paths with a low proba-
bility. This situation is analogous to the well-known prob-
lems in importance sampling of mismatches between the
proposal and actual distributions. Similar sampling consid-
erations apply to parameter 3 which controls the number of
excursions from y. If g is too restrictive, again, paths will
be sampled that do not well reflect the actual probability
of excursions. Parameter tuning is therefore an important
area of future work. It might be possible to use some auto-
mated tuners (Hutter et al., 2009; Wang et al., 2013) or to
approach the problem by essentially creating mixtures of
proposals each with its own tuning parameters.

At the same time, note that the reason why FS can still per-
form reasonably well for longer folding times is that we
picked the final end point to be the MFE, which has high
probability under the stationary distribution. For low prob-
ability targets, FS will often fail to produce even a single
hitting trajectory, whereas each trajectory sampled by our
method will hit the target by construction.

4. Conclusion

We have presented an efficient method for approximating
transition probabilities and posterior distributions over pa-
rameters in countably infinite CTMCs. We have demon-
strated on real RNA molecules that our method is com-
petitive with existing methods for estimating the transition
probabilities which marginalize over folding pathways and
provide a model for the kinetics of a single strand of RNA
interacting chemically with itself. We have also shown, us-
ing a realistic, context-dependent indel evolutionary pro-
cess, that the posterior distributions approximated by our
method were accurate in this setting.

What makes our method particularly attractive in large or
countably infinite state space CTMCs is that our method’s
running time per particle is independent of the size of the
state space. The running time does depend cubically on the
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Figure 2. Performance of our method (TIPS) and forward sampling (FS) on RNA21 and HIV23 molecules with their subset state space.
The relative errors of the estimates vs. folding times, {0.25,1,4}, are shown (left) along with the CPU times corresponding to the mini-
mum number of particles required to satisty the accuracy level I in milliseconds (middle) and the variance of TIPS and FS estimations

(right) on folding times, {0.125,0.25, - - - , 8}.

number of imputed jumps, so we expect that our method
will be most effective when the typical number of transi-
tions between two observations or imputed latent state is
moderate (no more than approximately a thousand with
current architectures). The distribution of the jump chain
should also be reasonably concentrated to ensure that the
sampler can proceed with a moderate number of particles.
We have shown two realistic examples where these condi-
tions are empirically met.
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