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Abstract
The emergence of compact GPS systems and
the establishment of open data initiatives has re-
sulted in widespread availability of spatial data
for many urban centres. These data can be lever-
aged to develop data-driven intelligent resource
allocation systems for urban issues such as polic-
ing, sanitation, and transportation. We em-
ploy techniques from Bayesian non-parametric
statistics to develop a process which captures a
common characteristic of urban spatial datasets.
Specifically, our new spatial process framework
models events which occur repeatedly at dis-
crete spatial points, the number and locations
of which are unknown a priori. We develop a
representation of our spatial process which fa-
cilitates posterior simulation, resulting in an in-
terpretable and computationally tractable model.
The framework’s superiority over both empirical
grid-based models and Dirichlet process mixture
models is demonstrated by fitting, interpreting,
and comparing models of graffiti prevalence for
both downtown Vancouver and Manhattan.

1. Introduction
There has been a recent rise in the quantity and quality of
spatial data due to the emergence of new technologies, such
as the widespread availability of cheap and compact global
positioning device systems (GPS). The availability of this
new data represents an opportunity in machine learning and
artificial intelligence to develop intelligent resource allo-
cation systems for urban centres. Accordingly, these op-
portunities have been accompanied by a rise in the promi-
nence of spatial statistics, in particular urban spatial statis-
tics. Data-driven analyses have been conducted in areas
such as transportation (Páez & Scott, 2005), health (Boruff
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et al., 2012), and crime (Malleson & Andresen, 2014). In
particular, applying machine learning to predictive policing
(Short et al., 2008; Mohler et al., 2011; Wang et al., 2012;
2013) calls for new types of spatial models.

Spatial datasets are often comprised of geospatial coordi-
nates recording locations of phenomena of interest (e.g.
graffiti locations, shown in Figures 1a and 1c). A classical
modelling approach involves conceptualizing the data as a
realization of a Poisson process (PP). A PP is parametrized
by a rate measure from which all observations are inde-
pendently chosen. Lately, attention has been devoted to
Bayesian non-parametric approaches to modelling this rate
measure (e.g. Gelfand et al. (2005); Guindani et al. (2009);
Taddy (2010); Ding et al. (2012)).

PP models employing continuous (or piecewise continu-
ous) rate measures are not appropriate for all urban spatial
datasets, specifically those datasets in which multiple ob-
servations can occur in the same location. Henceforth, we
refer to such datasets as atomic data. A location exhibiting
multiple observations demonstrates positive probability as-
sociated with that location. Informally, points with positive
probability violate the assumption of a piecewise contin-
uous rate measure, in which all points should be (almost-
surely) unique. We formalize this intuition in terms of pre-
dictive power below.

In order for a rate measure to capture multiple identical ob-
servations, it must possess atoms (points of positive prob-
ability) at the location of these observations. We call such
rate measures atomic rate measures. Note that in this pa-
per, we employ purely atomic rate measures. That is, we
use rate measures with no continuous components. We uti-
lize urban graffiti locations as a running example of atomic
data throughout this paper. Consider Figure 1a which il-
lustrates the locations of graffiti in Vancouver. There are
many locations possessing more than five incidents of graf-
fiti, drastically violating the assumption of a continuous
rate measure. The New York OpenData catalog contains
many atomic urban datasets which are relevant to design-
ing resource allocation systems, such as noise complaints,
housing code violations, and service requests. Manage-
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ment of these areas could benefit from the development of
intelligent automated research allocation systems.

Atomicity in urban datasets can arise naturally (e.g., one
graffiti artist tags over a rival artist’s graffiti), or as an ar-
tifact of the data collection process. Typically, artificial
atomicity arises when spatial observations within a certain
area are aggregated to a single point (e.g. nearest civic ad-
dress, middle of street, nearby landmark, etc.) during the
data collection process. This may be due to various rea-
sons, such as to preserve anonymity, simplify data collec-
tion, or to represent uncertainty in measurements. In many
of these instances, the aggregated (approximate) locations
provide the desired information (e.g. the address of an of-
ten vandalized building indicates to police officers the lo-
cation to monitor). In addition, the artificial atoms can re-
veal additional insights into data (e.g. multiple noise com-
plaints in close proximity refer to a common noise prob-
lem), which are not as apparent without atoms. Thus it is
often practical, and even beneficial, to directly model the
atoms in artificially atomic data. Even in cases where ex-
act locations are preferred, it is often more practical to di-
rectly model the artificial atoms. Otherwise, the alternative
is to view the exact locations of observations as latent vari-
ables. There is often limited (or no) information available
regarding the mechanism of data aggregation, making such
a modelling approach difficult. Even when information is
available, assigning each observation a latent location vari-
able can quickly lead to a model for which inference is
computationally intractable.

Appropriately capturing the atomic nature of urban data is
vital for predicting future observations. Even if a point has
been observed repeatedly in the past (e.g., a graffiti location
over which rival artists dispute), a continuous rate measure
would assign zero probability to that location reoccurring,
whereas atomicity can assign positive probability. In addi-
tion, accounting for atoms can lead to insight regarding the
process underlying a dataset (e.g., graffiti tends to encour-
age more graffiti on the same exact building). Despite these
strengths, we are unaware of existing non-parametric spa-
tial approaches based on atomic rate measures. One poten-
tial explanation is the challenge of maintaining joint uncer-
tainty on the cardinality and locations for the set of atoms
while still using the topological information and maintain-
ing tractability (in the sense of exact approximate inference
algorithms).

We propose a model for atomic spatial data that addresses
these challenges. We do this by leveraging tools from the
Bayesian non-parametric literature and applying them to a
new domain. Henceforth, we refer to our new model as an
atomic spatial process (ASP). Specifically, the key features
of the ASP can be organized into three distinct levels; a
Poisson process (of which the observed data is a realiza-

tion), a gamma process (GaP), and a Dirichlet process mix-
ture model (DPM). The GaP specifies a distribution over
purely atomic measures which acts as our prior for the PP
rate measure, and the DPM is the prior on the base mea-
sure of the GaP. In the graffiti context, these levels have in-
tuitive meanings, making the model posterior distributions
interpretable. The GaP assigns a propensity of being graf-
fitied to all possible graffiti locations (e.g., buildings), and
the DPM represents the distribution of unique locations of
graffiti (with each mixture component being a distinct graf-
fiti hotspot).

Note that individual components of the ASP framework
have been previously applied in spatial problems. For ex-
ample, Wolpert & Ickstadt (1998) use gamma processes
as a component of their model, but their framework also
involves a smoothing component which ultimately results
in a continuous rate measure. It is worth noting that, de-
spite what their name may suggest, spatially normalized
gamma processes (Rao & Teh, 2009) are not specialized
gamma processes for spatial applications. Instead, “spa-
tially” refers to an unrelated notion of defining a gamma
process over an augmented general “space” and subse-
quently deriving dependent random measures by collaps-
ing and normalizing portions of this gamma process. Other
than the use of normalized gamma processes, this tech-
nique is unrelated to the ASP framework.

The remainder of this paper is organized as follows. Sec-
tion 2 consists of a brief review of some Bayesian non-
parametric modelling concepts. In Section 3, we formalize
ASPs and develop a representation which facilitates poste-
rior simulation. In Section 4, we provide an approximate
posterior inference algorithm for ASPs. In Section 5, we
demonstrate the performance and interpretability of ASPs
using two graffiti datasets. Section 6 illustrates the benefits
gained by using ASP to model atomic data by comparing
its performance with a Dirichlet process mixture model, an
empirical model, and a mixture of the two. Section 7 pro-
vides some final remarks.

2. Background and Notation
Bayesian non-parametric modelling involves the use
of Bayesian models with infinite-dimensional parameter
spaces—typically, the marginals of a stochastic process—
which provide enough flexibility to capture complex rela-
tionships in data for which limited knowledge of structure
is known a priori. Bayesian non-parametric constructions
also allow the model to dynamically evolve as more data
become available. See Hjort et al. (2010) for a review of
Bayesian non-parametric modelling.

The Poisson process is a popular choice for modelling ran-
dom collections (Kingman, 1992, Sec. 1-2) of points over
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Figure 1. a) A visualization of 7675 graffiti in 1982 unique locations of downtown Vancouver. b) Visualization of the predictive distri-
bution for the next piece of graffiti in downtown Vancouver obtained using an Atomic Spatial Process model . c) A visualization of 3946
graffiti in 3406 unique locations of Manhattan. d) Visualization of the predictive distribution for the next piece of graffiti in Manhattan
obtained using an Atomic Spatial Process model.

a space Ω (in our applications, Ω ⊂ R2, and Ω represents
latitudes and longitudes over a given area). These collec-
tions typically represent locations of events within a speci-
fied time frame: for example, locations of crime scenes in
a city over a given year. Poisson processes are parameter-
ized by a rate measure µ on Ω which specifies the propen-
sity of events on each region in Ω. In spatial applications,
it is reasonable to assume that µ has a finite normaliza-
tion, µ(Ω) < ∞. Given a rate measure µ, generating a
realization from the corresponding Poisson process can be
done using the following two-step algorithm. First, one
samples N ∼ Pois (µ(Ω)), where Pois (λ) denotes a Pois-
son distribution with mean λ. This specifies the number
of points in the realization. The second step is to gener-
ate X1, . . . , XN

iid∼ µ̄ where µ̄ denotes µ/µ(Ω), a proba-
bility distribution proportional to µ. Finally, the multiset
{X1, . . . , XN}, denoted X , gives us a realization of the
Poisson process (PP (µ)).

We will also make use of the gamma process (GaP). A
realization of a GaP can be viewed as a countably infi-
nite number of triplets (x1,1, x2,1, w1), (x1,2, x2,2, w2), . . .
with each (x1,i, x2,i) ∈ Ω representing a location (latitude,
longitude) and wi ∈ R+ specifying a weight for that loca-
tion. The generative process of this GaP consists of sam-
pling from a PP (ν) with a rate measure ν : Ω×R+ → R+

given by ν( dx1, dx2, dw) = w−1e−cwα0G0( dx1, dx2),
where ν is the product of a base measure α0G0 (a pa-
rameter of the GaP composed of a probability measure G0

scaled by a positive constant α0) with an improper gamma
distribution with concentration parameter c. This choice of

ν ensures that the sum of all the weights
∑∞
i=1 wi is finite

with E(
∑∞
i=1 wi) = c−1α0 (by Campbell’s Theorem).

A realization of a GaP(c−1, α0, G0) can be expressed as

G =

∞∑
i=1

wiδ(x1,i,x2,i), (1)

where δ indicates the Dirac-delta distribution. Normaliz-
ing G given in Equation (1) by replacing each wi with
pi = wi/(

∑∞
j=1 wj) results in a random probability mea-

sure called a Dirichlet Process (denoted DP(α0, G0)) (Fer-
guson, 1973; Jordan, 2010). Much like a GaP(c−1, α0, G0)
can be normalized to a DP(α0, G0), a DP(α0, G0) can be
scaled to a GaP(c−1, α0, G0) by replacing each pi with
wi = Γpi where Γ ∼ Gamma

(
α0, c

−1) (shape param-
eter α0 and inverse scale c). Dirichlet processes are often
used in conjunction with a parametric family indexed by
realizations of the DP. Each data point is then obtained in a
two-step process: first, sampling a parametric family index
or parameter θ from the DP, and second, sampling from the
member of the parametric family given θ. This construction
is known as a Dirichlet process mixture model (Antoniak,
1974), denoted DPM.

3. Atomic Spatial Processes
Suppose we observe a multiset realization {X1, . . . , XN}
of a random process over a space Ω. Our goal is to model
this process under the assumption that some locations may
occur several times in X , and that the total number of ob-
servations N is random.
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Generative process: An ASP is a Bayesian non-
parametric model composed of three distinct levels. We
start with a bird’s-eye-view of the model, and then describe
and motivate each level in detail. At a high-level, the ASP
model is structured as follows:

X|µ ∼ PP (µ)

µ|G0 ∼ GaP
(
c−1, α0, G0

)
G0 ∼ DPM (απ0 , H0) ,

where H0(·|κ, ν, ϑ,∆) is a bivariate Normal-Inverse-
Wishart measure (Gelman et al., 2013, p. 87-88) with ν
degrees of freedom, scale parameter κ, mean parameter ϑ,
and covariance parameter ∆. The DPM is based on the bi-
variate Normal family parameterized by a mean and a co-
variance matrix. We hold ν, κ, ϑ,∆, c, α0 and απ0 fixed for
now, but discuss putting priors on the univariate real pa-
rameters at the end of the next section.

We start by motivating the sampling process for µ. As
reviewed in the previous section, when µ is a continuous
measure, all observations in X are distinct with probability
one. To avoid this restriction, we therefore utilize a Pois-
son process with a discrete rate measure, by assuming the
measure µ is a realization of a gamma process (GaP) over
Ω ⊂ R2 (latitudes and longitudes). However, in a finite ob-
served sample, we do not observe all possible locations in
the population. The use of a GaP prior on µ captures this
property through the infinite number of atoms in a GaP re-
alization. Any observed data come from a finite number of
these atoms, resulting in unobserved atoms that should be
accounted for when performing prediction.

Another common feature in urban data is the existence of
several “hotspots”—high activity areas, such as neighbour-
hoods, consisting of many unique locations close in prox-
imity. Such hotspots can be observed in Figures 1a and
1c. Therefore, it is sensible to incorporate proximity to
hotspots when assigning predictive density for unobserved
atom locations. For this effect, a DP is used in the devel-
opment of G0, the base measure for the GaP(c−1, α0, G0)
prior placed on the rate measure µ. Specifically, we assume
G0 is a Dirichlet Process mixture model (Antoniak, 1974)
where the mixture components are bivariate Normal distri-
butions. The following provides an explicit recipe for G0.

Consider a Dirichlet Process DP(απ0 , H0) with H0 defined
on the space of parameters of the bivariate Normal family,
R2 × R2×2. We employ a Normal-Inverse-Wishart mea-
sure for H0, allowing us to exploit the conjugacy between
the Normal and Normal-Inverse-Wishart distributions. Let
(ξ1,Σ1, π1), (ξ2,Σ2, π2), . . . denote a realization from this
process, with ξi ∈ Ω, Σi ∈ R2×2, and πi ∈ [0, 1]. We build
the mixture G0 by letting G0(·) =

∑∞
i=1 πiN (·|ξi,Σi),

where N (·|ξ,Σ) denotes the bivariate Normal measure
with mean ξ and covariance matrix Σ.

k = 1, . . . ,1 j = 1, . . . ,1

X

�

#



⌫

✓k Aj

Zj ⇡ ↵⇡
0

p

�

↵0

r

Figure 2. Graphical model formulation of ASP. The random mea-
sure µ is encapsulated by the nodes A, Γ, p, and the random mea-
sure G0 is encapsulated by the nodes θ and π. Details for this
representation are included in the body of the text. The variables
∆, ϑ, κ, and ν denote the hyperparameters of the Normal-Inverse-
Wishart measureH0. The vector Z summarizes the mixture com-
ponents in G0 from which the atoms in µ are drawn. The node X
represents a vector consisting of the observations.

This choice of G0 implicitly assumes that the locations in
the modelled data are drawn from a multi-modal distribu-
tion over Ω, where the number of modes is unknown. This
assumption captures the hotspot structure of many urban
data sets; each mode represents a high activity area. Next,
we illustrate how each of these processes fit together within
our modelling framework.

Collapsed representation: Inference on the model in the
form described in the previous section is challenging due
to the countably infinite list of continuous latent variables.
We now show that this issue can be avoided by analytically
marginalizing (collapsing) these infinite lists. The result
is a collapsed representation depending solely on the real-
valued hyperparameters and the latent cluster memberships
Zj . We start by reformulating the process into the graphical
model given by Figure 2. This formulation still involves
infinite objects, but uses more explicit random variables to
represent the random measures µ and G0. We will then
perform the marginalization on this expression. We now
elaborate on how the representation of Figure 2 is defined.

The GaP µ is represented by countably infinite random
vectors A (with realization a) and p, as well as the real-
valued random variable Γ. The vector A = (A1, A2, . . .)
is composed of locations for atoms in µ, and the vector
p = (p1, p2, . . .) is composed of the normalized weights
assigned to these atoms. The random variable Γ scales p
such that its sum is µ(Ω). Consequently, the infinite list of
atoms (A1,Γp1), (A2,Γp2), . . ., etc. characterizes µ (by
the gamma-DP rescaling property in Section 2).

The DPM G0(απ0 , H0) is represented using a standard
stick-breaking construction (Sethuraman, 1991), denoted
by the infinite random vectors θ and π. The vector θ =
(θ1, θ2, . . .) is composed such that each θk is the param-
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eter set (mean and covariance matrix) of the kth Normal
mixture component in G0. The vector π = (π1, π2, . . .) is
composed of the weights assigned to these mixture com-
ponents. The standard strategy for simulating from a mix-
ture model is composed of two steps: first sample a mix-
ture component index then sample from that component.
Our formulation follows this process, with the variable Z
indicating the mixture component of G0 corresponding to
each Aj . We also define the beta-stick breaking weights
βπk associated with vector π through the recursive defini-
tion βπk = πk/

∏k−1
i=1 (1− βπi ) with βπ1 = π1. Similarly,

βpk contains the stick-breaking weights associated with p.

We now illustrate how to collapse the model to
a more tractable form. The joint distribution
of the graphical model in Figure 2 is given by:
P( dβπ, dβp, dθ, dz, da, dx, dγ,N = n) =[

∞∏
k=1

Beta ( dβπk |1, απ0 )H0( dθk)

]
×[

∞∏
j=1

Mult ( dzj |π)L( daj |θzj )

]
×

Gamma
(

dγ|α0, c
−1) [ ∞∏

j=1

Beta
(

dβpj |1, α0

)]
×

Pois(n|γ)

[
n∏
i=1

pj(a,xi)δxi∈a( dx)

]
,

where j(a, xi) denotes the almost sure unique distinct lo-
cation index j such that aj = xi, Beta (·|α, β) denotes a
beta distribution, Mult (·|π) denotes the multinomial dis-
tribution for a single draw given a vector of probabilities
π, and L(·|θ) is a bivariate Normal likelihood. Define ρ(·)
to be a function which takes as input an infinite list, and
returns a partition (a set of sets of integers) which groups
the list indices by the value of their entries. In particular,
ρ(z) denotes a partition of the atom indices by their corre-
sponding mixture components. Let aB denote those atoms
whose indices lie in B ∈ ρ(z). Using conjugacy we can
integrate over θ:
P( dβπ, dβp, dz, da, dx, dγ,N = n) =[

∞∏
k=1

Beta ( dβπk |1, απ0 )

][
∞∏
j=1

Mult ( dzj |π)

]
×

Gamma
(

dγ|α0, c
−1) [ ∞∏

j=1

Beta
(

dβpj |1, α0

)]
×

Pois(n|γ)

[
n∏
i=1

pj(a,xi)δxi∈a( dx)

]
×

∏
B∈ρ(z)

∫
H0( dθ)

∏
i∈B

L( dai|θ).

Defining the marginal distribution of the parametric
model m(·) (which can be computed by conjugacy), as

m( da) =
∫
H0( dθ)L( da|θ), our expression simplifies

to1: P( dβπ, dβp, dz, da, dx,N = n) =[
∞∏
k=1

Beta ( dβπk |1, απ0 )

][
∞∏
j=1

Mult ( dzj |π)

]
×

 ∏
B∈ρ(z)

m( daB)

[ ∞∏
j=1

Beta
(

dβpj |1, α0

)]
×

[
n∏
i=1

pj(a,xi)δxi∈a( dx)

]
NegBin

(
n
∣∣∣ 1

c+ 1
, α0

)
,

where NegBin (·|p, r) denotes an extended negative bino-
mial distribution with probability of success p and (real
valued) failure count r. The negative binomial distribu-
tion arises from marginalizing a gamma distributed prior
on a Poisson distribution rate parameter. Marginalization
over both βπ, βp leads to our final expression, namely an
explicit and tractable expression for

P( dz, da, dx,N = n) =CRP (ρ( dz)|απ0 )
∏

B∈ρ(z)

m( daB)

×
NegBin

(
n
∣∣∣ 1

c+ 1
, α0

)
CRP (ρ( dx)|α0, N = n) ,

(2)

where CRP(·|α) denotes the Chinese Restaurant process
table assignment probability measure (Aldous, 1985) with
parameter α0, a function which is easy to evaluate.

For a given set of hyperparameters, this collapsed likeli-
hood is a function of ρ(z), the mixture component mem-
berships of the atoms in µ, and ρ(x), the atom assignments
of the observations. By the construction of µ, all atom loca-
tions are unique with probability 1. Therefore, the locations
of the observations in x completely specify ρ(x), leaving
ρ(z) as the only combinatorial random variable. Unfor-
tunately, the number of possibilities of ρ(z) is intractably
large for most applications. Additionally, it is often benefi-
cial to resample some of the hyperparameters. We propose
a Markov chain Monte Carlo algorithm to conduct approx-
imate inference of the posterior in Section 4.

The marginalization of continuous variables results in a
mixed posterior rate measure µ. That is, the posterior dis-
tribution of µ is composed of discrete point masses at ob-
served graffiti points as well as density at all other points
in space. The continuous part is due to the unobserved
atoms discussed when motivating G0 in Section 3. As was

1To streamline presentation, we use the following abuse of no-
tation. For a random variable τ , dτ denotes, depending on con-
text, either a subset T in the range of τ , or the event (τ ∈ T ). This
allows us to concisely represent measures and avoid using densi-
ties, which would degenerate because of the infinite products.
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desired, the density weights are assigned according to the
posterior of the DPM G0, which contains hotspots.

Finally, we considered model extensions placing an addi-
tional level of hyper-priors on the parameters α0, α

π
0 , c, κ

and ν. To satisfy the domain of the hyperparameters, we
use (shifted) exponential priors with mean 10100 for each
of the parameters ν, κ, α0, c, and απ0 . For example, the do-
main of ν satisfies 1 < ν < ∞, so ν − 1 ∼ exp(10−100).
We chose 10100 as the mean of the priors on the hyperpa-
rameters because a high mean on the exponential distribu-
tion makes these priors uninformative. Rerunning the sim-
ulations with means of 1010 or 101000 yields similar results.

4. Approximate Posterior Inference
We now propose a Markov chain Monte Carlo (MCMC)
strategy for sampling the cluster membership variables and
the hyperparameters of the model. The state space of the
largest model considered contains the clustering z and five
real numbers (α0, α

π
0 , c, κ and ν). The 2×2 covariance ma-

trix ∆ and the mean vector ϑ are not resampled; they are
fixed at the identity matrix and 0 vector, respectively.

Each sweep of the MCMC algorithm consists of two steps.
First, a Gibbs sampling strategy is used to propose a
new mixture component membership zj for each observed
unique location aj . This consists of generating a random
permutation P of the locations, followed by sequentially
sampling (in order of P ) a new value for each zj according
to the conditional distribution obtained from Equation (2).
The mixture component memberships are initially config-
ured such that each atom has its own component.

The second step of the sweep consists of performing
Metropolis-Hastings moves for select hyperparameters of
the model in a randomly permuted order. Starting values
for the hyperparameters can be chosen by considering the
mixing behaviour for varying short runs. We use random
walk Gaussian kernels as the proposal for each Metropolis-
Hastings step. Each kernel is centered at the current value
of the selected hyperparameter with a fixed variance spe-
cific to each hyperparameter. Short runs are used to cali-
brate the variance of each hyperparameter to ensure proper
mixing. The collapsed formulation, Equation (2), allows
for tractable acceptance ratio computations.

For each Monte Carlo sample, the predictive density for a
new point Y is given by the expression

µ̄′( dy) =
1

N + α0

N∑
i=1

δXi( dy) +

α0

N + α0

1

T + απ0

(
K∑
i=1

|Bi|m( dy|aBi) + απ0m( dy)

)
,

where K denotes the number of DPM components
from which we have observed atoms where aBi =
{aj : zj = zi} as before, |Bi| is the number of atoms in
mixture component i, and T =

∑K
i=1 |Bi| is the number of

unique locations.

Averaging this predictive density for a run of the sampler
provides an estimate of the predictive distribution. We now
demonstrate the utility of this predictive distribution for
two graffiti datasets.

5. Data Analysis Graffiti Data
This section illustrates two applications of our ASP model
and inference strategy using graffiti data from downtown
Vancouver and Manhattan. The cities of Vancouver and
New York City each maintain records of all graffiti sites
identified by city staff. The data is made publicly avail-
able through the Vancouver Open Data Catalog and NYC
OpenData database.2 In both datasets, many pieces of graf-
fiti often share identical locations. We illustrate the ASP
framework by conducting an analysis on subsets of each
of these datasets. Specifically, we use the downtown re-
gion for Vancouver and the Manhattan region of New York.
We view the set of all recorded graffiti locations for each
dataset as a single realization of a spatial PP over the time
frame of data collection. The NYC dataset also contains
other variables (clean-up status, approximate date and time
of creation), but these are not incorporated into our model.

Fitting an ASP can reveal useful results for city officials.
The predictive distribution µ̄′ for graffiti occurrences can
inform resource allocation for clean-up. As mentioned in
Section 3, our model results in a µ′ which is a mixture of
atoms and a continuous measure G′0, the mean of the pos-
terior for G0, the base measure of µ. This G′0 provides pre-
dictive information for new locations of graffiti, with the α0

controlling the probability of a new location being chosen.
Specifically, this probability is given by α0/(N + α0). In
addition, the locations of the modes of G′0 can be viewed
as hotspots of graffiti activity. These graffiti hotspots can
be targeted for police patrols as a preventative measure.

Downtown Vancouver: The downtown Vancouver graf-
fiti dataset reports 7675 pieces of graffiti occurring at 1982
unique locations. The graffiti locations and counts are illus-
trated in Figure 1a. Figure 1b illustrates the predictive dis-
tribution given by the ASP. The inference of µ̄, the normal-
ized version of µ, for Figure 1b was based on an MCMC
strategy (outlined in Section 4) consisting of 20,000 itera-

2Vancouver Open Data Catalog: http://data.
vancouver.ca/datacatalogue/graffitiSites.
htm. NYC OpenData database: https://
data.cityofnewyork.us/City-Government/
DSNY-Graffiti-Information/gpwd-npar

http://data.vancouver.ca/datacatalogue/graffitiSites.htm
http://data.vancouver.ca/datacatalogue/graffitiSites.htm
http://data.vancouver.ca/datacatalogue/graffitiSites.htm
https://data.cityofnewyork.us/City-Government/DSNY-Graffiti-Information/gpwd-npar
https://data.cityofnewyork.us/City-Government/DSNY-Graffiti-Information/gpwd-npar
https://data.cityofnewyork.us/City-Government/DSNY-Graffiti-Information/gpwd-npar
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tions, with resampling of the hyperparameters α0, απ0 , c,
κ, and ν. The run details, including MCMC trace plots
illustrating well-mixing chains are provided in the supple-
mental materials. The plot is a combination of two compo-
nents, the discrete atoms (Aj’s) located at the 1982 already
observed graffiti locations, and the log density of the nor-
mal mixture model G0 indicating the density assigned to
new graffiti locations. We also note that through forward
simulation from our priors we have found that the Normal-
Inverse-Wishart measure for the DPM base measure is able
to capture street-like structure.

The mean of the posterior for α0 is 867.6, indicating that
the predictive probability of a new location is 0.102. Con-
sequently, 10.2 percent of the predictive probability is as-
signed to G0 and the remaining probability is assigned to
already observed graffiti locations (proportionally to the
observed counts). This indicates that the contours in Fig-
ure 1b represent 10.2 percent of the probability, with the
rest assigned to the atoms proportional to observed counts.
There appears to be a major graffiti hotspot East of Bur-
rard between Dunsmuir Street and East Hastings. Outside
of this graffiti area, there are two smaller high density areas
around the West end of Robson and the Davie/Granville
intersection. The density is lower around the coasts and
close to Stanley Park. These results suggest that it is un-
likely to see a new graffiti location outside of the West
Hastings/Dunsmuir hotspot.

Manhattan: The Manhattan graffiti dataset reports 3946
graffiti occurring at 3406 unique locations. The graffiti lo-
cations and counts are illustrated in Figure 1c. We employ
the same inference strategy used for the downtown Van-
couver data in Section 5. A much larger value of α0 was
required for Manhattan, which is sensible as the ratio of
unique graffiti locations to total points is much higher for
Manhattan than for Vancouver. Figure 1d illustrates the
predictive distribution for Graffiti in Manhattan.

In this case, the posterior mean of α0 was 11881.9, result-
ing in 75.1 percent of the predictive density being for new
graffiti locations. Consequently, 75.1 percent of the density
is assigned toG0, shown by the contours in Figure 1d. This
is a large contrast between Manhattan and Vancouver. The
predictive distribution reveals high density radiating from
Chinatown and into East Village. The density is also high
in Harlem and down either side of Central Park. The den-
sity lowers in West Village, Chelsea, and Hell’s Kitchen as
well as the financial district, Columbus Circle, and corpo-
rate midtown. These findings suggest that, relative to Van-
couver, the graffiti locations are much more varied, with the
probability of new locations occurring being much higher.

6. Model Comparisons
In this section, we assess the quantitative performance of
the ASP framework by comparing its performance to that
of three different competitors: an empirical grid-based
method, a DPM, and a mixture of a DPM and the empirical
distribution. We describe the three competitors, provide a
metric for comparison of the approaches, and illustrate the
predictive performance of all models across both the down-
town Vancouver and Manhattan datasets. We also demon-
strate the computational expense of fitting each model. The
models shown here are exemplars chosen from a range of
possible competitors. Results for the larger group of com-
petitors are available in the supplementary material.

The empirical grid-based approach is a commonly used
strategy for sidestepping atomicity by dividing the area of
interest into a grid with cell lengths ε. The density assigned
to each cell is proportional to the frequency of points within
each cell. The result is a piecewise continuous predictive
distribution which resembles the PP model with piecewise
uniform intensity proposed in Ding et al. (2012)).

The DPM we consider here is a standard Dirichlet Process
mixture model of bivariate normal distributions. Despite
the fact that DPMs are unable to theoretically model atomic
data, we chose to include it as a competitor to demonstrate
the advantage of modelling atoms explicitly.

The form of the predictive distribution for the DPM-
empirical mixture is the same as that of ASP; it combines
atoms at observed locations with a DPM assigning den-
sity to new locations. The two models differ in how they
assign weights to these two components. In the DPM-
empirical mixture, proportions are chosen using cross vali-
dation, whereas ASP uses a Bayesian resampling scheme.

The posterior predictive distribution for each model (except
the empirical grid) was determined using MCMC sampling
strategies like the one given in Section 4. Since the proba-
bility of observing atomic data in either DPM or empirical
methods is zero almost-surely, it is unfair to compare these
methods using exact locations. Instead, for each given
point, we compare the predictive log likelihood of a square
ε-region. We illustrate the results for each of the models us-
ing variety of values of ε. To compare across the Vancouver
and Manhattan datasets, the graffiti locations are scaled to
a [−1, 1]× [−1, 1] region so that an ε-neighborhood repre-
sents

(
ε2

4

)
% of the total area observed.

Performance is judged through a held-out analysis of 10%
of the observed pieces of graffiti, conducting posterior in-
ference using the reduced data, and calculating predictive
likelihoods of the omitted data. For the DPM-empirical
mixture, an additional 10% of the training data is held-out
to cross validate the mixing proportions. In all cases, we
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Figure 3. (Left) Predictive log-likelihood for ε-neighborhoods of held out pieces of graffiti for different spatial models. The ASP model
uniformly outperforms the Dirichlet process mixture models (DPM), an empirical grid based approach, and a mixture between a DPM
and the empirical distribution. The derivation of the predictive log-likelihood for an ε-neighborhood of held out pieces of graffiti is
shown in the supplement. (Right) Walltime in minutes for each of the five models. The ASP model is slightly more expensive than the
DPM model, but cheaper than the DPM-empirical mixture. The number of unique locations in the Manhattan dataset is almost twice the
number in the Vancouver dataset. Since the Gibbs sampler is initialized to a completely disconnected configuration, the computational
complexity before burn-in scales as O(n2) where n is the number of unique locations. This explains the large differences in compute
time between the Vancouver and Manhattan datasets. This could be addressed using a split-merge move, which does not generally
require this type of expensive initialization (Jain & Neal, 2004).

approximate the joint held-out predictive distribution with
the product of the one point predictive distributions. This
process is repeated for 10 separate held-out datasets. Justi-
fication of this approach is provided in the supplement.

The results of the held out analysis are shown in Figure 3.
Error bars are included to show the variability between the
10 separate held-out analyses. The ASP framework pre-
dicts better than all competitors for all values of ε. Al-
though the empirical grid is computationally fast and per-
forms well for large values of epsilon, it fails for small val-
ues of epsilon due to its inability to capture the atomicity
of the dataset. ASP, at worst, requires minimal compu-
tation time over DPM model while exhibiting much bet-
ter predictive results. ASP also requires less time than
the DPM-empirical mixture due to computational inten-
siveness of cross-validation. The proportions assigned to
the DPM by the DPM-empirical mixture were 0.1 for Van-
couver and 0.751 for Manhattan (versus 0.102 and 0.79 for
ASP). Since the two approaches yield similar proportions,
cross validation is not worth the computational expense and
loss of held-out data.

7. Conclusion
This paper proposed an atomic spatial process (ASP)
framework to model atomic urban data. A key strength of
the framework is a posterior predictive distribution consist-

ing of a mixture of discrete atoms (at previously observed
locations) and a continuous measure (for new locations).
This captures an important property of atomic urban data;
previously observed locations have positive probability, but
new locations are still possible. In contrast, a fully discrete
predictive distribution allows no possibility of new loca-
tions, and a continuous predictive distribution (such as a
DPM) assigns zero probability to already observed points.
Our experiments further show that both DPM and empirical
approaches are outperformed by ASP methods.

The novelty of our work lies not in the individual levels of
the model, but in the particular nested configuration for the
ASP, in the derivation of an inference method, and as a case
study of BNP in spatial statistics and its evaluation. Most
importantly, we can handle a spatial data type for which we
have found no satisfactory models in the literature.

For future work, a dependent time aspect could be added
to the modelling framework, providing a spatial-temporal
version of the ASP. Another option is to consider more al-
ternative non-parametric base measures for the GaP prior
on µ. Dependent Dirichlet Processes (MacEachern, 1999)
or spatial normalized random measures (Rao & Teh, 2009)
could provide additional flexibility to capture structure a
large heterogeneous area, such as a municipalities contain-
ing both dense urban hubs and sprawling suburbs.
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