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Abstract
Memory efficiency is an important issue in Se-
quential Monte Carlo (SMC) algorithms, aris-
ing for example in inference of high-dimensional
latent variables via Rao-Blackwellized SMC al-
gorithms, where the size of individual particles
combined with the required number of particles
can stress the main memory. Standard SMC
methods have a memory requirement that scales
linearly in the number of particles present at all
stage of the algorithm. Our contribution is a sim-
ple scheme that makes the memory cost of SMC
methods depends on the number of distinct parti-
cles that survive resampling. We show that this
difference has a large empirical impact on the
quality of the approximation in realistic scenar-
ios, and also—since memory access is generally
slow—on the running time.

The method is based on a two pass generation
of the particles, which are represented implicitly
in the first pass. We parameterize the accuracy
of our algorithm with a memory budget rather
than with a fixed number of particles. Our al-
gorithm adaptively selects an optimal number of
particle to exploit this fixed memory budget. We
show that this adaptation does not interfere with
the usual consistency guarantees that come with
SMC algorithms.

1. Introduction
Sequential Monte Carlo (SMC) methods is a class of ran-
domized algorithms that aim to approximate difficult ex-
pectations (Doucet et al., 2001), and that apply in a range
of contexts traditionally approached using MCMC meth-
ods. SMC algorithms have several attractive properties, in
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particular they are well suited to online or real-time con-
texts, and they can be efficiently parallelized (Lee et al.,
2010).

However, in contrast to MCMC algorithms, which are often
bound by running time only, SMC methods are bound by
both memory and time. This is because the storage needs
of MCMC algorithms can typically be limited to finite-
dimensional summary statistics of the parameters of inter-
est, while SMC is required to keep all the particles of the
current generation in memory in preparation for the resam-
pling step.

Memory efficiency can become an important issue in at
least two scenarios: in inference of high-dimensional latent
variables where the number of particles required to achieve
a desired approximation quality can exceed the main mem-
ory, and in online inference algorithms in embedded sys-
tems, where memory is severely constrained. In this work,
we will focus on the first scenario.

More specifically, an important motivation for this paper
comes from Rao-Blackwellized SMC algorithms, where
variables are imputed in such as way that conditionally
on the imputations, a high-dimensional variable can be
marginalized. For example, in phylogenetics SMC algo-
rithms (Teh et al., 2008; Görür & Teh, 2009; Bouchard-
Côté et al., 2011), conditionally on an imputed tree, the
sum-product algorithm can be used to marginalize over an
exponential number of evolutionary paths of nucleotides
evolving along the tree. In practice, it is important to
compute the sum-product dynamic program incrementally,
which means that each particle needs to store dynamic pro-
gramming tables of significant size.

Our contribution is a simple scheme that makes the mem-
ory cost of SMC methods depends on the number of dis-
tinct particles that survive resampling. Since SMC particle
weights can be highly non-uniform, the number of distinct
particles after resampling can be substantially smaller than
the number of particles before resampling.

At a high-level, we achieve these gains by generating par-
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ticle populations via the following two-pass method. In
a first pass, the particles and individual weights are cre-
ated and discarded on the fly while finite-dimensional sum-
mary statistics on the weights are accumulated. In the sec-
ond pass, an algorithm efficiently identifies the subset of
resampled particles, which are then recreated by reusing
the appropriate subset of random seeds. This second pass
is inspired by tools used in SMC in a different context—
network-efficient parallel SMC methods (Jun et al., 2012).
We call our method Implicit Particle SMC (IPSMC) since
the particles are represented implicitly in the first pass.1

The expected memory efficiency of our method is strictly
superior to that of conventional SMC. In any given in-
stance, it is never worse, and, as we demonstrate numer-
ically, can be several orders of magnitude superior.

Under a naive time complexity analysis, the running time of
our method is theoretically slower by a factor of two (since
particles need to be recreated). Surprisingly, we found that
in practice our method can often be substantially faster than
a conventional SMC implementation. This is because fewer
memory writes—an important time bottleneck in current
computer architectures—are used by our method.

We parameterize the accuracy of our algorithm with a
memory budget rather than with a fixed number of parti-
cles. Our algorithm adaptively selects an optimal number
of particle to exploit this fixed memory budget. We show
that this adaptation does not interfere with the usual pos-
terior consistency guarantees that come with SMC algo-
rithms. Using a random number of particles have been
explored in recent work, but mainly for a different pur-
poses, in particular, in cases where weights have a signifi-
cant probability of being exactly zero (LeGland & Oudjane,
2006; Jasra et al., 2013).

In online contexts, there has been work on improving the
memory efficiency of SMC algorithms (Schröter et al.,
2007; Oreshkin et al., 2011; Eichstadt et al., 2012). For
example, in the context of simultaneous localization and
mapping, where each particle contains a hypothesized map,
Schröter et al. (2007) compresses redundant information
across the particle maps. However, these contributions are
application and model-specific, and can be potentially dif-
ficult to implement. Our method in contrast does not make
assumptions on the model or proposal distributions. In fact,
the details of our memory-efficient algorithm need not be
exposed to the user of the SMC library—the only require-
ment is that the proposal should be deterministic given a
random seed.

An additional example of a situation where memory can

1Note that our scheme is unrelated to the work on implicit
sampling for particle filters from the data assimilation literature
in a stochastic differential equation context (Chorin & Tu, 2009).

become an issue is in certain state-space models where
the pointwise computation of the conditional density of the
hidden states Zt|Zt−1 is intractable. In other words, where
only forward simulation of the hidden states is possible. In
this context, the only option for the proposal is the prior
over the hidden state dynamics, and it is difficult to exploit
proposal distributions informed by the data, as this often
requires the evaluation of the density of Zt|Zt−1 in the par-
ticle weight calculation (Doucet et al., 2001). In case of a
large mismatch between the posterior and prior over the dy-
namics, a large number of particle may be required to get
the desired accuracy.

A final example where the number of particles needed per
generation is potentially large is SMC over combinatorial
spaces (van Rensburg, 2009; Wang, 2012). In this partic-
ular case, it is not uncommon to see a substantial effective
sample size collapse in a single SMC generation. Parti-
cle MCMC methods (PMCMC) (Andrieu et al., 2010) can
in some cases be used to address this issue, but they only
apply in offline settings. Even in the offline setting, the
performance of particle MCMC methods are known to be
sensitive to the trade-off between the number of particles
and the number of MCMC iterations (Andrieu et al., 2010;
Doucet et al., 2012). Fortunately, our scheme can be com-
bined with particle MCMC when the optimal number of
particles in PMCMC is too large for main memory storage.

2. Background
In this section, we setup the notation and provide a brief
overview of standard SMC. See Section 1 and 2 of the
Supplement for more details on SMC and on the measure-
theoretic notation used in the proofs.

Suppose we are given a sequence of distributions of inter-
est, πr, r = 1, 2, . . . . An important example is when the
distribution πr is the posterior distribution over Markovian
latent states given the first r observations in a sequence, a
setup known as the State Space Model (SSM).

Our goal is to approximate integrals of the form
∫
φdπr,

for some function φ called a test function. For example, φ
could be an indicator, in which case the integral become a
conditional probability in our SSM example. The need for
SMC arises when πr is only accessible via an unnormalized
density γr with an intractable normalization Zr.

We will outline here a simple version of SMC where re-
sampling is done at each step using multinomial resampling
(Gordon et al., 1993). Our method applies to more general
SMC methods, but we discuss these extensions in Section 5
and focus on the simplest case first.

At each generation r = 1, 2, . . . , SMC approximates πr
via a list of K weighted point masses. We denote the
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weights of these point masses by wr,k, and the normalized
weights, by w̄r,k. We denote the corresponding locations
of the point masses by xr,k. Together, the locations and
their weights form a discrete distribution πr,K which ap-
proximates πr. Each iteration of the particle filter consists
in first sampling from the normalized discrete distribution
obtained from the previous generation (with replacement),
and second, to use a proposal distribution νx and weight up-
date formula to transform this old sample into a new sample
suitable for the current generation. See the Section 1 of the
Supplement for the form of the weight update formula (we
will not modify this formula in IPSMC).

The estimator obtained at each step of this algorithm,∫
φ dπr,K , is a consistent estimator of

∫
φ dπR asK →∞

under regularity conditions (Del Moral, 2004). In practice,
the accuracy of the estimation depends heavily on the value
of K, which is restricted by the available memory. In large
scale inference problems involving complex model struc-
tures, the size of the particles can become prohibitive for
large value of K thereby impacting the quality of estima-
tion.

3. Implicit Particle SMC
For exposition purpose, we start in Section 3.1 by describ-
ing a simplified version of our method. This first version
nonetheless illustrate the first key idea used in IPSMC, im-
plicit particle propagation, in which the memory require-
ment is still linear in the number of particles, but with a
dramatically lower constant in the applications we are in-
terested in.

We then introduce two other key ideas at the foundation of
IPSMC: first, particle streaming (Section 3.2) which makes
the memory requirement constant instead of linear in the
number of implicit particles, and second, a simple adapta-
tion scheme (Section 3.3) that provably preserves both the
memory efficiency and the basic asymptotic properties.

3.1. Implicit particle propagation

As in standard SMC, IPSMC constructs a sequence of
discrete distributions πIP

r,K indexed by r (the generation).
As before, each of these distributions is simply a list of
weighted particles. We focus on explaining how to cre-
ate the weighted particles of a single SMC generation as-
suming that the previous generation has been computed, as
SMC and IPSMC are initialized in the same way.

In standard SMC algorithms, the computation of the
weighted particles at each generation involves three tasks:
resampling, followed by proposals, followed by normaliza-
tion. In contrast, IPSMC depends on four tasks: expansion,
proposals, normalization, contraction (see Figure 1). More-
over, the computations of these four tasks does not follow

the same linear order as standard SMC (the proposal task
is performed twice for reasons we will explain in detail
shortly).

We now examine in detail how weighted particles are pro-
duced by the simplest version of IPSMC:

Expansion: The expansion step is a simple generalization
of resampling. But instead of resampling from a list of K
weighted particles K times, we resample N > K times.
Later, we will make N random (adaptive), but for now,
think of N as a deterministic function of K, with values
of N much larger than K.

Note that even if N is large, storing N resampled particles
is feasible since it only involves storing K particles, each
attached with a multiplicity.

Proposal (implicit pass): While the algorithm can use re-
sampling to create a large number N of particles, naively
proposing N times from these particles is impractical be-
cause the proposed particles will potentially all be distinct,
preventing efficient storage via multiplicities and therefore
breaking memory constraints.

Instead, IPSMC represents the N proposed particle implic-
itly: as in (Jun et al., 2012), at this stage IPSMC only stores
the weight of the particle, a pointer to its parent, as well as
the random seed used to produce it from its parent. This
still requires linear storage in N , but with a potentially
much lower constant. Again, this will be relaxed to con-
stant storage using the more complicated IPSMC algorithm
described in the next section.

Note that in our terminology, we incorporate the weight up-
date calculation into the proposal step, so overall this task
creates a collection of particles ((xr,n, wr,n) : 1 ≤ n ≤
N).

Normalization and contraction (implicit pass): Once
the implicit particles are produced, we can normalize
their weights and resample K times from the normalized
weights w̄r,k. The actual contents xr,n of the particles is
not needed for these stages.

Note that we will need in the next section the following de-
composition of the normalization tasks into two subtasks:
summing over the weights (computing sr =

∑N
n=1 wr,n,

and dividing each weight by that sum to get w̄r,n =
wr,n/sr.

Repeat Proposal (concrete pass): Now that the algorithm
has determined which particles survived, it can reuse the
relevant random seeds to create concrete versions of these
particles in preparation for the next step.
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3.2. Particle streaming

In this section, we modify the simplified version of IPSMC
presented in the previous section to transform the linear
memory requirement in N into a constant memory require-
ment with respect to N . The memory requirement is still
linear in K, but we show in our experiments that large val-
ues for N can provide significant improvements in poste-
rior quality, even for moderate K.

Note that in the previous version, each task (expansion,
proposals, normalization, contraction) was performed in
isolation (in other words, each one has its own loop over
the particles). In contrast, particle streaming groups tasks
(in other words, for each group of tasks, it loops over parti-
cles, and for each particle, execute all the tasks in the group
of tasks for the current particle).

The first group of tasks contains the expansion task, the im-
plicit proposal task, and the summation subtask. The sec-
ond group of tasks contains the explicit proposal task, the
division subtask, and the contraction task. See Figure 1 and
Algorithm 1 in the Supplement. We need to show that each
group can be performed in memory constant in N , while
producing a result equivalent to the result of the algorithm
presented in the previous section.

Task Group 1: streaming expansion, implicit proposal,
summation. Expansion can clearly be done one particle at
the time, by generating a discrete uniform random variable
U on {1, . . . ,K} and accessing the corresponding ances-
tor xr−1,U from the previous generation. Next, the implicit
proposal creates a weight wr,n, which we simply discard
after adding it to an accumulator, s ← s+ wr,n. Note that
we only need to store the seed of the sequence of proposals
instead of individual seeds. See Algorithm 2 in the Supple-
ment for details.

Task Group 2: streaming explicit proposal, division
subtask, contraction. Here, we start by generating K
sorted uniform number V(1), . . . , V(K). Then, we regener-
ate particles using the same seed, but this time since we
know the normalization sr = s in advance (from the pre-
vious task group), we can obtain the stream of normalized
weights w̄r,n = wr,n/s. We accumulate the sum s̄ of nor-
malized weights produced so far, s̄ ← s̄ + w̄r,n, and if the
interval of length given by the current normalized weight
w̄r,n and translated by s̄ contains one or more of the K
sorted uniform numbers, the particle is kept as a concrete
particle, otherwise, the particle is simply discarded as it
will not be needed in subsequent iteration. See Algorithm 3
in the Supplement for details.

Note that the K sorted uniform numbers can be produced
in a streaming fashion as well via Beta random variable (al-
though they are less of a concern since K is small relative
to N ). See Section 3 of the Supplement.

3.3. Adaptive number of implicit particles

In this section, we show how to modify Task Group 1 to
dynamically determine the number of particles needed to
achieve a prescribed number of distinct particles after con-
traction. We also need to show that this criterion can be
computed in a streaming fashion.

To start with, we remind the reader of the following el-
ementary result on the expected number of distinct parti-
cles produced by multinomial resampling (for complete-
ness, the proof is in Section 5 in the Supplement, where we
also establish a concentration bound around this expecta-
tion):

Proposition 1 Let S1, . . . , SK ∼ Mult(w̄) independently,
where w̄ = (w̄1, . . . , w̄N ). Then we have:

ψ(w,K) = E|{S1, . . . , SK}|

= N −
N∑
i=1

(1− w̄i)
K (1)

Let w1, w2, . . . denote a stream of unnormalized weights
generated by repeated sampling from Task Group 1. We
use the above function ψ to select the largest number of par-
ticles n that have the property that if we formed a multino-
mial with parameters (w̄1, . . . , w̄n) and resampledK times
from it, then no more than M distinct particles would be
obtained in expectation. Formally, for K > M , set:

N(K,M) = sup
{
n ≤ N∗ : ψ((w1, . . . , wn),K) ≤M)

}
,

where N∗ � K is a computational ceiling also making
sure that this stopping time is finite. Here M is a tuning
parameter. The theoretical results of Section 3.5 suggest
a value of M = αK, where α = 1 − (1 − 1/K)K ≈
1−exp(−1) (see Section 3.5 and Supplement 5 for details).
We therefore write N = N(K) = N(K,αK). With this
choice, M can be interpreted as the maximum expected
number of unique particles stored after contraction (while
the maximum realized number is K).

3.4. Binomial Approximation

We now show that the function ψ introduced in the previous
section can be approximated in a particle streaming con-
text. In other words, we show that the stopping time can be
approximated accurately and efficiently using finite dimen-
sional statistics computed incrementally from the stream of
unnormalized weights.

Applying the binomial expansion of (1− w̄i)
m into Equa-

tion 1 yields:

N −
N∑

n=1

K∑
k=0

(
K

k

)
(−w̄n)k (2)
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Figure 1: Overview of the implicit particle SMC algorithm.
The circles are particles. The black particles show the sub-
set of the implicit particles that need to be reconstructed
from their seed in the concrete proposal task. The numbers
attached to arrows indicate the number of particles. We also
show the grouping of the tasks used by the stream version
of the algorithm.

In practice, we observed that the accuracy of the ap-
proximation improved by maintaining a priority queue of
bounded size, containing the largest weights. If Q denotes
the priority queue, we divide the computation of Equation 1
into two parts:

N −

∑
n∈Q

(1− w̄n)K +
∑
n/∈Q

K∑
k=0

(
K

k

)
(−w̄n)k


The weights in the priority queue are computed exactly
whereas the weights that are not in the priority queue are
approximated using binomial expansion.

Using the priority queue, we found that keeping the terms
k ∈ {0, 1, 2} gave satisfactory approximation with a prior-
ity queue of size 100 (see Section 4.4).

3.5. Consistency of the estimator

In this section, we give sufficient conditions for L2 conver-
gence of Monte Carlo approximate expectations of a test
function φ computed from the Implicit Particle SMC algo-
rithms as M goes to infinity.

The proof given in Section 5 of the Supplement is based on
arguments used in previous work (Crisan & Doucet, 2002;
Wang, 2012), the main point is to show that these argu-

ments can be extended to handle the random number of
particles used, and the additional resampling step used to
control the number of unique particles.

Let πIP
r,K denote the discrete approximation to the target

distribution produced by the algorithm described in the pre-
vious sections (and formalized in terms of pseudo-code as
well as measure-theoretic operators in the supplement).

Proposition 2 Assume that the test function φ and the un-
normalized weights w are bounded, and that the proposals
ν satisfy πr � νr−1,x. Then:∫

φdπIP
r,K

L2

−→
∫
φ dπr,

as K →∞.

This proposition could be extended in several ways. First,
as previous results assuming similar hypotheses to our
proposition, the constant obtained in the L2 convergence
bound depends exponentially on the number of particle
generation. Other work has removed this exponential
dependency at the cost of stricter mixing assumptions
(Del Moral, 2004). Second, results on convergence almost
sure and results based on less strict assumptions on φ are
also available (Crisan & Doucet, 2002). We leave the inves-
tigation of possible adaptation of these results to our setup
to future work.

The result in the present form nonetheless applies to prac-
tical situations, for example, to the bootstrap filter with a
bounded observation density, and φ equal to an indicator
function.

4. Experimental Results
4.1. Demonstration on a simple problem

We begin the experiments section with an illustration of the
usefulness of our method on a simple example: the well
known 2D Ising model. A state of an Ising model consists
of a grid of L2 nodes Xi ∈ {−1,+1} for 1 ≤ i ≤ L2. The
probability mass function of the target distribution is,

πT (x) =
1

Z
exp

 1

T

∑
i∼j

xixj

 (3)

where i ∼ j indicates that node Xi and Xj are adjacent in
the grid and Z denotes the partition function. The model is
parameterized by a temperature parameter T , which speci-
fies the strength of interaction between neighboring nodes.

We use the SMC samplers framework of Del Moral et al.
(2007) to approach the problem with our algorithm. The
proposal is given by a Gibbs move on half of the nodes
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Figure 2: (a) The number of particles used, (b) the time
(seconds) for each temperature for IPSMC (red) vs SMC
(blue).

(those corresponding to the squares on a chessboard acces-
sible by a bishop). The intermediate distributions πr are
given by annealed versions of the target distribution.

We consider the problem for L = 32 at the temperatures
Tstart = 100 to Tend = 1 with the annealing step size
of 0.5. Note that at hot temperatures, the distribution over
configurations is nearly uniform and it is easier to obtain
good samples. At colder temperatures it is more difficult
to obtain good samples; in fact, there is a critical tempera-
ture T0 ≈ 2.27, for which the inference problem becomes
difficult as T gets closer to T0 (Geyer, 1991).

The number of implicit particles used for different values
of temperature is indicated by the red line in Figure 2 (a). It
can be seen that our adaptive stopping time automatically
reacts to the change in difficulty of the problem, and lever-
ages a considerably larger number of particles at colder
temperatures. The flat line shows the maximum number
of particles that can be used in the same memory constraint
(which was 1 gigabytes for this simple example) for the
standard SMC algorithm. In Figure 2 (b), we show the ac-
tual time. As can be expected from the number of particles
used, our algorithm is clearly faster at higher temperatures.
We have computed an estimate of P (X1 = +1) for the two
methods, which is shown in Figure 1 of the supplement. It
can be seen there that both methods approach to the true
value of 0.5. The results shown in this sections are aver-
age over 3 different runs initialized with different random
seeds.

4.2. Phylogenetic experiments

Given a list of related sequences (taxa), an important prob-
lem in Bayesian phylogenetics is to compute a posterior
distribution over phylogenetic trees describing the shared
ancestry of these sequences (Felsenstein, 2003). Phyloge-
netic trees are composed of a combinatorial part (a discrete
tree-shaped graph called a topology) and a continuous part

(a length attached to each edge or branch in that tree).

If a tree is fixed, it is possible to efficiently compute the
probability of the observations under general evolutionary
models such as the GTR model (Felsenstein, 2003). This
is done as follows. To simplify exposition, assume first
that all the sequences have length one. We are left with
a tree-shaped graphical model with the structure given by
the topology, and conditional probabilities on each branch
of the tree computed via matrix exponentiation of a rate
matrix times the length of that branch. It is therefore pos-
sible to efficiently marginalize the evolutionary paths on a
fixed tree using the sum product algorithm. To handle the
fact that sequences have length more than one, we assume
they have been broken into one-character sets called sites
(a process called multiple sequence alignment), and treat
each of these sets independently.

The difficulty comes from the fact that the space of trees
topologies grows exponentially in the number of taxa
(Semple & Steel, 2003). We therefore use an SMC algo-
rithm that imputes trees while marginalizing the evolution-
ary paths. We use the proposal algorithm described in (Teh
et al., 2008), which starts from a fully disconnected forest
over the taxa, picks one pair of trees in the forest at random,
and forms a new tree by connecting their roots.

Inference in Bayesian phylogenetics using SMC is a good
example where memory is more limiting than time. On
one hand, it has been shown that SMC is very competi-
tive when compared to MCMC on small to moderate trees
(Bouchard-Côté et al., 2011). On the other hand, scaling to
large number of taxa requires considerable memory needs.

In our experiments, we found that because of the storage
required by the sum product dynamic programming tables,
the memory per particle, for a dataset of 1000 sites is in the
order of 100 kilobytes per particle. Note that studies con-
sidering multiple genes can involve one or several orders
of magnitude more sites. At the same time, we show in
Figure 3 (a) cases where tens of millions of particles are re-
quired to obtain a reasonable level of accuracy. Concretely,
in our largest experiment in Figure 3 (a) the theoretical (ex-
trapolated) memory need if we had used concrete instead
of implicit particles would have been around 4 terabytes.
In contrast, we were able to run most of these experiments
on a laptop using 4 gigabytes of RAM.

To assess the quality of the approximation obtained by
large numbers of implicit particles, we first looked at the es-
timate of the marginal negative log-likelihood as the num-
ber of particles is increased. The results over 5 runs are
plotted in Figure 3 (a). This experiment was carried out
on a simulated dataset of 20 taxa and 1000 sites. We ex-
plain data simulation steps in Section 6 of the supplement.
It is visible from the sharp decline in the figure that a large
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Figure 3: (a) Decrease in negative marginal likelihood as
the number of particles increases. (b) Comparison of SSD
versus time for IPSMC (red) and the standard SMC (blue).

number of particles is required for this problem.

In the next experiment, we consider the problem of re-
constructing the ancestral relationships between the taxa
by inferring the latent tree structure along with the branch
lengths. For each pair of taxa, we estimate the pairwise dis-
tances; in this case we experimented on a simulated dataset
involving 20 taxa and hence, there are

(
20
2

)
such pairwise

distances. The estimate of the pairwise distance for i, j is
the weighted sum of the branch lengths of the path between
i and j, denoted d̂ij . The sum of square of difference (SSD)
of the estimate to the true value dij is computed as:

SSD =
∑
i,j

(dij − d̂ij)2 (4)

We show in Figure 3 (b) the SSD plotted as time of execu-
tion increases. Note that the IPSMC (red) achieves lower
error compared to the standard SMC (blue). In fact, the
memory limit prevents the standard SMC from running
longer (using more particles) to achieve lower error.

Next, we present some further investigations on the running
time of our method, which under a naive time complexity
analysis would be expected to be higher than that of the
standard SMC algorithm. Surprisingly, we found this is
not the case, a phenomenon we attribute to the standard
particle filter requiring more memory writes. Note that both
the implementation of IPSMC and the standard SMC were
developed using the same code base and shared as much
implementation as possible (in particular, both share the
same representation of the particle, and the same proposal).
Wall clock times can therefore be fairly compared, so we
measured the Effective Sampling Size per second (ESS/s)
(Kong et al., 1994).

We compared the speed up factor for IPSMC for K ∈
{1000, 10000} against the standard SMC with 30000 par-
ticles (maximum allowed given 4 gigabytes of memory) by
computing the ratio ESS/s of IPSMC to ESS/s of the stan-
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Figure 4: Speed up result comparing IPSMC with (a) K =
1000 and (b) K = 10000 versus standard particle filter
with 30, 000 particles. The red line indicates the ratio of 1.

dard SMC. IPSMC outperforms the standard SMC even
with a smaller memory budget as shown in Figure 4 (ex-
cept at iteration 14).

4.3. Nonlinear State Space Model

Another case where IPSMC can be useful is when the pro-
posal is far from the posterior, for example as a part of
an automatic Bayesian inference software package (Tode-
schini & Caron, 2012), where the main option available to
improve approximation quality is to increase the number of
particles. We demonstrate this use case on a simple nonlin-
ear state space model where the prior distribution is used as
the proposal (Kitagawa, 1987):

X1 ∼ N (0, 5)

Xr =
Xr−1

2
+ 25

Xr−1

1 +X2
r−1

+ 8 cos(1.2r) + Vr

Yr =
X2

r

20
+Wr

where Vr ∼ N (0, σ2
V ) and Wr ∼ N (0, σ2

W ). We carried
out a simple experiment using K = 10, 000 as the mem-
ory budget for both IPSMC and SMC, and N∗ = 1 mil-
lion as the computation ceiling for IPSMC. We examined
the density estimated by the particles for R = 100 using
σ2
V = σ2

W = 1. The result is shown in Figure 5 (a). The
red dot indicates the true value x100, which shows that even
with poor choice of proposal the density estimate is accu-
rate for IPSMC compared to SMC under the same memory
budget. In Figure 5 (b), we show the ratio of the number of
implicit particles to K. The red line indicates the number
of particles that have been used by the standard SMC.

4.4. Binomial Approximation

The runtime of IPSMC depends on determining the stop-
ping time efficiently. In Section 3.4, we presented a bi-
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Figure 5: (a) The density estimate of IPSMC (red) versus
SMC (blue) where the red dot indicates the true value and
(b) the ratio of the # of implicit particles to K.

nomial approximation that requires only finite-dimensional
summary statistics. In this section, we demonstrate the
accuracy of this approximation. At the end of each pro-
posal step, we computed the exact value of the expectation
and compared it to the binomial approximation using the
first 2, 4, and 8 moments (in particular, using two terms
corresponds to recording only the sum and the sum of the
squares). In each entry of the table, we computed the aver-
age of the absolute deviation from the exact value and di-
vided by K. We observed that as K increases, more terms
are needed to obtain an accurate approximation (see Ta-
ble 1), but at a relatively slow rate. Increasing the number
of terms did not hinder the speed of execution. The size of
the priority queue was set at 100 in all of the experiments.

# of terms 2 4 8
Nonlinear SSM (K = 1000) 0.11450 0.01450 0.00004
Nonlinear SSM (K = 5000) 0.13022 0.02340 0.00120
Phylogenetics (K = 1000) 0.12181 0.01595 0.00003

Table 1: Accuracy of the binomial approximation.

5. Discussion and extensions
In this work, we have introduced an algorithm that per-
forms SMC simulation in a space-efficient manner, and we
analyzed its theoretical and empirical behavior. We have
explained the algorithm in the context of a simple SMC
setup, but we now discuss potential extensions to more
complex scenarios.

The first such extension consists in avoiding to do resam-
pling at each stage. If the interval between resampling steps
is a constant c, this can be achieved by replacing the (one-
step) proposal by a c-steps proposals. Note that the c-steps
proposal is no harder to re-generate than the one-step pro-
posal, again, the user simply has to reuse the seed of this
sequence of c proposals. If the interval between resam-
pling steps is adaptive (for example, via effective sample

size monitoring (Doucet & Johansen, 2009)), extending our
method is not as direct, but still possible. One could for ex-
ample use the above idea sequentially with c ranging from
20, 21, 22, 23, . . . until the adaptive resampling criterion is
met (as long as this criterion can be checked from a stream
of weights). Pragmatically, one could also simply use a
small pilot run to determine the value of c.

Second, while we have described the algorithm in a simple
context of the bootstrap sampler motivated by SSM, there
are several important extensions to consider in practice. For
one, nothing prevents using IPSMC as the implementation
of general SMC samplers (Del Moral et al., 2006). The
only difference comes in the weight update, which poten-
tially requires a correction coming from a backward pro-
posal. See (Del Moral et al., 2006) for details. This means
that SMC extensions that can be interpreted as auxiliary
variables augmentations can be combined with our method.
This is the case for example (Johansen & Doucet, 2008)
with Auxiliary Particle Filters (Pitt & Shephard, 1999).

Third, when N∗ is moderate, the resampling step can also
be replaced by alternative schemes (Douc & Cappé, 2005),
by using the first version of IPSMC presented in the pre-
vious section. We leave the extension to other resam-
pling schemes in the streaming version of IPSMC for future
work.

Finally, note that we have designed our particle generation
stopping times to terminate as soon as memory is used op-
timally. Empirically, this gives a good combination of op-
timized memory usage while preserving fast running time.
If running time is less of an issue however, it is possible
that the approximation quality can be further improved by
using higher stopping values.

This leads to a related issue, regarding the practicality of
SMC asymptotic results taking a memory limit K to in-
finity. Since memory is bounded in practice, this type of
asymptotics is arguably less practical than MCMC asymp-
totic results, where the variable going to infinity represents
time. Another type of asymptotics, more natural in the
IPSMC case, would consist in letting the number of im-
plicit generated particles N going to infinity, while still re-
sampling a finite number of them to fit into memory. It
would be interesting to translate the related results of Douc
& Moulines (2008) that are closer in spirit, but did not con-
sider the memory constrained setup.
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Teh, Y. W., Daumé III, H., and Roy, D. M. Bayesian agglomera-
tive clustering with coalescents. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2008.

Todeschini, A. and Caron, F. Bayesian inference with interacting
particle systems. https://alea.bordeaux.inria.
fr/biips/doku.php, 2012.

van Rensburg, E J Janse. Monte carlo methods for the self-
avoiding walk. J. Phys. A: Math. Theor., 42:323001, 2009.

Wang, L. Bayesian phylogenetic inference via Monte Carlo meth-
ods. PhD thesis, University of British Columbia, 2012.

https://alea.bordeaux.inria.fr/biips/doku.php
https://alea.bordeaux.inria.fr/biips/doku.php

	Introduction
	Background
	Implicit Particle SMC
	Implicit particle propagation
	Particle streaming
	Adaptive number of implicit particles
	Binomial Approximation
	Consistency of the estimator

	Experimental Results
	Demonstration on a simple problem
	Phylogenetic experiments
	Nonlinear State Space Model
	Binomial Approximation

	Discussion and extensions

