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can check easily that the block Gibbs sampler with
blocks V (1), . . . , V (k) has a transition kernel given by:

X(ct)(t)
∣∣∣X(t− 1) ∼

MRF
(
P ′(ct),ω(ct) + B(ct)(X(t− 1))ϑ

)
,

where B is the matrix defined as follows:

B(c)
f,g(X(t− 1)) =1[f = (a, s)]×

1[|{a, b} ∩ V (c)| = 1]×
1[Xb(t− 1) = s],

and where f ∈ F ′(c), g ∈ F\F ′ and ((a, b), (s, t)) = g.

Note that the sparsity pattern of B follows that
of J . Moreover, the complexity of sampling from
MRF(P ′(c), ·) is the same (up to a multiplicative con-
stant) as the complexity of computing ∇A(c)(·). Both
require executing sum-product on the same tree.

This parallel breaks when one or several of the con-
nected components is b-acyclic. In this case there is
no corresponding tractable block Gibbs sampler, while
(as we discuss in the following section) mean field is
still tractable albeit at a computational cost higher
than in the v-acyclic case.

3.5 Optimization of b-acyclic components

We now turn to the case of structured mean field when
there are b-acyclic components.

To simplify the notation we assume that there is a
single b-acyclic component that spans the entire graph
G. The derivation is essentially identical when there
are several connected components.

The quantity to compute is:

Jf,g(τ ) =
∂

∂τf
P(Ya = s, Yb = t),

where this time the probability on the right-hand side
cannot be decoupled into a product of marginals. Let

pg = {a = p0, p1, . . . , pk = b : ∀i, (pi, pi+1) ∈ E′}

denote the shortest path in G′ from a to b (see Fig-
ure 2).
If we let y0 = s, yk = t, we have:

Jf,g(τ ) =
∂

∂τf
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Figure 2: An example of the notation used in this
section. This corresponds to the inference problem in
the mean field subgraph in Figure 1, left column, bot-
tom row. The box indicate which nodes are involved in
the auxiliary exponential family P [g] used to compute
Jf,g for all f . The edges in the path pg are in bold
and the edge corresponding to g is the bold dashed
line between Ya and Yb.

From this expansion, we see immediately that Jf,g(τ )
will not have the same sparsity properties as in the
v-acyclic case.
One way to find these partial derivatives is to con-
struct a specialized dynamic programming algorithm.
This task is non-trivial: to see why, notice that when
the partial derivative is taken with respect to a coordi-
nate τf corresponding to an edge in the path pg, there
are factors τf that appear both in the numerator and
denominator:

Jf,g(τ ) =
∂

∂τf
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The task is thus more complex than that of creating
a dynamic programming algorithm of the type used
for sum-product. A chain rule would need to be used,
changing the form of the recursion for each f, g. The
complexity of this naive approach can be shown to be
O(|E′|×| F ′|×| F\F ′|), which is considerable.

We now present an alternative approach that is both
simpler to implement and asymptotically faster. The
idea is to construct an auxiliary exponential family
model and to use an elementary property of Jacobian
matrices to reduce the computation to a standard ap-
plication of sum-product in the auxiliary exponential
family.

There is one auxiliary exponential family P [g] for each
((a, b), (s, t)) = g ∈ F\F ′. It is defined on the chain
p1, p2, . . . , pk−1 where pg is as above. We pick its pa-
rameters θ[g] so that the partial derivatives of its par-

This proposition is proved by writing the log partition
function of Q in terms of the following decomposition:

A(ζ) = log

Z
exp{〈ζ(1), φ(1)(x)〉 + . . .

+ 〈ζ(k), φ(k)(x)〉}ν( dx)

=
X

c∈cc(G′)

log

Z
exp〈ζ(c), φ(c)(x)〉ν( dx)

=
X

c∈cc(G′)

A(c)(ζ(c)),

valid for any ζ ∈ Ξ. We therefore have:

∇A(ζ) =

0

B@
∇A1(ζ1)

...
∇Ak(ζk).
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Now plug in ζ(c) = ω(c) + J (c)(τ )ϑ.

3.3 Optimization of v-acyclic components

Suppose now that connected component G′(c) is v-
acyclic. We show how entries in the embedding Ja-
cobian J (c)(τ ) can be computed in constant time in
this case.

Recall that we have:

J (c)
f,g(τ ) =

∂

∂τf
E[φg(Y τ )],

where f ∈ F ′(c), g ∈ F\F ′.

Since g ∈ F\F ′, we must have g = (e, (s, t)) for some
e = (a, b) ∈ E\E′ and s, t ∈ X 2. Therefore:

J (c)
f,g(τ ) =

∂

∂τf
P(Ya = s, Yb = t),

where Y µ = (Y1, . . . , Ym).

There are three subcases to consider:

1. Exactly one of the vertices a, b belongs to V (c):
Suppose a ∈ V (c), b /∈ V (c). Since a, b are
in different connected components, then by the
Hammersley-Clifford theorem they are indepen-
dent, so that:

J (c)
f,g(τ ) =

∂

∂τf
P(Ya = s)P(Yb = t)

=
∂

∂τf
τa,sτb,t

= τb,t × 1[f = (a, s)]

2. Both a and b belong to V (c): We claim that this
cannot, in fact, occur in v-acyclic components.
Suppose the contrary: since a, b belong to the
same connected component, there is a path be-
tween a and b. This means that E′(c) ∪ {(a, b)}
has a cycle, a contradiction.

3. Neither a nor b belong to V (c): In this case
Jf,g(τ ) = 0.

Hence the number of nonzero entries in J (c) is equal to
the number of edges in E\E′ that have an endpoint in
V (c) and each entry is a quantity that does not depend
on τ (c). This shows that:

Proposition 5 The right hand side of the equation

τ (c) = ∇A(c)
(
ω(c) + J (c)(τ (1), · · · , τ (k))ϑ

)

does not depend on τ (c). It is hence possible to opti-
mize exactly in time O(|F ′(c)|) the block of coordinates
τ (c) while keeping the values of the other blocks fixed.1

An interesting property of this coordinate ascent al-
gorithm is that it is guaranteed to converge to a local
optimum (Wainwright and Jordan 2008). This can be
seen from Equation (6) by using the fact that the orig-
inal problem in Equation (4) is convex.

3.4 Relation to Gibbs sampling

Before moving to the b-acyclic case, we draw a paral-
lel between block Gibbs sampling and structured mean
field approximations in the case in which all connected
components G′(c) are v-acyclic. This connection gen-
eralizes the classical relationship between naive Gibbs
sampling steps and naive mean field coordinate ascent
updates.

Recall that for binary random variables Xs with cou-
pling weights θs,s′ and observation weights θs, the
naive Gibbs sampler is defined as the Markov chain
X(1),X(2), . . . where only coordinate st is resampled
at time t with transition probabilities:

Xst(t)
∣∣∣X(t− 1) ∼

Bernoulli
(
σ
[
θst +

∑

s′∈N(st)

θs′,stXs′(t− 1)
])

,

where σ(x) = {1+exp(−x)}−1. This closely resembles
the naive mean field coordinate updates:

µst(t)← σ
[
θst +

∑

s′∈N(st)

θs′,stµs′(t− 1)
]
.

Now the parallel between block Gibbs sampling and
v-acyclic structured mean fields is the following: let
MRF(P,θ) denote the distribution of Xθ. Then one

1Since we are treating graphical models that have only
pairwise potentials, we drop from now on the quadratic
dependency on the random variable state spaces, |X |2.
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when the family is regular and minimal

of this gain in accuracy, we present a new structure
mean field algorithm based on auxiliary exponential
families.

The notion of v- and b-acyclic subgraphs is different
that the notion of “overlapping cluster” used in the
work on structured mean field by Geiger et al. (2006).
Some v-acyclic graphs have overlapping clusters, some
do not; and moreover, the computational dichotomy
we establish here does not hold if the notion of v- and
b-acyclic subgraphs is replaced by that of overlapping
clusters. Note that other variational approximations
such as Expectation Propagation also have a subgraph
interpretation (Minka and Qi 2003). While this sub-
graph sometimes happens to be b-acyclic, there is no
special distinction between v- and b-acyclic graphical
approximations in the case of Bethe-energy variational
approximations. This is why we focus on mean field
approximations.

The paper is organized as follows. We present a ba-
sic introduction to structured mean field in Section 2.
We then discuss our analysis and algorithmic develop-
ments in Section 3. We present empirical results to
support our claims in Section 4 and we present our
conclusions in Section 5.

2 Background

In this section, we review the principles of mean field
approximation and set the notation. Our exposition
follows the general treatment of variational methods
presented in Wainwright and Jordan (2003) where the
Legendre-Fenchel transformation plays a central role.

2.1 Exponential families

We assume that the random variable under study, Xθ,
has a distribution in a regular exponential family P
in canonical form:

P(Xθ ∈ A) =
∫

A
exp{〈φ(x),θ〉 −A(θ)}ν( dx), (1)

A(θ) = log
∫

exp{〈φ(x),θ〉}ν( dx) (2)

for a sufficient statistics φ : X → Rd, base measure ν
and parameters θ ∈ Ω = {θ ∈ Rd : A(θ) < ∞}.

We will also use the notation Xµ where µ ∈ Rd to
denote a random variable with distribution in P such
that E[φ(Xµ)] = µ. Note that this is well defined
since φ is sufficient for θ.

We are interested in the case in which the distribu-
tion of X factors according to an undirected graph-
ical model on m vertices G = (V,E), i.e. X =
(X1, . . . , Xm), X = Xm. For simplicity of notation we

focus on the case in which the interactions are pairwise
and the base measure is discrete. However, the ideas
apply directly to the general exponential family—this
will be discussed in more detail in Section 3.

Let F = (V ×X )∪(E×X 2) be the index set for the co-
ordinates of φ (the potentials). If e = (a, b) ∈ E, then
it is understood that the following inclusion holds on
the induced sigma-algebra: σ(φe,·(X)) ⊇ σ(Xa, Xb).
Similarly, if v ∈ V , σ(φv,·(X)) ⊇ σ(Xa). We lose no
generality by requiring existence of potentials for all
vertices and edges, since we can always set their cor-
responding parameter to zero.

2.2 Convex duality

A simple but fundamental property of exponential
families is that the gradient and Hessian of the log
partition function have the following forms:

∇A(θ) = E[φ(Xθ)]
H(A(θ)) = Var[φ(Xθ)]. (3)

The second identity implies convexity, which we can
use in conjunction with the Legendre-Fenchel trans-
formation to establish an alternative form for A.

Definition 1 For an extended real-valued function f ,
the Legendre-Fenchel transformation is defined as:

f∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f∗∗,
we can use convexity of A to obtain:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ M }, (4)

where M = ∇A(Θ) is the set of realizable moments.

Formulation (4) is no more tractable than the defini-
tion of A in Equation (2): the term A∗(µ), which can
be shown to be equal to the negative of the entropy
−Hν(Xµ) (Wainwright and Jordan 2008) cannot be
computed efficiently for arbitrary µ. Hence, the objec-
tive function cannot be evaluated efficiently. On the
other hand, Equation (4) is a constrained optimization
problem that can be relaxed. Mean field methods can
be seen as a particular type of relaxation where the
sup is taken over a proper subset of M . In particu-
lar, the sup is taken over a subset of M for which the
objective function and its gradient can be evaluated
efficiently.

2.3 Graphical mean-field relaxations

In order to define this relaxation, the user needs to
provide a subset of the principal exponential family,
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M = {µ ∈ RD : ∃θ ∈ Θ s.t. E[φ(Xθ)] = µ}

θ ∈ Θ ⊆ RD

Step 2: Relax the optimization problem using a subset of the initial 
exponential family (defined by a subgraph)

ω ∈ Ξ ⊆ RdY ω
Tractable r.v. Tractable parameters

Subgraph

Q ⊂ P, in which the log partition and moments can
be computed.

An intuitively appealing approach to making this se-
lection is to make use of the graphical representation
of the exponential family and to choose a subset of the
edges, E′ ⊂ E, to represent a tractable subfamily. In
particular, in defining this subfamily we retain only
the potentials with indices

F ′ = {f ∈ F :f = (v, ·) for v ∈ V or
f = (e, ·) for e ∈ E′}.

The subgraph G′ = (V,E′) is generally taken to be
acyclic so that inference in the induced subfamily Q
is indeed tractable.

We denote the parameters indexing this subfamily by
ω ∈ Ξ and its moments by τ . Also we let Y denote a
generic random variable that has a distribution in Q.
The subfamily induces a tractable subset MMF ⊆ M
of moments in M :

MMF =
{

µ ∈ M : ∃ω ∈ Ξ s.t. E[φ(Y ω)] = µ
}

,

which in turn induces a tractable relaxation:

Â(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ MMF}. (5)

Indeed, for all µ ∈ MMF, A∗(µ) amounts to computing
the entropy of a forest-shaped graphical model:

Hν(Y ) =
∑

i∈cc(G′)

{
Hν(Yi) +

∑

j:j $=i∼j

Hν(Yj |Ypa(j))
}

.

Note that Â(θ) ≤ A(θ), which is a very useful property
when mean-field inference is used in the inner loop
of EM (Wainwright and Jordan 2008). Moreover, if
E′′ ⊆ E′, with associated mean field approximation
Ă(θ), then Ă(θ) ≤ Â(θ) ≤ A(θ).

As a consequence, adding edges in G′ = (V,E′) can
only increase the quality of the global optimum. This
does not imply that the local optimum found by the
optimization procedure will always be superior, but
we show in the experimental section that empirically
there is indeed an improvement when edges are added
to the approximation.

We also let N denote the set of realizable moments of
Q. Note that this set is formally distinct from MMF

(in particular, its elements have different dimensional-
ity).

By construction, it will be possible to perform the op-
timization over variables in Rd′

, where d′ = |F ′|. To
see why, let us define an embedding Γ : Rd′ → R∆d

(∆d = d− d′) as follows: for f ∈ F\F ′,

Γf (τ ) = E[φf (Y τ )].

We can then write the fundamental equation of mean-
field approximation:

sup{〈θ,µ〉 −A∗(µ) : µ ∈ MMF} =
sup{〈ω, τ 〉+ 〈ϑ,Γ(τ )〉 −A∗(τ ) : τ ∈ N }, (6)

where θ = (ω,ϑ). Note the slight abuse of notation:
we use A to denote the partition function of both ex-
ponential families; the notation can always be disam-
biguated by inspecting the dimensionality of the pa-
rameter vector.

The right-hand side of Equation (6) makes it clear that
the mean field optimization problem is different than
performing inference in Q, the latter being:

sup{〈ω, τ 〉 −A∗(τ ) : τ ∈ N }.

In particular, the function Γ on the right-hand side
of Equation (6) is generally non-convex. The precise
form of Γ will be established shortly.

The left-hand side of Equation (6) gives another per-
spective on the mean-field optimization problem: here
we have a convex objective, but the optimization is
over a non-convex set (Wainwright and Jordan 2008).

Note that Equation (6) allows us to perform the opti-
mization in the smaller space Rd′

; this is a key algo-
rithmic consequence of the mean-field approximation.

2.4 Generic fixed point updates

Let G(τ ) = 〈ω, τ 〉+〈ϑ,Γ(τ )〉−A∗(τ ). We take partial
derivatives to obtain stationary point conditions. By
the definition of Γ:

∂G

∂τf
(τ ) = ωf +

∑

g∈F\F ′

ϑg
∂Γg

∂τf
(τ )− ∂A∗

∂τi
(τ )

where f ∈ F ′.

It will be useful to represent this update in vector no-
tation; for this purpose, we introduce the following
definition.

Definition 2 The embedding Jacobian is the (trans-
posed) Jacobian matrix of Γ:

J =
(∂Γg

∂τf

)

f,g

for f ∈ F ′, g ∈ F\F ′.

With this definition, we obtain the concise expression:

∇G = ω + Jϑ−∇A∗.

A necessary condition for optimality is therefore:

∇A∗ = ω + Jϑ (7)

Q ⊂ P, in which the log partition and moments can
be computed.

An intuitively appealing approach to making this se-
lection is to make use of the graphical representation
of the exponential family and to choose a subset of the
edges, E′ ⊂ E, to represent a tractable subfamily. In
particular, in defining this subfamily we retain only
the potentials with indices

F ′ = {f ∈ F :f = (v, ·) for v ∈ V or
f = (e, ·) for e ∈ E′}.

The subgraph G′ = (V,E′) is generally taken to be
acyclic so that inference in the induced subfamily Q
is indeed tractable.

We denote the parameters indexing this subfamily by
ω ∈ Ξ and its moments by τ . Also we let Y denote a
generic random variable that has a distribution in Q.
The subfamily induces a tractable subset MMF ⊆ M
of moments in M :

MMF =
{

µ ∈ M : ∃ω ∈ Ξ s.t. E[φ(Y ω)] = µ
}

,

which in turn induces a tractable relaxation:

Â(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ MMF}. (5)

Indeed, for all µ ∈ MMF, A∗(µ) amounts to computing
the entropy of a forest-shaped graphical model:

Hν(Y ) =
∑

i∈cc(G′)

{
Hν(Yi) +

∑

j:j $=i∼j

Hν(Yj |Ypa(j))
}

.

Note that Â(θ) ≤ A(θ), which is a very useful property
when mean-field inference is used in the inner loop
of EM (Wainwright and Jordan 2008). Moreover, if
E′′ ⊆ E′, with associated mean field approximation
Ă(θ), then Ă(θ) ≤ Â(θ) ≤ A(θ).

As a consequence, adding edges in G′ = (V,E′) can
only increase the quality of the global optimum. This
does not imply that the local optimum found by the
optimization procedure will always be superior, but
we show in the experimental section that empirically
there is indeed an improvement when edges are added
to the approximation.

We also let N denote the set of realizable moments of
Q. Note that this set is formally distinct from MMF

(in particular, its elements have different dimensional-
ity).

By construction, it will be possible to perform the op-
timization over variables in Rd′

, where d′ = |F ′|. To
see why, let us define an embedding Γ : Rd′ → R∆d

(∆d = d− d′) as follows: for f ∈ F\F ′,

Γf (τ ) = E[φf (Y τ )].

We can then write the fundamental equation of mean-
field approximation:

sup{〈θ,µ〉 −A∗(µ) : µ ∈ MMF} =
sup{〈ω, τ 〉+ 〈ϑ,Γ(τ )〉 −A∗(τ ) : τ ∈ N }, (6)

where θ = (ω,ϑ). Note the slight abuse of notation:
we use A to denote the partition function of both ex-
ponential families; the notation can always be disam-
biguated by inspecting the dimensionality of the pa-
rameter vector.

The right-hand side of Equation (6) makes it clear that
the mean field optimization problem is different than
performing inference in Q, the latter being:

sup{〈ω, τ 〉 −A∗(τ ) : τ ∈ N }.

In particular, the function Γ on the right-hand side
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; this is a key algo-
rithmic consequence of the mean-field approximation.
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posed) Jacobian matrix of Γ:

J =
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Definition: an acyclic subgraph with edges E' ⊆ E is ...

• v-acyclic, if for all e ∈ E, E′ ∪{e} is still acyclic

• b-acyclic, otherwise
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Relation to block Gibbs sampling
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Figure 4: Error in the partition function estimate as a
function of the running time in milliseconds (abscissa
in a log scale) for three algorithms: naive mean field
(NMF), v-acyclic structured mean field (SMF1) and
b-acyclic mean field (SMF2).

where using the more expensive b-acyclic approxima-
tion pays off.

We also performed timing experiments to compare the
convergence behavior of the mean field approximations
SMF1 and SMF2. As a baseline, we ran the naive
mean field (curve NMF on the graph). The results are
displayed in Figure 4. We can see that in this model it
takes one order of magnitude more time to move from
naive mean field to v-acyclic structured mean field,
and two orders of magnitude more time to move from
v-acyclic to b-acyclic structured mean field approxima-
tions. This is consistent with the theoretical results
developed in Section 3. Moreover, the bound on the
log partition function gets tighter as more edges are
added to the tractable subgraph.

5 Conclusion

We have characterized a dichotomy in the complexity
of optimizing structure mean field approximations of
graphical, exponential family models. The first class
allows efficient block updates while the second is com-
putationally more challenging. While most tractable
subgraphs studied in the existing literature have fallen
in the first category, we have presented theoretical and
empirical reasons to expand the scope of the structured
mean field method to consider the second category.
We also presented a novel algorithm for computing
the gradient and bound on the log-partition function
in the b-acyclic case.

References

D. Barber and W. Wiegerinck. Tractable variational struc-
tures for approximating graphical models. In Advances
in Neural Information Processing Systems, pages 183–
189, Cambridge, MA, 1999. MIT Press.

D. M. Blei and M. I. Jordan. Variational inference for
Dirichlet process mixtures. Bayesian Analysis, 1:121–
144, 2005.

N. De Freitas, P. Hojen-Sorensen, M. I. Jordan, and S. Rus-
sell. Variational MCMC. In Proceedings of the Seven-
teenth Conference on Uncertainty in Artificial Intelli-
gence, San Mateo, CA, 2001. Morgan Kaufmann.

D. Geiger, C. Meek, and Y. Wexler. A variational infer-
ence procedure allowing internal structure for overlap-
ping clusters and deterministic constraints. Journal of
Artificial Intelligence Research, 27:1–23, 2006.

A. Globerson and T. Jaakkola. Approximate inference us-
ing planar graph decomposition. In Advances in Neural
Information Processing Systems, Cambridge, MA, 2006.
MIT Press.

G. Hua and Y. Wu. Sequential mean field variational anal-
ysis of structured deformable shapes. Computer Vision
and Image Understanding, 101:87–99, 2006.

J. B. Lasserre. Global optimization with polynomials and
the problem of moments. SIAM Journal on Optimiza-
tion, 11:796–817, 2000.

T. Minka and Y. Qi. Tree-structured approximations by
expectation propagation. In Advances in Neural Infor-
mation Processing Systems, Cambridge, MA, 2003. MIT
Press.

C. Peterson and J. R. Anderson. A mean field theory learn-
ing algorithm for neural networks. Complex Systems, 1:
995–1019, 1987.

L. K. Saul and M. I. Jordan. Exploiting tractable sub-
structures in intractable networks. In Advances in Neu-
ral Information Processing Systems 8, pages 486–492,
Cambridge, MA, 1996. MIT Press.

M. J. Wainwright and M. I. Jordan. Variational inference in
graphical models: The view from the marginal polytope.
In Forty-first Annual Allerton Conference on Communi-
cation, Control, and Computing, 2003.

M. J. Wainwright and M. I. Jordan. Log-determinant re-
laxation for approximate inference in discrete Markov
random fields. IEEE Transactions on Signal Processing,
54:2099–2109, 2006.

M. J. Wainwright and M. I. Jordan. Graphical models,
exponential families, and variational inference. Founda-
tions and Trends in Machine Learning, 1:1–305, 2008.

W. Wiegerinck. Variational approximations between mean
field theory and the junction tree algorithm. In Pro-
ceedings of the Sixteenth Conference on Uncertainty in
Artificial Intelligence, pages 626–633, San Mateo, CA,
2000. Morgan Kaufmann.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. General-
ized belief propagation. In Advances in Neural Infor-
mation Processing Systems, pages 689–695, Cambridge,
MA, 2001. MIT Press.

10
0

10
1

10
2

10
3

10
4

0

2

4

6

8

10

12

14

16

18

20

Time

E
rr
o
r

SMF1

NMF

SMF2

Figure 4: Error in the partition function estimate as a
function of the running time in milliseconds (abscissa
in a log scale) for three algorithms: naive mean field
(NMF), v-acyclic structured mean field (SMF1) and
b-acyclic mean field (SMF2).

where using the more expensive b-acyclic approxima-
tion pays off.

We also performed timing experiments to compare the
convergence behavior of the mean field approximations
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Form of J :

can check easily that the block Gibbs sampler with
blocks V (1), . . . , V (k) has a transition kernel given by:

X(ct)(t)
∣∣∣X(t− 1) ∼

MRF
(
P ′(ct),ω(ct) + B(ct)(X(t− 1))ϑ

)
,

where B is the matrix defined as follows:

B(c)
f,g(X(t− 1)) =1[f = (a, s)]×

1[|{a, b} ∩ V (c)| = 1]×
1[Xb(t− 1) = s],

and where f ∈ F ′(c), g ∈ F\F ′ and ((a, b), (s, t)) = g.

Note that the sparsity pattern of B follows that
of J . Moreover, the complexity of sampling from
MRF(P ′(c), ·) is the same (up to a multiplicative con-
stant) as the complexity of computing ∇A(c)(·). Both
require executing sum-product on the same tree.

This parallel breaks when one or several of the con-
nected components is b-acyclic. In this case there is
no corresponding tractable block Gibbs sampler, while
(as we discuss in the following section) mean field is
still tractable albeit at a computational cost higher
than in the v-acyclic case.

3.5 Optimization of b-acyclic components

We now turn to the case of structured mean field when
there are b-acyclic components.

To simplify the notation we assume that there is a
single b-acyclic component that spans the entire graph
G. The derivation is essentially identical when there
are several connected components.

The quantity to compute is:

Jf,g(τ ) =
∂

∂τf
P(Ya = s, Yb = t),

where this time the probability on the right-hand side
cannot be decoupled into a product of marginals. Let

pg = {a = p0, p1, . . . , pk = b : ∀i, (pi, pi+1) ∈ E′}

denote the shortest path in G′ from a to b (see Fig-
ure 2).
If we let y0 = s, yk = t, we have:

Jf,g(τ ) =
∂

∂τf

X

y1∈X

· · ·
X

yk−1∈X

P(Ypi = yi, ∀i ∈ {1, . . . k})

=
∂

∂τf
P(Ya = s)

X

y1∈X

P(Yp1 = y1|Yp0 = y0)
X

y2∈X

· · ·

=
∂

∂τf
τa,s

X

y1∈X

τ(p0,p1),(y0,y1)

τp0,y0

X

y2∈X

· · ·

Yb 

Ya 
p
0 

p
1 ...

pk

Figure 2: An example of the notation used in this
section. This corresponds to the inference problem in
the mean field subgraph in Figure 1, left column, bot-
tom row. The box indicate which nodes are involved in
the auxiliary exponential family P [g] used to compute
Jf,g for all f . The edges in the path pg are in bold
and the edge corresponding to g is the bold dashed
line between Ya and Yb.

From this expansion, we see immediately that Jf,g(τ )
will not have the same sparsity properties as in the
v-acyclic case.
One way to find these partial derivatives is to con-
struct a specialized dynamic programming algorithm.
This task is non-trivial: to see why, notice that when
the partial derivative is taken with respect to a coordi-
nate τf corresponding to an edge in the path pg, there
are factors τf that appear both in the numerator and
denominator:

Jf,g(τ ) =
∂

∂τf

n“ X

s′

τ(a,p1),(s,s′)

” X

y1∈X

τ(p0,p1),(y0,y1)` P
s′ τ(p0,p1),(y0,s′)

´

×
X

y2∈X

· · ·
X

yk−1∈X

τ(pk−2,pk−1),(yk−2,yk−1)` P
s′ τ(pk−2,pk−1),(yk−2,s′)

´

×
τ(pk−1,pk),(yk−1,yk)` P
s′ τ(pk−1,pk),(yk−1,s′)

´
o

The task is thus more complex than that of creating
a dynamic programming algorithm of the type used
for sum-product. A chain rule would need to be used,
changing the form of the recursion for each f, g. The
complexity of this naive approach can be shown to be
O(|E′|×| F ′|×| F\F ′|), which is considerable.

We now present an alternative approach that is both
simpler to implement and asymptotically faster. The
idea is to construct an auxiliary exponential family
model and to use an elementary property of Jacobian
matrices to reduce the computation to a standard ap-
plication of sum-product in the auxiliary exponential
family.

There is one auxiliary exponential family P [g] for each
((a, b), (s, t)) = g ∈ F\F ′. It is defined on the chain
p1, p2, . . . , pk−1 where pg is as above. We pick its pa-
rameters θ[g] so that the partial derivatives of its par-
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no corresponding tractable block Gibbs sampler, while
(as we discuss in the following section) mean field is
still tractable albeit at a computational cost higher
than in the v-acyclic case.

3.5 Optimization of b-acyclic components

We now turn to the case of structured mean field when
there are b-acyclic components.

To simplify the notation we assume that there is a
single b-acyclic component that spans the entire graph
G. The derivation is essentially identical when there
are several connected components.

The quantity to compute is:

Jf,g(τ ) =
∂

∂τf
P(Ya = s, Yb = t),

where this time the probability on the right-hand side
cannot be decoupled into a product of marginals. Let

pg = {a = p0, p1, . . . , pk = b : ∀i, (pi, pi+1) ∈ E′}

denote the shortest path in G′ from a to b (see Fig-
ure 2).
If we let y0 = s, yk = t, we have:

Jf,g(τ ) =
∂

∂τf

X

y1∈X

· · ·
X

yk−1∈X

P(Ypi = yi, ∀i ∈ {1, . . . k})

=
∂

∂τf
P(Ya = s)

X

y1∈X

P(Yp1 = y1|Yp0 = y0)
X

y2∈X

· · ·

=
∂

∂τf
τa,s

X

y1∈X

τ(p0,p1),(y0,y1)

τp0,y0

X

y2∈X

· · ·

Yb 

Ya 
p
0 

p
1 ...
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Figure 2: An example of the notation used in this
section. This corresponds to the inference problem in
the mean field subgraph in Figure 1, left column, bot-
tom row. The box indicate which nodes are involved in
the auxiliary exponential family P [g] used to compute
Jf,g for all f . The edges in the path pg are in bold
and the edge corresponding to g is the bold dashed
line between Ya and Yb.

From this expansion, we see immediately that Jf,g(τ )
will not have the same sparsity properties as in the
v-acyclic case.
One way to find these partial derivatives is to con-
struct a specialized dynamic programming algorithm.
This task is non-trivial: to see why, notice that when
the partial derivative is taken with respect to a coordi-
nate τf corresponding to an edge in the path pg, there
are factors τf that appear both in the numerator and
denominator:

Jf,g(τ ) =
∂

∂τf

n“ X

s′

τ(a,p1),(s,s′)

” X

y1∈X

τ(p0,p1),(y0,y1)` P
s′ τ(p0,p1),(y0,s′)

´

×
X

y2∈X

· · ·
X

yk−1∈X

τ(pk−2,pk−1),(yk−2,yk−1)` P
s′ τ(pk−2,pk−1),(yk−2,s′)

´

×
τ(pk−1,pk),(yk−1,yk)` P
s′ τ(pk−1,pk),(yk−1,s′)

´
o

The task is thus more complex than that of creating
a dynamic programming algorithm of the type used
for sum-product. A chain rule would need to be used,
changing the form of the recursion for each f, g. The
complexity of this naive approach can be shown to be
O(|E′|×| F ′|×| F\F ′|), which is considerable.

We now present an alternative approach that is both
simpler to implement and asymptotically faster. The
idea is to construct an auxiliary exponential family
model and to use an elementary property of Jacobian
matrices to reduce the computation to a standard ap-
plication of sum-product in the auxiliary exponential
family.

There is one auxiliary exponential family P [g] for each
((a, b), (s, t)) = g ∈ F\F ′. It is defined on the chain
p1, p2, . . . , pk−1 where pg is as above. We pick its pa-
rameters θ[g] so that the partial derivatives of its par-

Technique: auxiliary exponential families

For fixed g, construct an exponential families such that its partition 
function satisfies:tition function coincide with the quantity of interest:

Z [g]`θ[g]´ =
X

x∈Xk−1

exp{〈φ(x), θ[g]〉}

=
“ X

s′

τ(a,p1),(s,s′)

” X

y1∈X

τ(p0,p1),(y0,y1)` P
s′ τ(p0,p1),(y0,s′)

´

×
X

y2∈X

· · ·
X

yk−1∈X

τ(pk−2,pk−1),(yk−2,yk−1)` P
s′ τ(pk−2,pk−1),(yk−2,s′)

´

×
τ(pk−1,pk),(yk−1,yk)` P
s′ τ(pk−1,pk),(yk−1,s′)

´

One can check that this is achieved with the following
choice:

θ[g]
h =

8
><

>:

log τh − log τv,x + log τ(a,v),(s,x) if v = p0

log τh − log τv,x

+ log τ(pk−1,b),(y,t) − log τw,y if w = pk−1

log τh − log τv,x otherwise

where h = ((v, w), (x, y)), (v, w) ∈ pg, (x, y) ∈ X 2.

Using Equation (3), we have for all h = ((v, w), (x, y)),
(v, w) ∈ pg, (x, y) ∈ X 2:

∂Z [g]

∂θ[g]
h

= Z [g] × ∂A[g]

∂θ[g]
h

= Z [g] × µ[g]
h ,

where A[g] = log Z [g]. This shows that one execution of
sum-product at the cost of O(|pg|) yields |F ′| entries.

Next, we define the following two Jacobian matrices:

I =
(∂Z [g]

∂θ[g]
h

)

g,h
; K =

(∂θ[g]
h

∂τf

)

h,f

where I has size |F\F ′|×N and K has size N × |F ′|,
N =

∑
g∈F\F ′ |pg|.

We can finally derive an expression for J , using the
generalization of the chain rule for Jacobian matrices:
J = KT IT .

After carrying this matrix multiplication, we obtain:

Proposition 6 When G′ is b-acyclic, the embedding
Jacobian has the form:

Jf,g(τ ) = Z [g] ×

8
>>><

>>>:

µ
[g]
w,y

τf
× 1[x = s] if v = p0

µ[g]
v,x ×

˘1[y=t]
τf

− 1
τv,x

¯
if w = pk−1

µ
[g]
f

τf
− µ

[g]
v,x

τv,x
otherwise

where f = ((v, w), (x, y)) is such that (v, w) ∈ pg;
otherwise, Jf,g is equal to zero.

The total cost of computing J is O(|E′| × |F\F ′|),
which is larger than the cost derived in the v-acyclic
case, but smaller than the naive dynamic programming
algorithm mentioned at the beginning of this subsec-
tion.
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Figure 3: Error in the partition function estimate as
a function of the temperature of the model. SMF2
corresponds to a mean field approximation with more
edges in G′ than SMF1: SMF1 is v-acyclic while
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4 Experiments

We performed experiments on the 9× 9 Ising model:

φ((xi,j)i,j∈{1,...,9}2) =
9X

j=1

8X

i=1

n
xi,jxi+1,j + xj,ixj,i+1

o
,

with θ! = 1
T , where T is the temperature parameter

as used in statistical physics. In this model, the parti-
tion function and moments can be computed exactly
so that absolute errors can be established.

We used the updates of Proposition 5 when the
tractable subgraph was v-acyclic and used the fixed
point updates of Proposition 6 in the b-acyclic cases.
Before performing the experiments, we verified empir-
ically using directional derivatives that the updates
that we have derived are error-free.

Since the computations in the b-acyclic case are more
expensive, we first verified that they result in substan-
tial gains in accuracy. For this purpose, we compared
the following structured mean field approximations:

SMF1 the approximation based on a v-acyclic sub-
graph with the smallest number of connected com-
ponents possible (Figure 1, middle, left),

SMF2 the approximation based on the graph shown
in Figure 1, left column, bottom row—a b-acyclic
subgraph.

In Figure 3 we show the results of this comparison at
different temperatures. We see that there is indeed a
regime, in this case around the phase transition point,

Why? We can get all the derivatives of the log-partition function in 
one shot using sum-product

tition function coincide with the quantity of interest:

Z [g]`θ[g]´ =
X

x∈Xk−1

exp{〈φ(x), θ[g]〉}

=
“ X

s′

τ(a,p1),(s,s′)

” X

y1∈X

τ(p0,p1),(y0,y1)` P
s′ τ(p0,p1),(y0,s′)

´

×
X

y2∈X

· · ·
X

yk−1∈X

τ(pk−2,pk−1),(yk−2,yk−1)` P
s′ τ(pk−2,pk−1),(yk−2,s′)

´

×
τ(pk−1,pk),(yk−1,yk)` P
s′ τ(pk−1,pk),(yk−1,s′)

´

One can check that this is achieved with the following
choice:

θ[g]
h =

8
><

>:

log τh − log τv,x + log τ(a,v),(s,x) if v = p0

log τh − log τv,x

+ log τ(pk−1,b),(y,t) − log τw,y if w = pk−1

log τh − log τv,x otherwise

where h = ((v, w), (x, y)), (v, w) ∈ pg, (x, y) ∈ X 2.

Using Equation (3), we have for all h = ((v, w), (x, y)),
(v, w) ∈ pg, (x, y) ∈ X 2:

∂Z [g]

∂θ[g]
h

= Z [g] × ∂A[g]

∂θ[g]
h

= Z [g] × µ[g]
h ,

where A[g] = log Z [g]. This shows that one execution of
sum-product at the cost of O(|pg|) yields |F ′| entries.

Next, we define the following two Jacobian matrices:

I =
(∂Z [g]

∂θ[g]
h

)

g,h
; K =

(∂θ[g]
h

∂τf

)

h,f

where I has size |F\F ′|×N and K has size N × |F ′|,
N =

∑
g∈F\F ′ |pg|.

We can finally derive an expression for J , using the
generalization of the chain rule for Jacobian matrices:
J = KT IT .

After carrying this matrix multiplication, we obtain:

Proposition 6 When G′ is b-acyclic, the embedding
Jacobian has the form:

Jf,g(τ ) = Z [g] ×

8
>>><

>>>:

µ
[g]
w,y

τf
× 1[x = s] if v = p0

µ[g]
v,x ×

˘1[y=t]
τf

− 1
τv,x

¯
if w = pk−1

µ
[g]
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τf
− µ

[g]
v,x

τv,x
otherwise

where f = ((v, w), (x, y)) is such that (v, w) ∈ pg;
otherwise, Jf,g is equal to zero.

The total cost of computing J is O(|E′| × |F\F ′|),
which is larger than the cost derived in the v-acyclic
case, but smaller than the naive dynamic programming
algorithm mentioned at the beginning of this subsec-
tion.
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a function of the temperature of the model. SMF2
corresponds to a mean field approximation with more
edges in G′ than SMF1: SMF1 is v-acyclic while
SMF2 is not. See text for more details.

4 Experiments

We performed experiments on the 9× 9 Ising model:

φ((xi,j)i,j∈{1,...,9}2) =
9X

j=1

8X

i=1

n
xi,jxi+1,j + xj,ixj,i+1

o
,

with θ! = 1
T , where T is the temperature parameter

as used in statistical physics. In this model, the parti-
tion function and moments can be computed exactly
so that absolute errors can be established.

We used the updates of Proposition 5 when the
tractable subgraph was v-acyclic and used the fixed
point updates of Proposition 6 in the b-acyclic cases.
Before performing the experiments, we verified empir-
ically using directional derivatives that the updates
that we have derived are error-free.

Since the computations in the b-acyclic case are more
expensive, we first verified that they result in substan-
tial gains in accuracy. For this purpose, we compared
the following structured mean field approximations:

SMF1 the approximation based on a v-acyclic sub-
graph with the smallest number of connected com-
ponents possible (Figure 1, middle, left),

SMF2 the approximation based on the graph shown
in Figure 1, left column, bottom row—a b-acyclic
subgraph.

In Figure 3 we show the results of this comparison at
different temperatures. We see that there is indeed a
regime, in this case around the phase transition point,
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Figure 4: Error in the partition function estimate as a
function of the running time in milliseconds (abscissa
in a log scale) for three algorithms: naive mean field
(NMF), v-acyclic structured mean field (SMF1) and
b-acyclic mean field (SMF2).

where using the more expensive b-acyclic approxima-
tion pays off.

We also performed timing experiments to compare the
convergence behavior of the mean field approximations
SMF1 and SMF2. As a baseline, we ran the naive
mean field (curve NMF on the graph). The results are
displayed in Figure 4. We can see that in this model it
takes one order of magnitude more time to move from
naive mean field to v-acyclic structured mean field,
and two orders of magnitude more time to move from
v-acyclic to b-acyclic structured mean field approxima-
tions. This is consistent with the theoretical results
developed in Section 3. Moreover, the bound on the
log partition function gets tighter as more edges are
added to the tractable subgraph.

5 Conclusion

We have characterized a dichotomy in the complexity
of optimizing structure mean field approximations of
graphical, exponential family models. The first class
allows efficient block updates while the second is com-
putationally more challenging. While most tractable
subgraphs studied in the existing literature have fallen
in the first category, we have presented theoretical and
empirical reasons to expand the scope of the structured
mean field method to consider the second category.
We also presented a novel algorithm for computing
the gradient and bound on the log-partition function
in the b-acyclic case.
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Adding edges improves the 
quality of the approximation

Using a b-acyclic subgraph is 
significantly more expensive

D = #      vertex X #{0,1} + #      edges X #{00,01,10,11}

Properties of A(θ)

∇A∗ = ∇A−1

Hammersley-Clifford Theorem

Consequence: if a, b belong to 
different cliques, 

Y a ⊥⊥ Y b

Chain rule for Jacobian matrices

tition function coincide with the quantity of interest:

Z [g]`θ[g]´ =
X

x∈Xk−1

exp{〈φ(x), θ[g]〉}

=
“ X

s′

τ(a,p1),(s,s′)

” X

y1∈X

τ(p0,p1),(y0,y1)` P
s′ τ(p0,p1),(y0,s′)

´
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X
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· · ·
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yk−1∈X

τ(pk−2,pk−1),(yk−2,yk−1)` P
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s′ τ(pk−1,pk),(yk−1,s′)

´

One can check that this is achieved with the following
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>:

log τh − log τv,x + log τ(a,v),(s,x) if v = p0

log τh − log τv,x

+ log τ(pk−1,b),(y,t) − log τw,y if w = pk−1

log τh − log τv,x otherwise

where h = ((v, w), (x, y)), (v, w) ∈ pg, (x, y) ∈ X 2.

Using Equation (3), we have for all h = ((v, w), (x, y)),
(v, w) ∈ pg, (x, y) ∈ X 2:
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h

= Z [g] × ∂A[g]

∂θ[g]
h

= Z [g] × µ[g]
h ,

where A[g] = log Z [g]. This shows that one execution of
sum-product at the cost of O(|pg|) yields |F ′| entries.

Next, we define the following two Jacobian matrices:

I =
(∂Z [g]

∂θ[g]
h

)

g,h
; K =

(∂θ[g]
h

∂τf

)

h,f

where I has size |F\F ′|×N and K has size N × |F ′|,
N =

∑
g∈F\F ′ |pg|.

We can finally derive an expression for J , using the
generalization of the chain rule for Jacobian matrices:
J = KT IT .

After carrying this matrix multiplication, we obtain:

Proposition 6 When G′ is b-acyclic, the embedding
Jacobian has the form:

Jf,g(τ ) = Z [g] ×

8
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µ
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w,y
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× 1[x = s] if v = p0
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˘1[y=t]
τf

− 1
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¯
if w = pk−1

µ
[g]
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otherwise

where f = ((v, w), (x, y)) is such that (v, w) ∈ pg;
otherwise, Jf,g is equal to zero.

The total cost of computing J is O(|E′| × |F\F ′|),
which is larger than the cost derived in the v-acyclic
case, but smaller than the naive dynamic programming
algorithm mentioned at the beginning of this subsec-
tion.
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4 Experiments

We performed experiments on the 9× 9 Ising model:

φ((xi,j)i,j∈{1,...,9}2) =
9X

j=1

8X

i=1

n
xi,jxi+1,j + xj,ixj,i+1

o
,

with θ! = 1
T , where T is the temperature parameter

as used in statistical physics. In this model, the parti-
tion function and moments can be computed exactly
so that absolute errors can be established.

We used the updates of Proposition 5 when the
tractable subgraph was v-acyclic and used the fixed
point updates of Proposition 6 in the b-acyclic cases.
Before performing the experiments, we verified empir-
ically using directional derivatives that the updates
that we have derived are error-free.

Since the computations in the b-acyclic case are more
expensive, we first verified that they result in substan-
tial gains in accuracy. For this purpose, we compared
the following structured mean field approximations:

SMF1 the approximation based on a v-acyclic sub-
graph with the smallest number of connected com-
ponents possible (Figure 1, middle, left),

SMF2 the approximation based on the graph shown
in Figure 1, left column, bottom row—a b-acyclic
subgraph.

In Figure 3 we show the results of this comparison at
different temperatures. We see that there is indeed a
regime, in this case around the phase transition point,

=⇒ J = KT IT

First result: dichotomy in terms of a graph property, v-acyclic and 
b-acyclic subgraphs

Second result: improved algorithm in the b-acyclic subgraph case

• Adding an edge in the subgraph can only increase quality

• But what is the impact on computational complexity?
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