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Figure 1 The workflow of ddClone. This figure shows the workflow of our method, ddClone. The
ddClone approach is predicated on the notion that single cell sequencing data will inform and
improve clustering of allele fractions derived from bulk sequencing data in a joint statistical model.
ddClone combines a Bayesian non-parametric prior informed by single cell data with a likelihood
model based on bulk sequencing data to infer clonal population architecture. Intuitively, the prior
encourages genomic loci with co-occurring mutations in single cells to cluster together. Using a
cell-locus binary matrix from single cell sequencing, ddClone computes a distance matrix between
mutations using the Jaccard distance with exponential decay. This matrix is then used as a prior
for inference over mutation clusters and their prevalences from deeply sequenced bulk data in a
distance-dependent Chinese restaurant process framework. The output of the model is the most
probable set of clonal genotypes present and the prevalence of each genotype in the population.
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Figure 2 Simulated phylogenetic tree and the resulting binarized cell genotype matrix
Transposed binarized simulated cell genotypes ∆ from Generalized Dollo process over a fixed
phylogeny. The original cell genotype matrix ∆CN is in copy number space. We binarize it by
setting entries with non zero variant allele copy number to one (coloured red) and setting entries
with variant allele copy number of zero to zero (coloured blue). The clonal prevalence of each
genotype is in parenthesis.
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Figure 3 Benchmarking results over simulated data Performance results for ddClone, single cell
only, and bulk data methods on ten synthetic datasets. ddClone and single cell only methods were
provided with single cells, either (i) 50 cells, sampled from a Multinomial distribution with true
genotype prevalences as parameters (labeled ddClone(λ = ∞), OncoNEM(λ = ∞), and
SCITE(λ = ∞)) in absence of doublet and ADO noise, or (ii) 50 cells sampled from a
Dirichlet-multinomial distribution with λ = 10, constituting moderate to small levels of sampling
bias, (labelled as ddClone(λ = 10), OncoNEM(λ = 10), and SCITE(λ = 10), or (iii) 50 cells
sampled from a Dirichlet-multinomial distribution with λ = 1.12, constituting high levels of
sampling bias, (labelled as ddClone(λ = 1.12), OncoNEM(λ = 1.12), and SCITE(λ = 1.12),
where in case of (ii) and (iii), 30% of cells are doublet and rADO = 30%. Panel A shows
V-measure clustering performance. Panel B shows the average over loci of the absolute differences
between the inferred and true cellular prevalences. This result shows that in presence of reasonable
levels of noise, ddClone performs comparably well in terms of both V-measure and the accuracy of
inferred cellular prevalences.
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Figure 4 Performance analysis in presence of sampling distortion Effect of sampling distortion
on V measure index (left) and mean absolute error of cellular prevalences (right) across multiple
values for the total number of single cells (specified on top of each panel). Each box plot
represents 10 simulated datasets each with 10 genotypes and 48 genomic loci. The cells are
sampled from a Dirichlet-multinomial distribution with sample size m ∈ {50, 100, 200, 500, 1000}
and parameters equal to the true prevalence of each genotype scaled by the concentration
coefficient λ. The larger the λ, the closer the Dirichlet-multinomial distribution approximates the
multinomial distribution. At higher values of λ the sampled cells better represent the true
proportions of genotypes. Estimated values of λ for the real datasets are annotated on panel B.
We note that OncoNEM did not converge when number of cells exceeded 100 (boxes marked by a
star). This result suggests that ddClone’s clustering and cellular prevalence estimates are fairly
robust to presence of distorted single cell sampling.
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Figure 5 Performance analysis in presence of doublets Effect of presence of doublets on V
measure index (left) and mean absolute error of cellular prevalences (right) across multiple values
for the total number of single cells (specified as m on top of each panel). Each box plot represents
10 simulated datasets each with 10 genotypes and 48 genomic loci. The cells are sampled from a
multinomial distribution with sample size of m and parameters equal to the true prevalence of
each genotype. Progressively increasing percentage of doublet cells results in minor degrading
performance in cellular prevalence estimate. Overall, this result suggests that ddClone’s cellular
prevalence estimates are robust to presence of uncorrected doublet noise.
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Figure 6 Performance analysis in presence of allele drop outs Effect of presence of allele drop
outs (ADO) on V measure index (left) and mean absolute error of cellular prevalences (right)
across multiple values for the total number of single cells (specified as m on top of each panel).
Each box plot represents 10 simulated datasets each with 10 genotypes and 48 genomic loci. The
cells are sampled from a multinomial distribution with sample size of m and parameters equal to
the true prevalence of each genotype. As expected, progressively increasing the ADO rate results
in degrading performance in both clustering and cellular prevalence estimates. The detrimental
effect dampens as the number of sampled cells increases.
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Figure 7 Performance analysis in presence of loss of multiple genotypes Effect of removing
genotypes on V measure index (left) and mean absolute error of cellular prevalences (right).
Unsurprisingly, progressively removing more cell genotypes (in increasing order of prevalence)
results in monotonically degrading performance However, when as few as approximately half of
the genotypes are available to encode in the prior, ddClone still outperforms the naive methods in
terms of cellular prevalence estimate.
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Figure 8 Genotypes curated for the triple-negative breast cancer data Binary cell genotype
matrices for sample SA494 over 29 genomic loci (left) and sample SA501 over 38 genomic loci
(right). These are manually curated from a single cell genotype sequencing experiment [?]. Briefly,
MrBayes was used to infer a consensus phylogenetic tree over the single nuclei. Then they were
grouped into clades according to high probability branching splits. Finally, each clade was assigned
a consensus genotype by taking the mode genotype of the clade at each genomic locus. Colour
red indicates a mutated locus, while colour blue indicates a non-mutated locus.
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Figure 9 Benchmarking results over TNBC dataset Performance results for ddClone and existing
methods over TNBC SA501 X1, X2, X4, and SA494 T, X4. Panel A shows clustering assignment
performance. Panel B shows cellular prevalence approximation mean absolute error. Evaluated
against multi-sample PyClone, ddClone outperforms the second best performing method
(PyClone) in terms of V-measure (Wilcoxon rank sum test with p-value < 0.05) and performs as
well (SA494, timepoint T) or better (all the other timepoints) than the second best performing
method in terms of accuracy of inferred cellular prevalences.
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Figure 10 Benchmarking results over HGSOvCa dataset Performance results for ddClone and
existing methods over HGSOvCa data, from 3 patients, Patient 2 (P2) at sites Om1, Om2, ROv1,
ROv2, Patients 3 (P3) at sites Adnx1, Om1, Rov1, Rov2, and Patients 9 (P9) at sites LOv1,
LOv2, Om1, Om2, and ROv1. Panel A shows clustering assignment performance. Panel B shows
cellular prevalence approximation mean absolute error. Abbreviations are Om1: Omentum sample
1, Om2: Omentum sample 2, ROv1: Right ovary sample 1, ROv2: Right ovary sample 2, LOv1:
Left ovary sample 1, LOv2: Left ovary sample 2, and Adnx1: Adnexa sample1).
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Figure 11 Analysis results of an acute lymphoblastic leukemia dataset [?] Analysis results of a
patient with ALL (Patient 1) [?]. The variant allele frequencies from the bulk data (panel A, top)
along with the consensus genotypes estimated from the binary cell matrix (panel A, bottom).
These two constitute the input to the ddClone model. We note that the binary cell matrix (B) is
displayed here for comparison and is not an input to ddClone. This binary cell matrix was used in
[?] to cluster the cells into clones (vertical bar at the right side of the figure) and consensus
genotypes (bottom part of panel A). ddClone clusters mutations into 6 groups (panel C, top) and
estimates cellular prevalence (Φ) for each (panel C, bottom). ddClone’s estimated Φ are highly
correlated with the corrected bulk VAFs (R2 = 0.98, also see Additional file 1) suggesting that it
does not introduce unreasonable structure in the data. Furthermore, when there is evidence in the
bulk, it can override its prior and splits clusters as necessary. For instance, even though locus
chr19:40895668 has the same prior genotype as loci in cluster 4, its VAF in the bulk data is 1.5
times that of the mean of loci in cluster 4. This hints at a finer structure in cluster 4 and ddClone
has automatically assigned chr19:40895668 to a separate cluster.
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Figure 12 Hypothesized sitting arrangement in ddCRP/Subpopulation assumptions in the bulk
data A. Induced table sitting T (C) by a particular customer connection configuration C. Bold
arrows show customer connections and dotted arrows point to equivalent table sittings. Since
customer 7 only has a self-loop, the corresponding table has only one customer. B. Our
assumption about clonal architecture in the tumour, with respect to a particular genomic locus. In
this example, normal subpopulation represents a collection of un-mutated diploid cells. Reference
subpopulation comprises cells that have a copy number amplification event, but no single
nucleotide mutations. Variant subpopulation is a collection of cells that have a SNV at the
particular genomic locus.


