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Abstract

Bayesian optimization has recently emerged
as a powerful and flexible tool in machine
learning for hyperparameter tuning and more
generally for the efficient global optimiza-
tion of expensive black box functions. The
established practice requires a user-defined
bounded domain, which is assumed to con-
tain the global optimizer. However, when lit-
tle is known about the probed objective func-
tion, it can be difficult to prescribe such a
domain. In this work, we modify the stan-
dard Bayesian optimization framework in a
principled way to allow for unconstrained ex-
ploration of the search space. We introduce
a new alternative method and compare it to
a volume doubling baseline on two common
synthetic benchmarking test functions. Fi-
nally, we apply our proposed methods on the
task of tuning the stochastic gradient descent
optimizer for both a multi-layered perceptron
and a convolutional neural network on the
MNIST dataset.

1 Introduction

Since the technique was introduced over 50 years
ago, Bayesian optimization has been applied to op-
timize black box objective functions in many dif-
ferent application domains. Perhaps the most rel-
evant use-case in machine learning is the tun-
ing of hyperparameters of computationally ex-
pensive models and algorithms [Bergstra et al.,
2011, Mahendran et al., 2012, Snoek et al., 2012,
Swersky et al., 2013, Hoffman et al., 2014]. However,
the current state of the art requires the user to pre-
scribe a bounded domain within which to search for
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the optimum. Unfortunately, setting these bounds—
often done arbitrarily—is one of the main difficulties
hindering the broader use of Bayesian optimization as
a standard framework for hyperparameter tuning. For
example, this obstacle was raised at the NIPS 2014
Workshop on Bayesian optimization as one of the open
challenges in the field.

In the present work, we compare two methods that are
capable of growing the search space as the optimiza-
tion progresses. The first is a simple heuristic, based
on an existing idea in optimization, which regularly
doubles the volume of the search space throughout the
procedure. Meanwhile, the second is a regularization
method that is practical and easy to implement in any
existing Bayesian optimization toolbox based on Gaus-
sian Process priors over objective functions.

At a high level, our proposed regularization method
is born out of the observation that the only compo-
nent of Bayesian optimization that currently requires
a bounding box on the search space is the maximiza-
tion of the acquisition function. This constraint is nec-
essary because acquisition functions can have suprema
at infinity, so optimizing them may not return a point
unless the feasible domain is constrained. By using
a non-stationary prior mean as a regularizer, we can
exclude this possibility and use an unconstrained op-
timizer, removing the need for a bounding box.

1.1 Related work

Although the notion of using a non-trivial Gaussian
process prior mean is not new, it is usually expected to
encode domain expert knowledge or known structure
in the response surface. To the best of the authors’
knowledge, only one recent work has considered using
the prior mean as a regularization term and it was
primarily to avoid selecting points along boundaries
and in corners of the bounding box [Snoek et al., 2015].

In this work we demonstrate that a regularizing prior
mean can be used to carry out Bayesian optimiza-
tion without a rigid bounded domain. We compare
this regularized approach to a volume doubling base-
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line. While the regularized algorithms exhibit a much
more homogeneous search behaviour (i.e. boundaries
and corners are not disproportionately favoured), the
volume doubling baseline performs very well in prac-
tice.

We begin with a brief review of Bayesian optimiza-
tion with Gaussian processes in the next section, fol-
lowed by an introduction to regularization via non-
stationary prior means in Section 3, including visual-
izations that show that our proposed approach indeed
ventures out of the initial user-defined bounding box.
Section 4 reports our results on two synthetic bench-
marking problems as well as two real hyperparameter
tuning tasks, namely tuning the stochastic gradient
descent optimizer of two neural network architectures
on the MNIST handwritten digit recognition task.

2 Bayesian optimization

In this section, introduce some background on
Bayesian optimization; see [Shahriari et al., 2016] for a
more detailed review. Consider the problem of finding
a global optimizer of an unknown objective function
f:R%4— R, i.e. the problem of finding

X, € argmax f(x). (1)
x€ER

The function f is assumed to be a black-box for which
we have no closed-form expression or available gradi-
ent information. We further assume that f is expen-
sive to evaluate so we wish to locate the best possible
input x with a relatively small budget of N evalua-
tions. Finally, the evaluations y € R of the objective
function are noise-corrupted observations, and for the
remainder of this work, we assume a Gaussian noise
distribution, y | x ~ N'(f(x),0?). Notice that, in con-
trast to typical Bayesian optimization settings, here
we do not assume the argmax to be restricted to a
bounded subset X C R<.

Commonly known as efficient global optimization, this
problem is poorly suited for popular non-convex meth-
ods such as Nelder-Mead and the more recent CMA-
ES [Hansen and Ostermeier, 2001], because these re-
quire too many evaluations due to their inherently lo-
cal search behaviour. In contrast, Bayesian optimiza-
tion is a sequential model-based approach, which in-
volves (i) maintaining a probabilistic surrogate model
over likely functions given observed data; and (ii) se-
quentially selecting future query points according to a
selection policy, which leverages the uncertainty in the
surrogate to negotiate exploration of the search space
and exploitation of currently suspected modes. The
selection policy is represented by an acquisition func-
tion o, : R? — R, where the subscript indicates the

implicit dependence on the surrogate and, by exten-
sion, on the observed data D,, = {(xi,yi)}71-

More precisely, at iteration n: an input x,4; is se-
lected by maximizing the acquisition function «,; the
black-box is queried and produces a noisy y,+1; and
the surrogate is updated in light of the new data point
(Xn+1,Yn+1)- Finally, after N queries the algorithm
must make a final recommendation Xy which repre-
sents its best estimate of the optimizer.

Algorithm 1 Bayesian optimization framework with
best-observation recommendation

1: initialize prior surrogate fo
forn=1,...,N do
derive index «,,_1 from surrogate fn,l
select next x,, € arg max, ¢y 0n—1(%)
query black-box y, ~ N (f(x,),0?)
update surrogate fn given previous surrogate
fn,l and new observation (X, yn)
end for
choose j € argmax;_;.n Vi

. sobs .
9: return X3° = x;

Recommendation strategy. In our experiments,
we exclusively use the best-observation recommenda-
tion strategy, which returns X3 = x; where j €
argmax,;_;.y ¥;- This is a particularly convenient
choice when applying model-based optimization to
real tasks where the surrogate model is likely to be
misspecified—as in our neural network tuning tasks.
Intuitively, the surrogate is trusted to make selections
throughout the exploration phase, while only the ob-
served data is trusted when making a final recommen-
dation. Alternatively, in the presence of large noise,
one could recommend the incumbent, which is similar
to best-observation but uses the prediction at observed
inputs instead of the observed y;, i.e. X¢ = x; where
j € argmax,_,,y fn(x;) and fy is the surrogate after
N observations. Finally, the best-latent strategy rec-
ommends a point X3¢ € arg max, fy(x) where f(x) is
our surrogate model prediction at x.

2.1 Gaussian processes

Perhaps the most common surrogate in Bayesian
optimization, and the one we prescribe in this
work, is the Gaussian process (GP) prior over func-
tions [Rasmussen and Williams, 2006]. When com-
bined with a Gaussian likelihood, the posterior is
also a GP and the Bayesian update of the surro-
gate can be computed analytically. Under the as-
sumption that the black-box objective function f is
sampled from a GP prior, two Bayesian optimiza-
tion acquisition functions have recently been proven
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to converge, when using Gaussian process surrogates;
namely GP-UCB [Srinivas et al., 2010] and expected
improvement [Bull, 2011]. Note that random forests
have also been proposed in the model-based optimiza-
tion literature [Hutter et al., 2010].

A Gaussian process GP (1o, k) is fully characterized by
its prior mean function pg : R¢ — R and its positive-
definite kernel, or covariance function, k : R? x R% —
R. Given any finite collection' of n points Xi.,, the
values of f(x1),..., f(xn) are jointly Gaussian with
mean m, where m; = po(%;), and n X n covariance
matrix K, where K;; = k(x;,x;)—hence the term co-
variance function.

Given the Gaussian likelihood model, the vector of
concatenated observations y = 1., is also jointly
Gaussian with covariance K + o2I. Therefore, at any
arbitrary test location x, we can query our surrogate
model (the GP) for the predicted function value f,, (x)
conditioned on observed data D,. By straightfor-
ward multivariate Gaussian conditioning, the quantity
fn(x) is a Gaussian random variable with the following

mean fi,,(x) and marginal variance o2 (x)

pn (%) = po(x) + k(x)"(K +0°D) 7 (y —m), (2)
on(x) = k(x,x) —k(x)"(K+0°I) 'k(x),  (3)

where k(x) is the vector of cross-covariance terms be-
tween the test point x and the observed data x1.,,.

There are a plethora of positive-definite kernels that
can be combined by sums and products to create new
such kernels with rich structure, However, throughout
this work we use the following simple squared exponen-
tial kernel, noting that our proposed method is readily
extended to other kernels:

keu(x,x') = 0g exp(—1r?), (4)

where 7 = (x — x')TA"}(x — x) and A is a diagonal
matrix of d length scales 01.4 and 6 is the kernel am-
plitude. Collectively referred to as the hyperparemeter,
the vector 8 = 6.4 parameterizes the kernel function
k. When the noise variance ¢? is unknown, it can be
added as a model hyperparameter as well. Similarly,
the most common agnostic choice of prior mean is a
constant bias pp(x) = b, which, with a slight abuse of
notation, we add to the vector 6.

Hyperparameter marginalization. As in many
regression tasks, the hyperparameter 6 must some-
how be specified and has a dramatic effect on per-
formance. Common tuning techniques such as cross-
validation and maximum likelihood are either highly
data-inefficient or run the risk of overfitting. Recently,

"Here we use the convention a;; = {ai,...,a;}.

a Bayesian treatment of the hyperparameters via
Markov chain Monte Carlo (MCMC) has become stan-
dard practice in Bayesian optimization [Snoek et al.,
2012]. Similarly in the present work, we specify an
uninformative prior on @ and approximately integrate
it by sampling from the posterior p(@|D,,) via slice
sampling.

2.2 Acquisition functions

So far we have described the probabilistic model we
use to represent our prior belief about the unknown
objective f, and how to update this belief given obser-
vations D, with (2) and (3). We have not described
any mechanism or policy for selecting the sequence of
query points xi.,. One could select these arbitrarily
or by grid search but, in the spirit of data-efficient
optimization, this would be wasteful—uniformly ran-
dom search has also been proposed as a surprisingly
good alternative to grid search [Bergstra and Bengio,
2012]. There is, however, a rich literature on selection
strategies that utilize the surrogate model to guide the
sequential search, i.e. the selection of the next query
point x,,4+1 given D,,.

The key idea behind these strategies is to define
acquisition functions a, : R? +— R, which quan-
tify the promise? of any point in the search space.
The acquisition function is carefully designed to trade
off exploration of the search space and exploita-
tion of promising neighborhoods, given the surrogate
model fn There are three common types of acqui-
sition functions: improvement-based, optimistic, and
information-based policies.

The improvement-based acquisition functions, prob-
ability and expected improvement (PI and EI, re-
spectively), select the next point with the most
probable and most expected improvement, respec-
tively [Kushner, 1964, Mockus et al., 1978].  On
the other hand, the optimistic policy wupper confi-
dence bound (GP-UCB) measures, marginally for each
test point x, how good the corresponding observa-
tion y will be in a low and fixed probability “good
case scenario”—hence the optimism [Srinivas et al.,
2010]. In contrast, there exist information-based
methods such as randomized probability matching,
also known as Thompson sampling [Thompson, 1933,
Scott, 2010, Chapelle and Li, 2011, Kaufmann et al.,
2012, Agrawal and Goyal, 2013], or the more recent
entropy search methods [Villemonteix et al., 2009,
Hennig and Schuler, 2012, Hernandez-Lobato et al.,
2014]. Thompson sampling selects the next point

2The way “promise” is quantified depends on whether
we care about cumulative losses of the intermediate selec-
tions x; : N or only the loss of the final recommendation
XN.
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according to the distribution of the optimum x,,
which is induced by the current posterior [Scott, 2010,
Hernéndez-Lobato et al., 2014, Shahriari et al., 2014].
Meanwhile, entropy search methods select the point x
that is expected to provide the most information to-
wards reducing uncertainty about x,.

Expected improvement. In this work, we focus
our attention on EI, which is perhaps the most com-
mon acquisition function [Jones et al., 1998, Jones,
2001]. Using a Gaussian process surrogate model, the
expected improvement upon a fixed target T can be
computed analytically, yielding the following expres-
sion

! (%) = (pn(x) = 7)@(2) + 0n(x)0(2),  (5)

where z = %, and ® and ¢ denote the standard
normal cumulative distribution and density functions,
respectively. Note however that the technique we out-
line in the next section can readily be extended to any
Gaussian process derived acquisition function, includ-

ing all those mentioned above.

3 Unbounded Bayesian optimization

In this section, we introduce two methods that will re-
sult in robustness to the choice of initial bounding box.
The first is a simple approach we call volume doubling
and the second is out proposed approach, which can
be interpreted as a regularization of current methods.

3.1 Volume doubling

This heuristic consists of expanding the search space
regularly as the optimization progresses, starting with
an initial user-defined bounding box. This method
otherwise follows the standard Bayesian optimization
procedure and optimizes within the bounding box that
is available at the given time step n. This approach
requires two parameters: the number of iterations be-
tween expansions and the growth factor . Naturally,
to avoid growing the feasible space X’ by a factor that
is exponential in d, the growth factor applies to the
volume of X'. Finally, the expansion is isotropic about
the centre of the domain. In this work, we double
(v = 2) the volume every 3d evaluations (only after
an initial latin hypercube sampling of 3d points).

3.2 Regularizing improvement policies

We motivate the regularized approach by considering
improvement policies, in particular, EI. However, in
the next section we show that this proposed approach
can be extended more generally to all GP-derived ac-
quisition functions, and in fact it is not difficult to

Hinge quadratic Quadratic
N f®) L
Nl () R
&(x)
— El El-Q
EI-H
x—R x+R iféw %+iw

(a) Minimum improvement view
Hinge quadratic

Quadratic

El-H EI-Q

x—R X+R X—Ltw i+%w
(b) Prior mean view

Figure 1: Visualization of the two alternate views of
regularization in Bayesian optimization. The objective
function and posterior surrogate mean are represented
as black dashed and solid lines, respectively, with grey
shaded areas indicating +20,,. Integrating the sur-
rogate model above the target (orange shaded area)
results in the regularized EI acquisition function (ma-
genta and cyan). Using a non-stationary target with a
constant prior mean (left) or a fixed target with a non-
stationary prior mean (right) lead to indistinguishable
acquisition functions, which decay at infinity.

apply the idea to other surrogate models, which we
leave for future work.

Improvement policies are a popular class of acquisition
functions that rely on the improvement function

I(x) = (f(x) = DI[f(x) = 7] (6)
where 7 is some target value to improve upon. Ex-

pected improvement then compute E[I(x)] under the
posterior GP.
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When the optimal objective value f, is known and
we set 7 = f,, these algorithms are referred to as
goal seeking [Jones, 2001]. When the optimum is not
known, it is common to use a proxy for f,, such as
the value of the best observation so far, yT; or in the
noisy setting, one can use either the maximum of the
posterior mean or the value of the mean prediction g,
at the incumbent x € argmax, ¢, fin(X).

In some cases, the above choice of target 7 = yT can
lead to a lack of exploration, therefore it is common to
choose a minimum improvement parameter £ > 0 such
that 7 = (14+&)y™ (for convenience here we assume y =
is positive and in practice one can subtract the overall
mean to make it so). Intuitively, the parameter £ al-
lows us to require a minimum fractional improvement
over the current best observation y*. Previously, the
parameter ¢ had always been chosen to be constant,?
if not zero. In this work we propose to use a function
& : R —» Rt which maps points in the space to a
value of fractional minimum improvement. Following
the same intuition, the function £ lets us require larger
improvements from points that are farther and hence
acts as a regularizer that penalizes distant points. The
improvement function hence becomes:

I(x) = (f(x) = 7)) (x) = 7(x)], (7)

where the target is now a function of x:

T(x) = (1+ &)y (8)
the choice of £(x) is discussed in the Section 3.2.2.

3.2.1 Extension to general policies

In the formulation of the previous section, our method
seems restricted to improvement policies. However,
many recent acquisition functions of interest are not
improvement-based, such as GP-UCB, entropy search,
and Thompson sampling. In this section, we describe
a closely related formulation that generalizes to all ac-
quisition functions that are derived from a GP surro-
gate model.

Consider expanding our choice of non-stationary tar-
get 7 in Equation (8)

I(x) = (f(x) =y (1 + EEIF(x) =y (1 +€(x))]
= (f(x) —yTE(x) =y DI (%) =y E(x) = y"]
= (f(x) —yf(x) 2 y7] (9)

where f is the posterior mean of a GP from (2) with
prior mean jig(x) = po(x) — yT€(x). Notice the simi-
larity between (6) and (9). Indeed, in its current form

3 Here we mean constant with respect to x, there has

been previous work on adaptively scheduling this parame-
ters.

we see that the regularization can be achieved simply
by using a different prior mean fiy and a constant tar-
get y*. This duality can be visualized when comparing
the left and right panel of Figure 1.

Strictly speaking, Equations (6) and (9) are not ex-
actly equivalent. Indeed, using a surrogate GP with
prior mean fig, the posterior mean yields an additional
term

—k(x)"(K +0°I)"1¢(X), (10)

where [£(X)]; = &(x;). This negative term will only
accentuate the vanishing of expected improvement for
test points x that are far from the regularizer cen-
tre. Indeed, in Figure 1 the two views produce indis-
tinguishable regularized acquisition functions (in this
case EI). However, we favour this new formulation be-
cause we can apply the same regularization to any pol-
icy which uses a Gaussian process, namely Thompson
sampling and entropy search.

3.2.2 Choice of regularization

By inspecting Equation (5), we see that any coercive
prior mean function would lead to an asymptotically
vanishing EI acquisition function as ||x|| — co. More
precisely, this is due to both ® and ¢ vanishing as their
arguments approach —oo. In this work, we consider
two coercive regularizing prior mean functions, namely
a quadratic (Q) and an isotropic hinge-quadratic (H),
defined as follows (excluding the constant bias b)

£o(x) = (x — %) Tdiag(w?) ™! (x — %), (11)
e =T~ x> 7 (=52 =) o

Both of these regularizers are parameterized by d lo-
cation parameters X, and while {g has an additional d
width parameters w, the isotropic regularizer £y has
a single radius R and a single 8 parameter, which con-
trols the curvature of £y outside the ball of radius R;
in what follows we fix 8 = 1.

Fixed prior mean hyperparameters. We are left
with the choice of centre X and radius parameters R
(or widths w). Unlike the bias term b, these param-
eters of the regularizer are not intended to allow the
surrogate to better fit the observations D,,. In fact,
using the marginal likelihood to estimate or marginal-
ize ¥ = {X, R,w}, could lead to fitting the regularizer
to a local mode which could trap the algorithm in a
suboptimal well. For this reason, we use an initial,
temporary user-defined bounding box to set ¥ at the
beginning of the run; the value of ¥ remains fixed in
all subsequent iterations.

Note that, while the bounding box in current Bayesian
optimization practice is a hard constraint on the do-
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Figure 2: Visualization of selections x,, made by the EI-H algorithm on two toy problems: three Gaussian modes
in one (left) and two (right) dimensions. Grey lines delimit the initial bounding box; grey square markers indicate
the initial latin hypercube points, while the orange and blue points distinguish between the first and second half
of the evaluation budget of 30d, respectively. In the two-dimensional example, the height of the Gaussians are

indicated by +1, +2, and +3.

main, our approach uses it simply to generate a regu-
larizer which will focus the sequential search without
constraining it. One clear advantage of our algorithm
is that it adheres to the current user interface, allowing
practitioners to continue simply specifying a reason-
able range for each search dimension. This is arguably
a much more natural requirement than a multidimen-
sional centre and width parameters.

Finally, note that when users specify an arbitrary
bounding box, they are in effect fixing 2d parameters.
In that respect, our algorithm requires no more pa-
rameters than current practice, yet allows the search
to progress outside of this arbitrary box, given a large
enough budget.

3.3 Visualization

Before describing our experimental results, Figure 2
provides a visualization of EI with the hinge-quadratic
prior mean, optimizing two toy problems in one and
two dimensions. The objective functions simply con-
sist of three distant Gaussian modes of varying heights
and the initial bounding box is set such that it does
not include the optimum. We draw attention to the
way the space is gradually explored outward from the
initial bounding box.

4 Experiments

In this section, we evaluate our proposed methods and
show that they achieve the desirable behaviour on two
synthetic benchmarking functions, and a simple task
of tuning the stochastic gradient descent and regu-
larization parameters used in training a multi-layered

perceptron (MLP) and a convolutional neural network
(CNN) on the MNIST dataset.

Experimental protocol. For every test problem of
dimension d and every algorithm, the optimization was
run with an overall evaluation budget of 30d including
an initial 3d points sampled according to a latin hyper-
cube sampling scheme (as suggested in [Jones, 2001]).
Throughout each particular run, at every iteration n
we record the value of the best observation up to n and
report these in Figure 3. Experiments were repeated
to report and compare the mean and standard error
of the algorithms: the synthetic experiments were re-
peated 40 times, while the MNIST experiments were
repeated 25 and 20 times for the MLP and the CNN,
respectively.

Algorithms. We compared the two different meth-
ods from Section 3 to the standard EI with a fixed
bounding box. Common random seeds were used for
all methods in order to reduce confounding noise. All
algorithms were implemented in the pybo framework
available on github,* and are labelled in the following
figures as follows:

EI: Vanilla expected improvement with hyperparam-
eter marginalization via MCMC.

EI-V: Expected improvement with the search volume
doubled every 3d iterations.

EI-H: Regularized EI with a hinge-quadratic prior
mean with § = 1 and R fixed by the circumra-
dius of the initial bounding box.

4 https://github.com/mwhoffman/pybo
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Figure 3: Best observations as optimization progresses. In the Hartmann experiments, the known optimum is
represented as a horizontal dotted line. Plotting mean and standard error over 40 (Hartmann), 25 (MLP), and

20 (CNN) repetitions.

EI-Q: Regularized EI with a quadratic prior mean
where the widths w are fixed to those of the initial
bounding box.

RS: As an additional benchmark, on the neural net-
work tuning tasks, we considered a random selec-
tion strategy, which uniformly sampled within the
user-defined bounding box.

Note that for the regularized methods EI-H/Q, the ini-
tial bounding box is only used to fix the location and
scale of the regularizers, and to sample initial query
points. In particular, both regularizers are centred
around the box centre. For the quadratic regularizer
the width of the box in each direction is used to fix
w, whereas for the hinge-quadratic R is set to the box
circumradius. Once these parameters are fixed, the
bounding box is no longer relevant, and more impor-
tantly, the algorithm is free to select points outside of
it, see Figure 2 and 4 for example.

4.1 Synthetic benchmarks: Hartmann

The Hartmann 3 and 6 functions (numbers refer to
their dimensionality) are standard, synthetic global
optimization benchmarking test functions with known
global optima. These are typically optimized in the
unit hypercube [0, 1], as we do in our Hartmann3 and
6 experiments.

In a separate experiment, indicated by an appended
asterisk (e.g. Hartmann3x), we consider an initial
bounding box of side length 0.2 centred uniformly at
random within the unit hypercube. Each of the 40
repetitions of this experiment fixed a different such do-
main for all algorithms. The smaller domain has a 0.2¢

probability of including the global optimum, especially
unlikely in the six-dimensional problem. This exper-
iment is meant to test whether our proposed meth-
ods are capable of useful exploration outside the ini-
tial bounding box and further compare them in such
a situation.

4.2 MLP and CNN on MNIST

The MNIST hand-written digit recognition dataset is
a very common task for testing neural network meth-
ods and architectures. Neural networks are usually
trained using some variant of stochastic gradient de-
scent (SGD). The hyperparameters can impact both
the speed of convergence and the quality of the trained
network. We consider an MLP with 2048 hidden units
with tanh non-linearities, and a CNN with two convo-
lutional layers. These examples were taken from the
official GitHub repository of torch demos.® The code
written for this work can be readily extended to any
other demo in the repository or in fact any script that
can be run from the shell.

In this experiment, we optimize four parameters of
the SGD optimizer, namely the learning rate and mo-
mentum, and the ¢; and /5 regularization coefficients.
The parameters were optimized in log space (base e)
with an initial bounding box of [—3, —1] x [-3, —1] X
[—3,1] x [-3,1], respectively. For each parameter set-
ting, a black-box function evaluation corresponds to
either training the MLP for 5 epochs or the CNN for
3, and returning the test set accuracy. To be clear, the
goal of this experiment is not to achieve state-of-the-
art for this classification task but instead to demon-

Shttps://github.com/torch/demos
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Figure 4: Pairwise scatterplot of selections (upper triangle) and recommendations (lower triangle) for the MLP-
MNIST experiment. For example, the second plot of the first row corresponds to a scatter plot of the selected
learning rates vs. momentum parameters for a single seed. In contrast, the first plot of the second row corresponds
to a scatter plot of the recommended learning rates and momentum parameters over all runs. The initial bounding
box and sample points (for this particular run) are shown as a black rectangle and black square dots, respectively.
All other points respect the color scheme of Figure 3. (the ¢y regularization parameters were cropped out for

space considerations.)

strate that our proposed algorithms can find optima
well outside their initial bounding boxes.

4.3 Results

Figure 3 shows that for the Hartmann tests, the pro-
posed Bayesian optimization approaches work well in
practice. The results confirm our hypothesis that the
proposed methods are capable of useful exploration
outside the initial bounding box. We note that when
using the entire unit hypercube as the initial box, all
the Bayesian optimization techniques exhibit similar
performance as in this case the optimum is within the
box. The Hartmann tests also show that the volume
doubling heuristic is a good baseline method; and the
plateaus suggest that this method warrants further
study in, perhaps adaptive, scheduling strategies. Al-
though it is less effective than EI-H as the dimension-
ality increases, it is nonetheless an improvement over
standard EI in all cases.

The MNIST experiment shows good performance from
all three methods EI-{V,H,Q}, particularly from the
hinge-quadratic regularized algorithm. Indeed, when
compared to the standard EI, EI-H boasts over 20%
improvement in accuracy on the MLP and almost 10%
on the CNN.

We believe that EI-H performs particularly well in set-
tings where a small initial bounding box is prescribed
because the hinge-quadratic regularizer allows the al-
gorithm to explore outward more quickly. In contrast,
EI-Q performs better when the optimum is included

in the initial box; we suspect that this is due to the
fact that the regularizer avoids selecting boundary and
corner points, which EI and EI-V tend to do, as can
be seen in Figure 4.

Figure 4 demonstrates that the algorithm in fact ex-
plores points outside the initially suggested bounded
domain (drawn as a black rectangle). Indeed, while
the green dots (EI-V) follow the corners of the growing
bounding box, the magenta and cyan dots of EI-H/Q,
respectively, do not exhibit this artefact.

5 Conclusion and future work

In this work, we propose a versatile new approach to
Bayesian optimization which is not limited to a search
within a bounding box. Indeed, given an initial bound-
ing box that does not include the optimum, we have
demonstrated that our approach can expand its region
of interest and achieve greater function values. Our
method fits seamlessly within the current Bayesian op-
timization framework, and can be readily used with
any acquisition function which is induced by a GP.

We emphasize that in this work we have addressed
one of the challenges that must be overcome toward
the development of a practical Bayesian optimization
tool for hyper-parameter tuning and efficient global
optimization in general. A complete solution, however,
must also address the issues of dimensionality, non-
stationarity, and early stopping.
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