
Version dated: January 17, 20171

Geometric Poisson Indel Process2

A Poissonian model of indel rate variation for3

phylogenetic tree inference4

Yongliang Zhai, Alexandre Bouchard-Côté5
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Abstract.— While indel rate variation has been observed and analyzed in detail, it is not11

taken into account by current indel-aware phylogenetic reconstruction methods. In this12

work, we introduce a continuous time stochastic process, the geometric Poisson indel13

process, that generalizes the Poisson indel process by allowing insertion and deletion rates14

to vary across sites. We design an efficient algorithm for computing the probability of a15

given multiple sequence alignment based on our new indel model. We describe a method to16

construct phylogeny estimates from a fixed alignment using neighbor joining. Using17

simulation studies, we show that ignoring indel rate variation may have a detrimental effect18

on the accuracy of the inferred phylogenies, and that our proposed method can sidestep19

this issue by inferring latent indel rate categories. We also show that our phylogenetic20

inference method may be more stable to taxa subsampling than methods that either ignore21

indels or indel rate variation.22
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TKF91)24

It is well known that different regions of nucleotide sequences evolve at different25

rates, both in terms of substitutions (Fitch and Margoliash 1967; Li et al. 1985; Nachman26

and Crowell 2000), and in terms of insertions-deletions (indels) (Mouchiroud et al. 1991;27

Wong et al. 2004; Lunter et al. 2006; Mills et al. 2006; Chen et al. 2009; Kvikstad and28

Duret 2014). In phylogenetic analyses based on substitutions, rate variation is viewed as an29

important phenomenon to include when building evolutionary models; consequently,30

virtually all modern phylogenetic methods explicitly model substitution rate variation31

across sites (Yang 1997; Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003;32

Suchard and Redelings 2006; Yang 2007; Guindon et al. 2010; Stamatakis 2014).33

There is substantial previous work analyzing patterns of indel rate variation, but34

these analyses are typically done from trees and alignments inferred using standard models35

which ignore rate variation. This body of previous work has not only demonstrated that36

indel rate variation is widespread (Chen et al. 2009; Kvikstad and Duret 2014), but also37

identified correlates (and in some cases, mechanisms) behind indel rate heterogeneity,38

including sequence context (Tanay and Siggia 2008), substitution rate (Ananda et al. 2011;39

Jovelin and Cutter 2013), selection (Carvalho and Clark 1999; Kvikstad and Duret 2014),40

recombination (Nam and Ellegren 2012; Leushkin and Bazykin 2013) and short tandem41

repeats (Ellegren 2004).42

There are now several approaches to phylogenetic tree inference that take indels into43

account (Thorne et al. 1991, 1992; Westesson et al. 2012), and some of them include44

substitution rate heterogeneity (Klosterman et al. 2006; Suchard and Redelings 2006;45

Redelings and Suchard 2007). However, these approaches generally do not incorporate46
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indel rate heterogeneity as part of the model specification. Although in the multiple47

sequence alignment literature, some methods do consider indel rate variation, those48

methods typically assume a fixed guide tree and are not based on a continuous-time49

stochastic process (Löytynoja and Goldman 2008), or are limited to fixed trees with a50

small number of leaves (Satija et al. 2009).51

In this work, we present a simple indel rate heterogeneity model suitable for52

phylogenetic tree inference. As with substitution rate heterogeneity models, we53

approximate the distribution over rates using a discrete mixture. Given a discrete indel54

rate mixture, our model is obtained as the finite-dimensional marginal distributions55

Kallenberg (2002) of a reversible stochastic process defined on a phylogenetic tree. This56

continuous-time Markov process is called the geometric Poisson indel process (GeoPIP),57

which we introduce in this paper.58

As its name suggests, the main building block of the GeoPIP model is the Poisson59

indel process (PIP) (Bouchard-Côté and Jordan 2013), and the GeoPIP model inherits the60

attractive computational properties of the PIP model. This means in particular that given61

a tree, computing the probability of an alignment (i.e., marginalizing over internal62

sequences) can be done in time polynomial in both the number of the sequences and the63

lengths of the sequences. This property forms the basis of an efficient algorithm which64

determines in an unsupervised fashion the indel rates, while inferring the tree and65

partitioning the sequences into segments taking on different indel rates.66

Utilizing our efficient likelihood calculation algorithm to infer segmentations, we67

propose an algorithm to estimate phylogeny from a fixed multiple sequence alignment using68

the neighbor joining (NJ) algorithm (Saitou and Nei 1987; Studier et al. 1988; Gascuel69

1997) as an illustration. It is also worth mentioning that a full likelihood approach, as well70

as joint inference of phylogeny and multiple sequence alignments, can also be implemented71

based on the GeoPIP model, using existing phylogenetic inference framework (Huelsenbeck72
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and Ronquist 2001; Suchard and Redelings 2006; Guindon et al. 2010; Bouchard-Côté et al.73

2012; Hajiaghayi et al. 2014). Our inference method iteratively estimates a segmentation of74

the multiple sequence alignment, indel rates, phylogenetic tree and other relevant75

parameters, until convergence occurs or the full likelihood stops increasing. The exact76

marginalization still plays a key role because of the need to infer a segmentation and indel77

parameters. The segmentation of the multiple sequences alignment and indel rates are78

estimated using the GeoPIP model, based on our efficient algorithm to calculate the79

probability of multiple sequence alignment. The phylogenetic tree is constructed using80

neighbor joining based on pairwise distances which are calculated using GeoPIP model on81

pairwise sequence alignments that inherit the segmentation and indel rates estimated from82

the multiple sequence alignment. Our inference method is initialized using random starts,83

without requiring a guide tree.84

Using our method, we investigate the effect of indel rate heterogeneity on85

phylogenetic inference. We provide some evidence that modelling indels enhances accuracy86

of phylogenetic inference, and that modelling indel rate heterogeneity can further improve87

the accuracy of phylogenetic inference. We demonstrate the accuracy of our method in88

both well-specified and misspecified synthetic experiments, including data generated using89

the software INDELible (Fletcher and Yang 2009) and aligned using the software MUSCLE90

(Edgar 2004a,b).91

In this paper, we focus on modelling indel rate variation and consider only indels of92

size one. An important area of related work is the development of long indel models93

(Thorne et al. 1992; Miklós et al. 2004; Lunter et al. 2005b; Redelings and Suchard 2007).94

Modelling long indels is important in the context of phylogenetics because explaining the95

insertion or deletion of a segment with many single-character indels can lead to inaccurate96

tree estimation. Liu et al. (2009a) showed that using the affine gap penalty which models97

long indels directly can improve alignment and tree estimation accuracy. At the same time,98
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the indel rate is comparable with the substitution rate when the indel rate and the average99

indel length are separately estimated. This leads to more interpretable results which100

provide helpful insights into the ratio of indel event frequency and substitution event101

frequency. Unfortunately, the problem of reconciling long indels with a model that can be102

obtained as a tractable, exact marginalization of a continuous time stochastic process is103

still open and appears elusive. The state of affairs consists in complex approximations104

(Knudsen and Miyamoto 2003; Miklós et al. 2004), models that support insertions but not105

deletion (or vice versa) (Miklos and Toroczkai 2001), and methods limited to sequence106

pairs (Thorne et al. 1992).107

For tractability reasons, we do not attempt to include long indels into our GeoPIP108

model. Instead, our strategy to avoid the branch overestimation is to have the GeoPIP109

model explain them with segment of very high indel rate. Our method shares a limitation110

of previous segment-based long indel methods (Thorne et al. 1992), namely that certain111

overlapping patterns of indels are not explained in the most parsimonious way (see Thorne112

et al. (1992) for examples). On the other hand, our method has better scaling properties as113

the number of taxa increases, compared to the TKF92 model which does not allow exact114

marginalization of internal nodes in polynomial time. To demonstrate that our strategy is115

sensible, we include synthetic experiments where the data are generated from models that116

include long indels. There is one potential caveat of modelling regions undergoing long117

indels using high indel intensity segments: indel rates in the GeoPIP model are not easily118

interpretable. This is because the rate categories conflate actual indel rate variation with119

higher indel intensity to explain long indels.120

The statistical and computational properties of the GeoPIP model differentiate it121

from the model used in the alignment method of Lunter (2007). This previous work122

introduced a sequence aligner based on a string transducer. This transducer is equipped123

with groups of latent states encoding different indel rates. While Lunter’s model is effective124
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for pairwise alignment, there are two important challenges in applying this model to125

phylogenetic tree inference. First, since Lunter’s model is not defined as the126

finite-dimensional marginal distributions of a stochastic process on a phylogenetic tree,127

there is no straightforward approach to using this model for tree reconstruction. Second,128

summing over the sequences on the internal nodes of a tree using Lunter’s transducer129

model leads to a worst-case running time exponential in the number of taxa (this can be130

derived using the results in Hirschberg (1975)). Consequently, Lunter’s model has not been131

used for phylogenetic tree inference. Incidentally, we show that even if one only cares about132

identifying the rate segmentation (with a fixed guide tree), using more sequences jointly133

improves inference accuracy. Again, one would have to resort to approximations to do so134

with a transducer-based approach (Holmes and Bruno 2001; Holmes 2003; Miklós et al.135

2004; Jensen and Hein 2005; Bouchard-Côté et al. 2008), while we can do this exactly in136

time linear in the number of sequences with the GeoPIP model.137

Background and notation138

Before describing the GeoPIP model, we introduce our notation, and review the PIP139

model, which is the foundation of our method. In the following, we assume that sequences140

from different species take the form of a multiple sequence alignment (MSA) of characters141

from a finite alphabet Σ (for example, Σ = {A, C, G, T} for DNA data). MSAs are sets of142

homologous characters which can be visualized using an alignment matrix, where each row143

represents one aligned sequence and each column represents one set of homologous144

characters at a certain locus. When there are no homologous characters observed at a locus145

in one sequence, a gap symbol “–” is padded at the locus of that sequence so that two146

characters are in the same column of the alignment matrix if and only if they are147

homologous. Let Σ+ = Σ ∪ {−} denote the expanded set of symbols including the gap148

symbol “–”.149
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Let x = (x1,x2, . . . ,xN)′ denote a fixed MSA of sequences from N different species150

with n columns, (xi ∈ Σn
+, i = 1, 2, . . . , N). We will also use x as x = (c1, c2, . . . , cn) for a151

fixed MSA with columns (cj ∈ ΣN
+ , j = 1, 2, . . . , n).152

We let Q denote a reversible substitution rate matrix over a state space X . Here, X153

could be taken to be the finite alphabet Σ, or X could be the set of pairs containing a154

character in Σ together with a substitution rate category annotation from a discrete set of155

substitution category indices. To simplify the notation, we take X = Σ in the following,156

but we note that substitution heterogeneity can be handled in our framework with no157

change on the algorithms or properties of the method. Let π denote the stationary158

distribution of the rate matrix Q. Finally, we let τ denote an unobserved phylogenetic tree159

with leaves labelled with the same taxa as those indexing the rows of the MSA x.160

The Poisson indel process161

Bouchard-Côté and Jordan (2013) proposed the PIP to model insertion, deletion162

and substitution of characters in string-valued continuous time processes. The description163

of the PIP model on a string of k characters consists of two steps: first, the type of the164

next change (insertion, deletion or substitution) is determined by a realization of 2k + 1165

exponential random variables; second, the exact change is determined based on the type of166

change and realization of some type-specific random variables.167

The first step is generated as follows. For a sequence of length k, the PIP model168

assumes that the smallest of 2k + 1 exponential random variables determines the nature of169

the next evolutionary event and the waiting time. The waiting time for a potential170

insertion event is exponentially distributed with rate λ > 0 (this random variable does not171

determine the location of the insertion since all k+ 1 possible insertion sites share the same172

random variable for insertion). The waiting times for k potential deletion events are173

independently and identically exponentially distributed with rate µ > 0 (these random174
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variables determine the location of the deletions since there is one random variable for175

deletion of each site). The waiting times for k potential substitution events are176

independently exponentially distributed with rates based on the substitution rate matrix177

Q. We let θ = (λ, µ) denote the two indel parameters of the PIP model.178

The second step is generated as follows. If the next event is an insertion, the179

location of the insertion is uniformly selected from k + 1 possible insertion positions, and a180

new character is randomly generated based on a multinomial distribution with parameter181

π, which is the stationary distribution of rate matrix Q. If the next event is deletion, the182

character associated with the smallest realization of the k deletion random variables is183

deleted from the sequence. If the next event is substitution, a new character is randomly184

generated from a multinomial distribution based on respective rows of the rate matrix Q185

determined by the character to be substituted.186

Bouchard-Côté and Jordan (2013) showed that under the PIP model, the marginal187

probability mass function of observing an alignment x at the leaves of a given tree τ is188

PIP(x|θ, τ) = ψ(Pr(c∅|θ, τ), n, θ, τ)
n∏
i=1

Pr(ci|θ, τ), (1)

where c∅ is a single MSA column with empty characters “–” at each leaf, θ is the indel189

rate, and n is the number of alignment columns. The function ψ in (1) is given by190

ψ(z, k, θ, τ) =
1

k!
‖νθ,τ‖k exp{(z − 1)‖νθ,τ‖}, (2)

where ‖νθ,τ‖ = λ(‖τ‖+ 1/µ) and ‖τ‖ is the sum of all branch lengths in τ . The stationary191

sequence length distribution is given by a Poisson distribution with mean λ/µ192

(Bouchard-Côté and Jordan 2013), which is a more adequate length distribution than the193

geometric sequence length distribution induced by the TKF model (Miklós 2003).194
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Bouchard-Côté and Jordan (2013) proposed a dynamic programming algorithm, which adds195

one row and one column representing deletion to the rate matrix, to calculate Pr(ci|θ, τ)196

efficiently based on a variation of Felsenstein’s peeling recursion algorithm (Felsenstein197

1981), as well as a Bayesian framework for phylogenetic inference based on the PIP model.198

The geometric Poisson indel process199

The GeoPIP model is based on the concept of MSA segment, which we define as a200

group of contiguous MSA columns in which indels are assumed to accumulate at a similar201

rate. We define a segmentation β of a fixed MSA x as a partition of the MSA columns202

x1, . . . ,xN into MSA segments, i.e., β = (s1, s2, . . . , sZ) where sk is the k-th segment and203

Z = |β| is the number of segments (k = 1, 2, . . . , |β|). To be specific, sk = (cdk−1+1, . . . , cdk)204

where dk =
∑k−1

j=1 |sj| (k = 1, 2, . . . , Z) and d0 = 0.205

It is common in substitution rate variation models to assume a discrete set of206

possible rate categories (Yang 1996). Here we proceed similarly, and define a finite list of207

indel rate categories θ1 = (λ1, µ1), . . . , θm = (λm, µm), where each item in the list is just a208

distinct PIP indel parameter setting. However, in contrast to discrete substitution rate209

models, where each rate is often obtained using a discretized gamma distribution, we do210

not assume a specific parametric form for θ1, . . . , θm.211

We assume that the number of segments Z ≥ 1 follows a geometric distribution with212

parameter ρ, (0 < ρ ≤ 1). The choice of a geometric distribution is motivated by213

computational considerations: the memoryless property allows a speedup of a factor n (the214

number of alignment columns). Given Z, we assume that the indel rate of each segment is215

independently and identically sampled from one of the m distinct indel rates θ1, . . . , θm.216

We denote the prior probabilities of each of the possible m categories as ω = (ω1, · · · , ωm),217 ∑m
j=1 ωj = 1. For each segment i ∈ {1, 2, . . . , Z}, we introduce a random variable Ri218
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indicating the rate category sampled for segment i:219

Pr(Ri = j) = ωj, i = 1, 2, . . . , Z and j = 1, 2, . . . ,m.

Now that the sampling process for the segment-specific rate categories has been220

described, we can complete the description of the GeoPIP model by defining how the data221

are generated in each segment. This is done by using the PIP model to sample the data in222

each segment i independently using the indel parameter θRi corresponding to the rate223

category associated with segment i. We assume a shared substitution rate matrix Q for224

substitution, with stationary distribution π in this paper.225

To summarize, we obtain the following generative description of the GeoPIP model:

Z ∼ Geo(·|ρ)

Ri ∼ Cat(·|ω) i = 1, 2, . . . , Z

si|Ri ∼ PIP(·|θRi , τ) i = 1, 2, . . . , Z

β = (s1, s2, . . . , sZ),

x = x(β) := s1 ◦ s2 ◦ · · · ◦ sZ ,

where Geo and Cat are the geometric and categorical distributions, and “◦” denotes

concatenation of multiple sequence alignments. This gives us the following probability

mass function of the GeoPIP model:

GeoPIP(β, r|γ) = GeoPIP(β, r|θ, τ, ρ, ω) = (1− ρ)|β|−1ρ

|β|∏
i=1

ωri PIP(si|θri , τ), (3)

where γ = (θ, τ, ρ, ω) denotes all the parameters involved, R = (R1, R2, · · · , RZ) are226

random variables that indicate the rate category for each segment, r = (r1, r2, · · · , rZ) is a227
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realization of R, and θ = (θ1, θ2, . . . , θm) are the m distinct indel rates.228

The motivation behind this construction is that the GeoPIP model inherits the229

desirable properties of the PIP model. We start with a simple result to illustrate this:230

Proposition 1 For all µ > 0, λ > 0, the GeoPIP model is explosion free (i.e., the expected

sequence length is finite). Moreover, when the substitution rate matrix is reversible, the

GeoPIP model is reversible. Its stationary length distribution has mean (1/ρ)
∑m

j=1 ωjλj/µj

and a probability generating function given by

[
m∑
j=1

ωj exp{(s− 1)λj/µj}

]−1

− (1− ρ)

−1

ρ.

In particular, Proposition 1 means that the GeoPIP model can capture richer231

sequence length distributions than previous indel models. For example, the PIP model has232

a Poisson stationary length distribution, and therefore an equal mean and variance. In233

contrast, the GeoPIP model can capture the overdispersion found in real data because the234

distribution of the sequence length based on the GeoPIP model is a mixture of Poisson235

distributed random variables and thus has an unequal mean and variance. The TKF91236

model has a stationary length distribution that is even more problematic, predicting a237

geometrically distributed stationary sequence length, which is undesirable because that238

probability mass function has its mode on the empty sequence (Zhang 2000; Miklós 2003).239

We emphasize that the GeoPIP model does not have this deficiency. The geometric240

reference in its name refers to the PIP mixing distribution, not the stationary length241

distribution. The most important property of the GeoPIP model, however, is its242

amenability to efficient phylogenetic inference, which we describe in detail in the next243

section.244

Efficient phylogenetic inference with the GeoPIP245
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model246

Computational complexity is a key issue in phylogenetic inference. Approximation247

algorithms are proposed in order to explore the space of trees in practice, either using local248

search (Li et al. 2000; Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003;249

Barker 2004; Stamatakis 2005), or incrementally (Saitou and Nei 1987; Studier et al. 1988;250

Gascuel 1997; Bouchard-Côté et al. 2012). Given the large literature on phylogenetic251

inference, our goal is to show that our model can be incorporated into most existing252

phylogenetic inference frameworks with minimal changes. In the following, we view θ, ρ, ω253

as fixed for simplicity but discuss how they are jointly estimated in Appendix 1.254

At the core of most modern phylogenetic inference methods is a likelihood function255

taking a phylogeny as an input, `(τ). Maximum likelihood methods optimize `(τ); Bayesian256

methods combine `(τ) with a prior and approximate the posterior via Markov chain Monte257

Carlo (MCMC) methods; and neighbor-joining (NJ) methods break the likelihood `(τ)258

optimization into many small problems, one for each pair of leaves {k1, k2}—these smaller259

problems can be viewed as optimization of a likelihood function over a two-leaf tree,260

`(τ{k1,k2}). In all these cases, the tree inference method usually views the evolutionary261

model as a black box function `(τ). Since this black box is evaluated at several putative262

trees, it is important to have efficient evaluation algorithms for calculating `(τ).263

If the segmentation β∗ and indel rate categories r∗ were known, we could simply pick

`(τ ; β∗, r∗) = GeoPIP(β∗, r∗|γ).

Efficient evaluation in this case is a direct corollary of Section 3 from Bouchard-Côté and264

Jordan (2013):265

Proposition 2 Computing GeoPIP(β∗, r∗|γ) can be done in time O(Nn), where N is the266

number of taxa, and n is the number of alignment columns.267
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Importantly, this running time is of the same order as that of computing the likelihood of a268

substitution-only model.269

Naturally, we need to take into account the fact that a true segmentation is not

known in practice (and the notion of a “true” segmentation is only imperfectly applicable

in real datasets). The most natural approach to address this issue is to marginalize over

the space of segmentations compatible with the data x:

`Σ(τ) =
∑

β:x(β)=x

m∑
r1=1

· · ·
m∑

r|β|=1

GeoPIP(β, r|γ).

However, in the following we use a different but closely related objective, given by:

`(τ) = max
β:x(β)=x

max
r1

. . .max
r|β|

GeoPIP(β, r|γ).

This second objective is motivated by a penalized likelihood approach. In this view, since

the segmentation parameter is a combinatorial structure, standard regularization such as

L2 is not appropriate. Instead, our regularization is based on the probability model in

Equation (3), where after taking the logarithm, the terms

(|β| − 1) log(1− ρ) + log ρ+

|β|∑
i=1

logωri

act as a penalty on segmentations that use a large number of blocks or rare indel categories.270

The summation problem, `Σ(τ), and the maximization problem, `(τ), can both be271

computed efficiently using dynamic programming. However, the algorithm is markedly272

simpler in the maximization case. In the summation case, the additional complexity stems273

from the fact that the set over which we sum, {β : x(β) = x}, is countably infinite, as274

segmentations with empty blocks need to be considered in the sum. To reduce the problem275

to a finite sum problem, an approach analogous to the one described in Supplementary276
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Information Section 2 of Bouchard-Côté and Jordan (2013) could be used, after which the277

two dynamic programming algorithms are similar, but we leave this to future work and278

describe the maximization algorithm in the following. In the maximization case,279

segmentation with empty blocks can trivially be ignored since the geometric probability280

mass function is strictly decreasing in |β|, so adding an empty segment can only reduce the281

probability of the data under the GeoPIP model.282

Proposition 3 Computing `(τ) can be done in time O(mn2 +Nn), where N is the number283

of taxa, n is the number of alignment columns, and m is the number of indel rate categories.284

We now describe an algorithm achieving this running time. First, as a preprocessing285

step, we calculate:286

pi,j = Pr(ci|θj, τ), i = 1, 2, . . . , n, j = 1, 2, . . . ,m, (4)

which is the probability of observing a single MSA column ci with indel rate θj = (λj, µj)

on a tree τ . Second, we calculate

mk,j = ψ(zj, k, θj, τ), k = 1, 2, . . . , n; j = 1, 2, . . . ,m.

zj = Pr(c∅|θj, τ), j = 1, 2, . . . ,m.

which is used to calculate the factor in the PIP density determined by the length of the287

MSA segment. Here ψ is defined in Equation (2).288

To calculate mk,j efficiently, we use the following recursion:289

logmk+1,j = logmk,j − log(k + 1) + log(‖νj‖) for k = 1, 2, . . . , n− 1,
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where ‖νj‖ = ‖νθj ,τ‖ = λj(‖τ‖+ 1/µj). The recursion is initialized with:290

logm1,j = log ‖νj‖+ (Pr(c∅|θj, τ)− 1)‖νj‖,

for all j = 1, 2, . . . ,m. Using this recursive formula for mk,j and the recursions described in291

Bouchard-Côté and Jordan (2013) for pi,j, the computational cost for calculating all pi,j292

and mk,j is O(nm).293

Let li denote the maximum likelihood over all possible segmentations for the first i294

MSA columns c1:i = (c1, c2, · · · , ci) (1 ≤ i ≤ n). We set l0 = 1 and start with c1:1. There295

are m possible choices for the rate assigned to this single column, yielding296

l1 = max {p1,j m1,j ωjρ : j ∈ {1, 2, . . . ,m}} .

The computational cost of this step is O(m). We calculate an intermediate quantity lt

based on l0, l1, . . . , lt−1 recursively. To do so, we define a t×m matrix L(t) with entry (i, j)

given by:

l
(t)
i,j = li−1 pi,j pi+1,j · · · pt,j mt−i+1,j ωj(1− ρ), i ∈ {1, · · · , t}, j ∈ {1, · · · ,m},

where l
(t)
i,j represents the largest likelihood if the t-th column forms a segment with the last

t− i columns with the j-th indel rate, conditioning on knowing the first t columns only

(i.e., no information on the columns {t+ 1, . . . , n}). Therefore, the matrix L(t) considers all

possible segmentation choices for the i-th column, and utilizes previously calculated

maximum likelihood for the segmentation choices of the first t− 1 columns to calculate the

largest likelihood for all t×m possible segmentation choices when the t-th column is added
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to the first t− 1 columns. Then we compute

lt = max
{
l
(t)
i,j : i ∈ {1, 2, · · · , t}, j ∈ {1, 2, · · · ,m}

}
, (5)

The largest value of L(t) gives the maximum likelihood lt of all possible segmentations and297

indel rate assignments of the first t columns.298

The computational cost of naively calculating lt+1 is O(t2m). However, we notice299

that part of the product pi,jpi+1,j · · · pt,j in l
(t)
i,j can be stored and used to calculate part of300

product pi−1,jpi,j · · · pt,j in l
(t)
i−1,j, so the computational cost can be reduced to O(tm). As a301

result, the computational cost of calculating all of {l0, l1, . . . , ln} is O(
∑n

t=1 tm) = O(n2m).302

Hierarchical Poisson indel process303

We also developed a more elaborate generalization of the PIP model that304

incorporates long indels. We use this more elaborate process, called the Hierarchical305

Poisson indel process (hPIP), as an additional mechanism to generate synthetic data that306

we then analyze using the simpler GeoPIP model. While it is easy to generate data using307

the hPIP model, it is not computationally tractable to perform tree inference. See308

Appendix 2 for more details on the hPIP model. As with the TKF92 model, the hPIP309

model allows long indels but in a manner that does not cover all types of long indels310

expected in a biologically realistic process (in both cases, there cannot be an overlapping311

long insertion and long deletion, for example).312

Simulation studies313

This section is organized as follows. First, we perform a simulation study to314

investigate the accuracy of our segmentation inference method, given the correct315
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alignment. Second, we perform simulation studies to assess the accuracy of the complete316

inference algorithm for the GeoPIP model in finding the true tree when the evolutionary317

model is correctly specified (i.e., data are simulated using the GeoPIP model, and the true318

alignment is given) and misspecified (e.g., data are simulated using the software INDELible319

(Fletcher and Yang 2009) or the hPIP model, and an estimated alignment is used). We320

compare inference results with a set of widely used phylogenetic inference methods.321

Segmentation322

We consider three sets of indel rates in the simulations. In the first scenario, we323

consider two indel rate categories, deletion rates µ1 = 0.02 and µ2 = 2.0, insertion rates324

λj = 20 · µj (j = 1, 2) and multinomial parameter for the stationary distribution of325

segments ω = (1/2, 1/2). In the second scenario, we set m = 3, µ1 = 0.02, µ2 = 0.2 and326

µ3 = 2.0, λj = 20 · µj (j = 1, 2, 3), and ω = (1/3, 1/3, 1/3). In the third scenario, we set327

m = 4, µ1 = 0.01, µ2 = 0.1, µ3 = 1.0 and µ4 = 5.0, λj = 20 · µj (j = 1, 2, 3, 4), and328

ω = (1/4, 1/4, 1/4, 1/4). The geometric parameter for the number of segments is ρ = 0.05329

in all scenarios. A perfect binary tree with 32 leaves is used in this simulation study. All330

edge lengths are set to be 0.1.331

In each simulation run, we generate the MSAs randomly using the GeoPIP model332

proposed in this paper. To focus on the accuracy of the segmentation inference method, we333

fix the tree τ , rate matrix Q, indel rates θ, and the GeoPIP model parameters ρ and ω as334

true values. Instead of generating a geometric-distributed number of segments, we generate335

20 segments at the root of the tree in all runs so that the lengths of MSA columns are less336

variable across simulation runs.337

To measure the accuracy of the segmentation algorithm, we calculate the proportion338

of alignment columns being identified with incorrect rates. Since each alignment column339

belongs to exactly one segment and thus is associated with exactly one indel rate, we define340
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segmentation error as the percentage of alignment columns in the estimated segmentation341

which have a different indel rate than that of the true segmentation.342

We vary the number of sequences used for segmentation inference (using 2, 4, 8, 16343

or 32 sequences), and evaluate the segmentation error on MSA columns that are non-empty344

for the smallest set of sequences (i.e., 2 sequences), to make the absolute magnitude of the345

errors comparable when varying the number of sequences.346

We observe a dramatic decrease in error rate when the number of sequences used for347

segmentation inference increases (Table 1). This decrease in error motivates the need for348

marginalization of internal sequences: the fact that the GeoPIP model allows such349

marginalization in a simple and exact fashion allows us to efficiently search over350

segmentations, even when the number of sequences increases.351

Table 1: Simulation results on segmentation error and running time.

segmentation error running time (in seconds)

Sequences m = 2 m = 3 m = 4 m = 2 m = 3 m = 4
1-2 0.0276 0.2064 0.2219 3.0593 3.7787 2.9613
1-4 0.0064 0.1226 0.1180 5.6851 6.8666 6.3316
1-8 0.0035 0.0804 0.0899 14.9626 18.6748 19.0748
1-16 0.0011 0.0307 0.0437 44.4989 55.6419 61.4356
1-32 0.0011 0.0391 0.0397 142.829 169.2812 199.2880

Data are simulated based on the geometric Poisson indel process (GeoPIP) model with 2, 3, or 4 indel rates

(m), on a perfect binary tree with 32 leaves. Average percentages of alignment columns with incorrectly

inferred indel rates from 100 simulations are listed.

352

353

Well-specified synthetic examples354

In this section, we perform simulation studies to assess tree reconstruction accuracy355

when the data are simulated according to the GeoPIP model. In this case, the the GeoPIP356

models and substitution-only models are both well-specified Truszkowski and Goldman357
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(2016). Our focus is on the effect of the additional information brought by the indels on358

tree reconstruction accuracy. To make the reconstruction accuracies more interpretable, we359

also include the accuracy of reconstructions from PhyML (Guindon et al. 2010), and from360

a standard PIP model.361

Simulation setup.—362

We set the number of indel categories m = 2 and the indel rate (λ1, µ1) = (0.4, 0.02)363

for the first segment. For the second segment, we consider three sets of indel rates,364

(λ2, µ2) = (10, 0.5), (40, 2.0), or (80, 4.0). Note that when (λ2, µ2) = (80, 4.0), the data365

simulated using the GeoPIP model have fast-evolving regions making the synthetic366

alignments visually most similar to real datasets. We consider two phylogenetic trees in the367

simulation: a phylogenetic tree with 8 leaves and varying branch lengths and a perfect368

binary phylogenetic tree with 16 leaves and constant branch lengths (see Figure 1).369

We focus on indel rate variation and ignore substitution rate variation for simplicity,370

but we note that substitution rate variation can be incorporated into our methods without371

technical difficulty. For the first set of simulations on the tree with 8 leaves, the estimated372

rate matrix Q̂ from PhyML is used as starting values for CTMC+NJ, PIP+NJ and373

GeoPIP+NJ estimation algorithms and then updated iteratively together with other374

parameters. For the second set of simulations on the tree with 16 leaves, we fix the rate375

matrix Q̂ in the CTMC+NJ, GeoPIP+NJ and PIP+NJ methods as the estimated rate376

matrix obtained from PhyML, so that the rate matrix is the same across all methods377

considered.378

For the PIP results, we randomly generate a deletion rate µ ∼ U(0, 1) and set379

λ = µη as a starting value, where η is set as the total number of observed alignment380

columns. We use the true value m = 2 in the results based on the GeoPIP model. Since381

our iterative optimization algorithm requires a set of starting values for the indel rates θ,382
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the multivariate parameter ω, and the segmentation, we show two sets of results, one using383

the true values as initialization, and one using random values. For the random starting384

values, we randomly generate two deletion rates µ1 ∼ U(0, 1) and µ2 ∼ U(1, 2), then set385

λi = µiη (i = 1, 2). We set η = 20 in all simulations. The choice of η is related to the386

minimum number of alignment columns in one segment. Similar results are observed when387

η = 10 is used instead of η = 20. We set starting values ps = 0.1, and388

ωs = (1/m, 1/m) = (0.5, 0.5). Again, we found that different choices of starting values ps389

and ωs did not markedly affect the inference results in our simulations studies. We simply390

set the initial segmentation as one segment containing all MSA columns.391

Simulation results.—392

We calculate the Robinson-Foulds (RF) and the weighted Robinson-Foulds (wRF)393

distance (Robinson and Foulds 1979; Felsenstein 2004) between each estimated unrooted394

tree and the true unrooted tree from 100 simulation runs. The RF and wRF distances are395

calculated using the Python package dendropy (Sukumaran and Holder 2010).396
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Table 2: Results on synthetic data simulated from the GeoPIP model on a phylogenetic tree
of 8 leaves with varying branch lengths (see Figure 1a).

wRF (unscaled trees) wRF (scaled trees) RF

Parameter Method mean (s.e.) median mean (s.e.) median mean

PhyML 0.200 (0.006) 0.190 0.187 (0.006) 0.179 0.10 (0.07)
CTMC+NJ 0.213 (0.005) 0.203 0.200 (0.005) 0.192 0.12 (0.06)

µ2=0.5 PIP+NJ 0.150 (0.003) 0.144 0.137 (0.003) 0.136 0
GeoPIP+NJ (true init.) 0.153 (0.003) 0.151 0.139 (0.003) 0.139 0
GeoPIP+NJ (random init.) 0.153 (0.003) 0.151 0.139 (0.003) 0.138 0

PhyML 0.222 (0.006) 0.208 0.208 (0.006) 0.199 0.24 (0.08)
CTMC+NJ 0.240 (0.006) 0.227 0.223 (0.005) 0.218 0.30 (0.07)

µ2=2.0 PIP+NJ 0.144 (0.003) 0.144 0.130 (0.003) 0.128 0
GeoPIP+NJ (true init.) 0.134 (0.004) 0.130 0.116 (0.003) 0.115 0
GeoPIP+NJ (random init.) 0.134 (0.004) 0.130 0.116 (0.003) 0.115 0

PhyML 0.216 (0.007) 0.203 0.207 (0.006) 0.196 0.20 (0.06)
CTMC+NJ 0.231 (0.007) 0.226 0.219 (0.006) 0.212 0.28 (0.07)

µ2=4.0 PIP+NJ 0.203 (0.003) 0.203 0.201 (0.003) 0.203 0
GeoPIP+NJ (true init.) 0.124 (0.003) 0.116 0.107 (0.002) 0.103 0
GeoPIP+NJ (random init.) 0.124 (0.003) 0.116 0.107 (0.002) 0.105 0

All models are well-specified, except for the standard Poisson indel process (PIP). The weighted Robinson-

Foulds (wRF) distances and the Robinson-Foulds (RF) distance of 100 simulation runs are summarized. For

the “scaled tree” columns, we scale the total branch length of all estimated trees and the true tree to be

equal to one.

397

398

The main comparison of interest is between the GeoPIP+NJ method and the399

CTMC+NJ method. Both models are well-specified here, but only the former uses indels.400

Our results show that the GeoPIP+NJ method reduces reconstruction error by a factor of401

up to two (Table 2 and Table 3) in terms of the wRF distance, and the GeoPIP+NJ402

method always outperforms CTMC+NJ in terms of the RF distance as well.403

Reconstructions based on the standard PIP model also outperform reconstructions solely404

based on substitutions, but by a much smaller margin.405
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Table 3: Simulation results on synthetic data generated from the GeoPIP model.

wRF (unscaled trees) wRF (scaled trees) RF

Parameter Method mean (s.e.) median mean (s.e.) median mean (s.e.)

PhyML 0.584 (0.013) 0.567 0.375 (0.008) 0.367 1.18 (0.17)
µ2 = 4.0 CTMC+NJ 0.660 (0.016) 0.651 0.424 (0.009) 0.414 1.82 (0.21)
b = 0.05 PIP+NJ 0.315 (0.004) 0.309 0.210 (0.003) 0.208 0

GeoPIP+NJ 0.317 (0.007) 0.308 0.194 (0.004) 0.192 0

PhyML 1.161 (0.038) 1.073 0.372 (0.011) 0.345 1.54 (0.20)
µ2 = 4.0 CTMC+NJ 30.19 (28.76) 1.236 0.422 (0.019) 0.387 2.20 (0.33)
b = 0.1 PIP+NJ 0.854 (0.011) 0.854 0.319 (0.004) 0.319 0

GeoPIP+NJ 0.686 (0.016) 0.675 0.211 (0.004) 0.208 0.12 (0.05)

PhyML 2.772 (0.094) 2.604 0.464 (0.019) 0.421 3.82 (0.43)
µ2 = 4.0 CTMC+NJ 31.80 (14.52) 3.203 0.658 (0.040) 0.505 5.44 (0.57)
b = 0.2 PIP+NJ 2.837 (0.035) 2.805 0.529 (0.005) 0.535 0.04 (0.03)

GeoPIP+NJ 2.043 (0.054) 2.003 0.314 (0.007) 0.302 0.86 (0.13)

PhyML 0.511 (0.010) 0.497 0.333 (0.006) 0.326 0.72 (0.12)
µ2 = 0.5 CTMC+NJ 0.569 (0.013) 0.547 0.371 (0.008) 0.361 1.28 (0.18)
b = 0.05 PIP+NJ 0.345 (0.006) 0.341 0.227 (0.004) 0.219 0

GeoPIP+NJ 0.340 (0.008) 0.338 0.217 (0.005) 0.214 0.02 (0.02)

PhyML 1.053 (0.037) 0.920 0.344 (0.014) 0.297 1.30 (0.30)
µ2 = 0.5 CTMC+NJ 15.42 (14.23) 1.068 0.378 (0.020) 0.338 1.78 (0.36)
b = 0.1 PIP+NJ 0.740 (0.023) 0.740 0.258 (0.007) 0.253 0

GeoPIP+NJ 0.669 (0.022) 0.624 0.205 (0.004) 0.196 0.06 (0.03)

PhyML 2.800 (0.437) 2.236 0.406 (0.019) 0.367 2.74 (0.34)
µ2 = 0.5 CTMC+NJ 37.14 (16.22) 2.794 0.643 (0.045) 0.461 5.18 (0.56)
b = 0.2 PIP+NJ 1.954 (0.092) 2.229 0.353 (0.018) 0.311 0

GeoPIP+NJ 1.536 (0.063) 1.367 0.238 (0.008) 0.218 0.40 (0.08)

The true tree is a perfect binary tree of 16 leaves with the same branch length b for all branches (see Figure 1b).

Different indel rates (i.e., µ2) and different phylogenetic tree branch lengths (i.e., b) are considered. The

weighted Robinson-Foulds (wRF) distances and the Robinson-Foulds (RF) distance of 100 simulation runs

are summarized.

406

407

As a reference, we also include results obtained using PhyML, which uses a408

statistically superior tree estimation method (compared to NJ) (Roch 2010), and a409

well-specified model, but no indel information. Comparing PhyML and CTMC+NJ410

illustrates the discrepancy introduced by the slightly suboptimal NJ estimator. The411

accuracy gains obtained by modelling indel rate heterogeneity are larger than those412

obtained by using a more sophisticated tree estimation method under the simulation setups413
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we considered.414

Table 2 also shows that the difference between initializing the GeoPIP model415

parameters with true values versus random values is negligible, supporting the robustness416

of our estimation procedure. In Table 3 and following tables, we show only the417

GeoPIP+NJ results with random initial values. The average running times of 100418

simulations runs on the phylogenetic tree with 8 leaves are: 4.03 seconds for PhyML, 12.76419

seconds for CTMC+NJ, 124.88 seconds for the PIP+NJ method, 182.46 seconds for the420

GeoPIP+NJ method (true initialization), and 234.51 seconds for the GeoPIP+NJ method421

(random initialization). The GeoPIP+NJ method is currently implemented in Python and422

it is not optimized for computation speed. The running times are provided as a general423

reference on methods implemented in the same languages (i.e., GeoPIP+NJ and PIP+NJ)424

and are not meaning for benchmarking the performance of methods implemented in425

different languages (for example, PhyML).426

Misspecified synthetic examples from the hPIP model427

In real applications, the substitution and indel processes are unknown. The gaps in428

MSAs may also be caused by long indels which are not directly captured by the GeoPIP429

model. The hPIP model can be viewed as a more realistic model since it explicitly430

incorporates long indel events. This motivates the experiments presented in this section,431

where we simulate data from the hPIP model, and show that tree reconstructions based on432

the GeoPIP model are still superior.433

Simulation setup.—434

We use the same evolutionary parameters as in the previous section for the435

phylogenetic tree with 8 leaves and set (λ2, µ2) = (80, 4.0). For the hPIP model, we set the436

segment insertion rate to λseg = 2 and the segment deletion rate to µseg = 0.1 (see437

Appendix 2: Hierarchical Poisson Indel Process).438
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We estimate the phylogenetic tree using several tree inference methods and models.439

For the GeoPIP models, we use m = 3 and m = 5 as the numbers of indel rate categories.440

These two variants of the GeoPIP model are denoted by GeoPIP3 and GeoPIP5. Even441

though two indel rates are used in the hPIP simulation model, there is no “true” value in442

this setup for m in the GeoPIP model, since additional rate categories can be recruited as443

surrogates to long indels. Therefore, both the PIP model and the GeoPIP model are444

misspecified in this simulation study. The CTMC+NJ and PhyML are still correctly445

specified since they utilize only substitutions Truszkowski and Goldman (2016). Starting446

values for the PIP and GeoPIP estimators are randomly generated in the same way as in447

the previous section.448

Simulation results.—449

Both the GeoPIP+NJ and the PIP+NJ methods are based on misspecified models450

in this case, as neither capture long indels directly. However, Table 4 shows that the451

GeoPIP+NJ method provides a better approximation of the long indels introduced by the452

hPIP model, by assigning regions with possible long indels a larger indel rate. The453

GeoPIP+NJ method also compares favorably against models that use substitution only,454

which are still well-specified, but use only a subset of the data. At the same time, the455

region with long indel (dyed as dark gray in Figure 2) is perfectly identified by our456

inference method based on the GeoPIP model.457
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Table 4: Simulation results when the true model is the hierarchical Poisson indel process
(hPIP).

wRF (unscaled trees) wRF (scaled trees) RF

Method mean (s.e.) median mean (s.e.) median mean

PhyML 0.232 (0.008) 0.224 0.215 (0.007) 0.209 0.20 (0.08)
CTMC+NJ 0.249 (0.007) 0.242 0.237 (0.007) 0.236 0.44 (0.09)
PIP+NJ 0.219 (0.004) 0.216 0.210 (0.005) 0.204 0
GeoPIP3+NJ 0.172 (0.006) 0.156 0.151 (0.005) 0.147 0.02 (0.02)
GeoPIP5+NJ 0.172 (0.006) 0.157 0.153 (0.006) 0.147 0.02 (0.02)

The true tree has 8 leaves with varying branch lengths (see Figure 1a). The PIP and GeoPIP models are

misspecified, while the other, substitution-only methods are well-specified. Both wRF and RF are reported.

458

459

The average running times of 100 simulation runs are: 4.08 seconds for PhyML,460

12.81 seconds for CTMC+NJ, 145.00 seconds for PIP+NJ, 304.15 seconds for the461

GeoPIP3+NJ method, and 270.71 seconds for the GeoPIP5+NJ method.462

Misspecified synthetic examples using software INDELible and MUSCLE463

We consider generating data using other popular indel models. We use the software464

INDELible to generate data in this section. INDELible provides several options for both465

the indel model and the substitution model, and it also allows data to be generated in466

blocks with different indel models and substitution models.467

When data were generated using INDELible, the GeoPIP+NJ method utilizes both468

indels and substitutions to reconstruct the phylogenetic tree, but the indel model is469

misspecified, while the CTMC+NJ method utilizes only substitutions which are correctly470

specified. Therefore, the comparison of results from GeoPIP+NJ and results from471

CTMC+NJ illustrates the potential gain or loss of modelling indels using a misspecified472

indel model in real applications.473

In a real application, the multiple sequence alignment is usually unknown. We use474

MUSCLE to obtain an alignment, then use this alignment for inference. We compare475
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results obtained using the MUSCLE estimated alignment with the results obtained using476

the true alignment generated by INDELible. MUSCLE does not require an input tree to477

estimate the alignment, so it can be used to obtain an estimated alignment before running478

our inference method when the alignment is unknown.479

Simulation setup.—480

We simulate data on a perfect binary tree with 16 leaves and branch length b = 0.05481

for all branches using INDELible. The total branch length for this tree is 1.5. We consider482

two simulation scenarios. First, we simulate two blocks with the same indel length483

distribution but different indel rates: indel length distribution is set as a negative binomial484

with parameter r = 1 and p = 0.1 and the indel rate is set as 0.05 and 0.25 (same insertion485

and deletion rate within each block). The initial length is set to be 50 for both blocks.486

Second, we simulate three blocks with different indel length distributions and different487

indel rates: a negative binomial indel length distribution with parameter r = 1 and p = 0.1,488

no indels for the second block and a power law indel length distribution (Fletcher and Yang489

2009) with parameter 1.7 and maximum length 30. The indel rate is 0.2 for the first block490

and 0.05 for the third block. The initial length is set to be 30 for all three blocks.491

Simulation results.—492

Table 5 shows that for the first simulation scenario, GeoPIP5+NJ and PIP+NJ493

outperform CTMC+NJ and PhyML in terms of the RF and the wRF of the scaled trees,494

on both the true alignment and the MUSCLE alignment. The GeoPIP5+NJ and PIP+NJ495

methods also outperform CTMC+NJ and PhyML in terms of the wRF of the unscaled496

trees on the true alignment, but not on the MUSCLE alignment. For the second simulation497

scenario, GeoPIP5+NJ and PIP+NJ outperform CTMC+NJ (but not PhyML) in terms of498

RF, but not in terms of wRF.499
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Table 5: Simulation results on synthetic data generated from the software INDELible and
aligned by the software MUSCLE.

wRF (unscaled trees) wRF (scaled trees) RF

Parameter Method mean (s.e.) median mean (s.e.) median mean

PhyML 0.612 (0.009) 0.614 0.400 (0.006) 0.397 1.06 (0.14)
true alignment CTMC+NJ 0.653 (0.010) 0.664 0.427 (0.007) 0.423 1.40 (0.16)
NB+NB PIP+NJ 0.544 (0.008) 0.547 0.356 (0.006) 0.360 0.38 (0.10)

GeoPIP5+NJ 0.548 (0.009) 0.550 0.358 (0.006) 0.364 0.40 (0.10)

PhyML 1.301 (0.017) 1.306 0.433 (0.008) 0.419 1.68 (0.20)
MUSCLE alignment CTMC+NJ 1.349 (0.016) 1.355 0.442 (0.007) 0.442 1.86 (0.18)
NB+NB PIP+NJ 1.384 (0.014) 1.390 0.403 (0.007) 0.403 1.26 (0.15)

GeoPIP5+NJ 1.349 (0.014) 1.357 0.408 (0.007) 0.405 1.32 (0.17)

PhyML 0.653 (0.011) 0.641 0.426 (0.007) 0.422 1.24 (0.16)
true alignment CTMC+NJ 0.681 (0.011) 0.670 0.443 (0.007) 0.441 1.68 (0.17)
NB+SUB+POW PIP+NJ 0.724 (0.013) 0.719 0.472 (0.008) 0.472 1.02 (0.15)

GeoPIP5+NJ 0.724 (0.014) 0.712 0.468 (0.008) 0.462 1.08 (0.15)

PhyML 1.393 (0.015) 1.393 0.449 (0.008) 0.436 1.74 (0.18)
MUSCLE alignment CTMC+NJ 1.432 (0.015) 1.426 0.459 (0.007) 0.445 2.24 (0.21)
NB+SUB+POW PIP+NJ 1.589 (0.020) 1.585 0.471 (0.009) 0.458 1.88 (0.22)

GeoPIP5+NJ 1.549 (0.020) 1.523 0.479 (0.010) 0.466 2.18 (0.23)

The true tree is a perfect binary tree of 16 leaves with the same branch length b = 0.05 for all branches (see

Figure 1b). The true alignment generated using INDELible and the estimated alignment using the software

MUSCLE are both considered. In this table, NB+NB indicates that the data are generated using two blocks

with the same indel length model (negative binomial with parameter 1 and 0.1) but different indel rates

(0.05 and 0.25 respectively), NB+SUB+POW indicates that the data are generated using three blocks with

different indel length models (a negative binomial distribution with parameter 1 and 0.1, a substitution

model with no indels, and a power law distribution with parameter 1.7 and maximum 30), and different

indel rates (0.2 for the negative binomial block and 0.1 for the power law block).

500

501

The results show that even when the indel model is misspecified, the GeoPIP5+NJ502

method may still achieve a more accurate phylogenetic tree estimate, compared to the503

correctly-specified model CTMC+NJ that relies on the substitution only. The504

improvement in accuracy may depend on the true indel models. When the true alignment505

is not available, using the MUSCLE alignment provides an alternative to apply the506

GeoPIP5+NJ method which requires a fixed alignment.507

On the other hand, PhyML always outperforms CTMC+NJ in all scenarios, which508
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shows the benefits of the likelihood approach versus the NJ approach in general, and the509

magnitude of potential improvement if the GeoPIP model is incorporated into a full510

likelihood inference approach in future work. At the same time, the comparison between511

the results using the true alignment and the MUSCLE alignment shows the potential gain512

in accuracy if the GeoPIP model is incorporated into a joint inference of phylogenetic tree513

and alignment for future work. Because exact boundaries of segments may not be easy to514

identify, our inference method based on the GeoPIP model does not always separate515

segments generated by different rules (NB, SUB and POW). However, the region with long516

indel (dyed as dark gray in Figure 3) is still perfectly identified by our method.517

Data analysis518

In this section, we apply our methods to a real data set. We compare results519

obtained using our methods and other tree reconstruction methods, and show some520

examples of inferred segmentations in real alignments.521

Molluscs are a diverse group of well studied animals, but many phylogenetic522

relationships among molluscan species are still unresolved (Smith et al. 2011). Because of523

the vast diversity within this large group of species, insertions and deletions of nucleotides524

is prevalent in molluscan ribosomal RNA (rRNA) alignments. Lydeard et al. (2000)525

conducted a comparative analysis of complete mitochondrial large subunit (LSU) rRNA526

sequences of 10 molluscan species and two outgroups (L. terrestris and D. melanogaster),527

and obtained the MSAs of these sequences based on their secondary structure. Smith et al.528

(2011) obtained a different tree for some sub-groups of molluscs, in particular grouping529

Gastropoda with Bivalvia, instead of Gastropoda with Cephalopoda. A few other530

hypotheses on sub-grouping of molluscs can also be found in Kocot et al. (2011); Smith531

et al. (2011).532
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We re-analyze the dataset of Lydeard et al. (2000) using the following methods:533

CTMC+NJ, PIP+NJ, GeoPIP+NJ with four indel rates (denoted as GeoPIP4), PhyML534

with four substitution rates (denoted PhyML4), and BAli-Phy (Suchard and Redelings535

2006; Redelings and Suchard 2007), a state-of-the-art Bayesian approach that takes long536

indels into account to simultaneously estimate both alignment and phylogeny. In the537

BAli-Phy experiments, we used RS07+GTR (Redelings and Suchard 2007) as the538

evolutionary model, and 10 000 MCMC iterations (10% burn-in). This data set can be539

downloaded from http://www.rna.icmb.utexas.edu/SIM/4D/Mollusk/alignment.gb.540

We used reference clades based on the fossil record (Lydeard et al. 2000; Smith et al. 2011)541

to assess the quality of the inferred trees. We describe these clades in Table 6.542

Table 6: Description of the reference clades used for validation in terms of the species
available in the dataset of Lydeard et al. (2000).

Reference clade Constituents
Clausiliidae A. turrita and A. coerulea
Helicoidea E. herktotsi and C. nemoralis
Herterobranchia Clausiliidae and Helicoidea
Bivalvia P. maximus and M. edulis
Cerithioidea P. paludiformis and Cac. lacertina

543

544

We ran each method on the full dataset, as well as on the subset excluding the two545

outgroups. Table 7 reports whether the reference clades were correctly reconstructed for all546

algorithm and data configurations. Among the three indel methods, both GeoPIP and547

BAli-Phy reconstruct all the reference clades, while the PIP reconstruction (from data548

excluding outgroups) fails to reconstruct one of the clades (Bivalvia). This supports that549

using constant rate, point-indel models can confound phylogenetic tree inference.550
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Table 7: Comparison of the clades identified by different methods, when the two outgroups
are added, and in parentheses, when the outgroups are excluded.

Substitution-based Indel-aware

Reference clade MP MP(t.o.) PhyML4 BAli PIP GeoPIP
Clausiliidae 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
Helicoidea 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
Herterobranchia 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
Bivalvia 0 (0) 1 (1) 1 (1) 1 (1) 1 (0) 1 (1)
Cerithioidea 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

In this table, “1” indicates that the clade has been identified by the corresponding tree inference method

(column), and “0” indicates that the clade has not been identified. Maximum-parsimony (MP) trees are

taken from Lydeard et al. (2000), “MP(t.o.)” stands for MP analysis from transversions only, and “BAli,”

for BAli-Phy.

551

552

Prompted by the observation of Smith et al. (2011) that molluscan phylogenetic553

trees are influenced by the choice of outgroups, we assessed the robustness of each method554

by measuring the wRF distance and the RF distance between the tree inferred without555

outgroup and the subtree obtained after exclusion of the two outgroups from the tree556

inferred from the full dataset. Figure 4 shows that the wRF distance between the two557

GeoPIP trees is 0.253, which compares favorably to the wRF distance between results from558

other indel-aware methods. The RF distances tell a different story where the GeoPIP559

model has the largest value of 4 due to the change of the placement of K.tunicata.560

However, the total branch length K.tunicata travels is very small (0.042), which explains561

why the ∆wRF is small even though ∆RF is 4.562

Moreover, one of the two outgroups, D. melanogaster, is severely misplaced in the563

CTMC tree, the PhyML tree, and the BAli-Phy tree. This can be explained by the fact564

that substitution-only models and some indel models cannot overcome the erroneous565

attraction due to the similar base compositions of D. melanogaster and L.bleekeri. To566

restore correct placement, a pruning and regraft operation would require moving the stem567
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of that outgroup by a total branch length of 0.861 (four branches) in the PhyML tree and568

0.199 (four branches) in the BAli-Phy tree. In contrast, the placement of D. melanogaster569

is greatly improved in both the GeoPIP and PIP trees, requiring moving the stem by a570

total branch length of 0.012 (one branch) for both the PIP tree and the GeoPIP tree.571

Figure 5 shows a subset of an inferred segmentation of the molluscan data. The four572

estimated deletion rates are µ̂1 = 0.01, µ̂2 = 0.15, µ̂3 = 0.42 and µ̂4 = 1.41. Similar results573

are obtained when 6 indel rates are used instead of 4 indel rates or when β = λi/µi is set to574

10 as initial value instead of 20, which shows that the choice of category numbers for indel575

rates is not critical as long as it is large enough to allow sufficient indel rate variations. The576

choice of initial segment lengths does not markedly affect the results as long as this choice577

falls into a reasonable range. The running times are: 33.8 seconds for PhyML, 5.2 minutes578

for PIP+NJ, 48.9 minutes for GeoPIP+NJ, and 1 day and 3 hours for BAli-Phy (10 000579

iterations).580

Discussion581

With the exception of hand-coded indel characters, mainstream methods for582

phylogenetic tree reconstruction have been refractory to the incorporation of the indel583

information present in the sequence data. Our experiments suggest that one potential584

factor behind this is that single rate point indel models tend to lack robustness when doing585

phylogenetic tree inference.586

We show that a simple model of indel rate variation can restore robustness while587

improving the quality of the reconstructed phylogenies. The model is simple, both in the588

sense that its running time is the same as existing pure-substitution reconstruction589

algorithms, and also that its implementation involves components already present in590

standard phylogenetic software toolboxes. In particular, a promising direction is to591
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combine other tree inference methods with the GeoPIP model, for example Bayesian tree592

reconstruction methods (Li 1996; Mau 1996; Huelsenbeck and Ronquist 2001; Drummond593

et al. 2012). Calculating confidence intervals for indel parameters is not a simple task in594

our current GeoPIP+NJ framework. For example, the popular bootstrap approach is not595

directly applicable because resampling alignment columns breaks dependence of596

neighboring alignment columns, which is key in the GeoPIP model. The Bayesian approach597

would provide the additional advantage of outputting credible intervals for not only598

segmentations, but also indel parameters.599

Alignment uncertainty is an important related issue. Using a point estimate for the600

alignment can cause underestimation of tree uncertainty downstream, and alignment errors601

can confound tree reconstruction (Suchard and Redelings 2006; Redelings and Suchard602

2007; Wong et al. 2008). To address these issues while still taking indel rate heterogeneity603

into account, our model could be integrated into a Bayesian or maximum likelihood604

co-estimation method (Lunter et al. 2005a; Suchard and Redelings 2006; Redelings and605

Suchard 2007; Liu et al. 2009b, 2012). Note also that the GeoPIP model could potentially606

be modified to reduce the confounding effect of incorrect alignment regions, by correlating607

the indel rate with the substitution rate. The uncertain substitution information coming608

from high indel intensity regions could be discounted and therefore have a lesser effect on609

tree inference.610

The GeoPIP model assumes a fixed segmentation for the entire phylogenetic tree.611

However, indel rate heterotachy, which has been measured in certain datasets, for example612

promoter regions (Taylor et al. 2006), can violate this assumption in real datasets. The613

model could be modified to take indel heterotachy into account, for example by splitting614

and merging segments at random points of the tree, but at the cost of making inference615

significantly more complicated. A similar trade-off is found in substitution rate variation616

modelling, where rate variation assumptions that ignore heterotachy are often preferred as617
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they are simple and generally effective.618

On the other hand, there are ways in which the GeoPIP model can be improved619

without sacrificing its computational efficiency. For example, it would be simple to make620

the rate category of one segment depend on the previous rate segment category. This621

defines a model related to the phylogenetic HMM model used for substitution rate622

variation (Yang 1995; Felsenstein and Churchill 1996). Correlation of indel and623

substitution rates (Ananda et al. 2011; Jovelin and Cutter 2013) is another interesting624

future direction to explore. One simple method to model such correlations would be to625

estimate substitution rate matrices separately for different indel rate regions. The626

computation cost of rate matrix estimation would only increase by a factor of m (the627

number of indel rate categories). Source code and scripts of simulation studies can be628

obtained from https://github.com/yzhai220/geopip.629

*630
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Bouchard-Côté, A., Jordan, M. I., and Klein, D. 2008. Efficient Inference in Phylogenetic638

InDel Trees. In Advances in Neural Information Processing Systems 21 (NIPS),639

volume 21, pages 177–184.640

33

https://github.com/yzhai220/geopip


Bouchard-Côté, A., Sankararaman, S., and Jordan, M. I. 2012. Phylogenetic Inference via641

Sequential Monte Carlo. Systematic Biology , 61: 579–593.642

Carvalho, A. B. and Clark, A. G. 1999. Genetic recombination: intron size and natural643

selection. Nature, 401(6751): 344–344.644

Chen, J.-Q., Wu, Y., Yang, H., Bergelson, J., Kreitman, M., and Tian, D. 2009. Variation645

in the ratio of nucleotide substitution and indel rates across genomes in mammals and646

bacteria. Molecular Biology and Evolution, 26(7): 1523–1531.647

Drummond, A., Suchard, M., Xie, D., and Rambaut, A. 2012. Bayesian phylogenetics with648

BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29: 1969–1973.649

Edgar, R. C. 2004a. Muscle: a multiple sequence alignment method with reduced time and650

space complexity. BMC bioinformatics , 5(1): 113.651

Edgar, R. C. 2004b. Muscle: multiple sequence alignment with high accuracy and high652

throughput. Nucleic acids research, 32(5): 1792–1797.653

Ellegren, H. 2004. Microsatellites: simple sequences with complex evolution. Nature654

Reviews Genetics , 5(6): 435–445.655

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood656

approach. Journal of Molecular Evolution, 17(6): 368–376.657

Felsenstein, J. 2004. Inferring Phylogenies . Sinauer Associates, Incorporated.658

Felsenstein, J. and Churchill, G. A. 1996. A hidden Markov model approach to variation659

among sites in rate of evolution. Molecular Biology and Evolution, 13: 93–104.660

Fitch, W. M. and Margoliash, E. 1967. A method for estimating the number of invariant661

34



amino acid coding positions in a gene using cytochrome c as a model case. Biochemical662

Genetics , 1(1): 65–71.663

Fletcher, W. and Yang, Z. 2009. Indelible: a flexible simulator of biological sequence664

evolution. Molecular biology and evolution, 26(8): 1879–1888.665

Gascuel, O. 1997. BIONJ: an improved version of the NJ algorithm based on a simple666

model of sequence data. Molecular Biology and Evolution, 14(7): 685–695.667

Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O.668

2010. New algorithms and methods to estimate maximum-likelihood phylogenies:669

assessing the performance of PhyML 3.0. Systematic Biology , 59(3): 307–321.670

Hajiaghayi, M., Kirkpatrick, B., Wang, L., and Bouchard-Côté, A. 2014. Efficient671
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Löytynoja, A. and Goldman, N. 2008. A model of evolution and structure for multiple719

sequence alignment. Philosophical Transactions of the Royal Society B: Biological720

Sciences , 363(1512): 3913–3919.721

Lunter, G. 2007. Probabilistic whole-genome alignments reveal high indel rates in the722

human and mouse genomes. Bioinformatics , 23(13): i289–i296.723

Lunter, G., Miklós, I., Drummond, A., Jensen, J., and Hein, J. 2005a. Bayesian724

coestimation of phylogeny and sequence alignment. BMC Bioinformatics , 6(83).725

Lunter, G., Drummond, A. J., Miklós, I., and Hein, J. 2005b. Statistical alignment: recent726

progress, new applications, and challenges. In Statistical Methods in Molecular727

Evolution, pages 375–405. Springer.728

Lunter, G., Ponting, C. P., and Hein, J. 2006. Genome-wide identification of human729

functional DNA using a neutral indel model. PLoS Computational Biology , 2(1): e5.730

37



Lydeard, C., Holznagel, W. E., Schnare, M. N., and Gutell, R. R. 2000. Phylogenetic731

analysis of molluscan mitochondrial LSU rDNA sequences and secondary structures.732

Molecular Phylogenetics and Evolution, 15(1): 83–102.733

Mau, B. 1996. Bayesian phylogenetic inference via Markov chain Monte carlo methods .734

Ph.D. thesis, University of Wisconsin, Madison.735

Miklós, I. 2003. Algorithm for statistical alignment of two sequences derived from a736

Poisson sequence length distribution. Discrete Applied Mathematics , 127(1): 79–84.737

Miklos, I. and Toroczkai, Z. 2001. An improved model for statistical alignment. In First738

Workshop on Algorithms in Bioinformatics , Berlin, Heidelberg. Springer-Verlag.739

Miklós, I., Lunter, G., and Holmes, I. 2004. A long indel model for evolutionary sequence740

alignment. Molecular Biology and Evolution, 21(3): 529–540.741

Mills, R. E., Luttig, C. T., Larkins, C. E., Beauchamp, A., Tsui, C., Pittard, W. S., and742

Devine, S. E. 2006. An initial map of insertion and deletion (indel) variation in the743

human genome. Genome Research, 16(9): 1182–1190.744

Mouchiroud, D., D’Onofrio, G., Aı̈ssani, B., Macaya, G., Gautier, C., and Bernardi, G.745

1991. The distribution of genes in the human genome. Gene, 100: 181–187.746

Nachman, M. W. and Crowell, S. L. 2000. Estimate of the mutation rate per nucleotide in747

humans. Genetics , 156(1): 297–304.748

Nam, K. and Ellegren, H. 2012. Recombination drives vertebrate genome contraction.749

PLoS Genetics , 8(5): e1002680.750

Redelings, B. D. and Suchard, M. A. 2007. Incorporating indel information into phylogeny751

estimation for rapidly emerging pathogens. BMC Evolutionary Biology , 7(1): 40.752

38



Robinson, D. and Foulds, L. 1979. Comparison of weighted labelled trees. In753

Combinatorial Mathematics VI , pages 119–126. Springer.754

Roch, S. 2010. Toward extracting all phylogenetic information from matrices of755

evolutionary distances. Science, 327(5971): 1376–1379.756

Ronquist, F. and Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference757

under mixed models. Bioinformatics , 19(12): 1572–1574.758

Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for759

reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4): 406–425.760
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Appendix 1808

Details of the phylogenetic inference method809

In this section, we show how to optimize the parameters of the GeoPIP model via a810

coordinate ascent algorithm. The full algorithm is summarized in Algorithm 1. Note that811

Algorithm 1 can also be used for the PIP model, since the PIP model is a special case of812

the GeoPIP model.813

One particularity of the approach is that we maximize rather than marginalize over814

the segmentations. The approach we took is inspired by a penalized likelihood approach on815

the segmentation. Our estimation procedure can thus be seen as an hard EM procedure.816

This choice simplifies the implementation of the algorithm.817

Number of indel rate categories m.—818
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In this paper, we assume that m is fixed for simplicity. This is a reasonable819

assumption when the number of distinct indel rates can be roughly inferred. In cases that820

a rough estimate of distinct indel rates is not easy to obtain, choosing m to be a large821

number works in application as our algorithm will naturally choose a subset of indel rates822

from m available indel rates, but at a price of higher computational cost.823

Algorithm 1 Iterative optimization algorithm for estimation of GeoPIP model parameters

Initialize parameters Q, θ, β, r, ρ, ω.
Calculate B given θ, Q, β and r.
Infer τ based on B using NJ and mid-point rooting.
Set tolerance level tol. Set d = tol. Set `old = 1.e-10. Set ∆` = 1.
while d ≥ tol and ∆` > 0 do

Update β∗ and r∗ given θ, Q and τ using dynamic programming.
Update ρ∗ given |β∗|.
Update ω∗ given r∗.
Update θ∗ given τ , Q, β∗ and r∗.
Update Q∗ given τ .
Update B∗ given θ∗, Q∗, β∗ and r∗.
Update τ ∗ based on B∗ using NJ and mid-point rooting.
Set d← max{‖B∗ −B‖, ‖θ∗ − θ‖, ‖Q∗ −Q‖}.
Set B← B∗, τ ← τ ∗, θ ← θ∗,Q← Q∗, β ← β∗, r← r∗, ρ← ρ∗, ω ← ω∗.
Calculate full likelihood `new.
Calculate change of likelihood ∆` = `new − `old.
Set `old = `new.

end while

Optimizing β and r .—824

See description in the Efficient Phylogenetic Inference with the GeoPIP Model825

section. Here we add the description of the backtracking algorithm. Note that in (5), the826

maximum is taken over a matrix L(t) = (l
(t)
i,j ) of t×m elements. Let (ηt,1, ηt,2) denote the827

index of the largest element in L(t). To find the optimal segmentation β for a fixed828

alignment with maximum likelihood ln using the path of dynamic programming, we record829

a backward function f : {1, 2, · · · , n} → {1, 2, · · · , n} where f(t) is the row index of the830
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maximum entry in L(t), i.e.,831

f(t) = ηt,1, t = 1, 2, · · · , n.

To find the indel rates r in each segment of the optimal segmentation β using the832

path of dynamic programming, we record another backward function833

g : {1, 2, · · · , n} → {1, 2, · · · ,m} where g(t) is the column index of the maximum entry in834

L(t), i.e.,835

g(t) = ηt,2, t = 1, 2, · · · , n.

We trace the optimal segmentation β with maximum likelihood and respective indel836

rates r by Algorithm 2. The lengths of all segments are given in the ordered array A and837

the indel rates of all segments are given in the ordered array C of Algorithm 2.838

Algorithm 2 Backtracking for best segmentation

Set i = n. Set A = ∅. Set C = ∅.
while i > 0 do

j ← f(i)
Add element {i− j + 1} to A as the first element.
Add element g(i) to C as the first element.
i← j − 1.

end while

It is easy to see that recording these two backward functions f and g does not839

change the order of the time complexity of the dynamic programming, and finding the best840

segmentation and rate category in each segment based on f and g does not increase the841

order of the total time complexity either.842

Updating ρ and ω.—843

We calculate ρ̂ = 1/|β| since E (|β|) = 1/ρ. We estimate ω based on R only, by844

counting how many inferred states r̂i equal j for i = 1, 2, . . . , |β|, and j = 1, 2, . . . ,m. We845
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use Laplace smoothing to ensure that all elements of ω are non-zero.846

Updating τ .—847

We focus on bifurcating tree topologies in this paper. We reconstruct τ using NJ848

(Saitou and Nei 1987; Gascuel 1997), based on updated pairwise distance matrix B and849

root the unrooted tree by midpoint rooting. Since the GeoPIP model is reversible, the root850

location will not affect the inference of evolutionary parameters.851

When all other parameters are fixed, a composite log-likelihood (Varin and Vidoni852

2005) `c of B can be written as853

`c(B) =
∑

1≤i<j≤N

log GeoPIP(β(xi,xj), r|θ, bij, ρ, ω), (6)

where β(xi,xj) denotes the segmentation β on two sequences xi and xj only, and bij is the854

total branch length from sequence i to sequence j.855

The parameter bij only appears in one composite log-likelihood component856

log GeoPIP(β(xi,xj), r|θ, bij, ρ, ω), (7)

thus the maximum composite likelihood estimate (MCLE) b̂ij can be obtained by857

maximizing (7) instead of (6). Given β, bij is conditional independent of ρ, and given θ, bij858

is conditional independent of ω. Therefore, the composite likelihood of bij depends only on859

β, θ, Q.860

Updating θ.—861
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We estimate indel rate θ by pooling all segments with same rates together.862

log GeoPIP(β, r|γ)

= (|β| − 1) log(1− ρ) + log ρ+

|β|∑
i=1

logωri +

|β|∑
i=1

log PIP(si|θri , τ)

= (|β| − 1) log(1− ρ) + log ρ+

|β|∑
i=1

logωri +
m∑
l=1

{ ∑
k:rk=l

log PIP(sk|θl, τ)

}
(8)

where the inner summation is over all k = 1, 2, . . . , |β| satisfying that rk = l, i.e., segments863

with the l-th indel rates (l = 1, 2, . . . ,m). The parameter θl appears only in the component864

∑
k:rk=l

log PIP(sk|θl, τ), (9)

therefore, the MLE of θl (l = 1, 2, · · · ,m) can be obtained by maximizing (9) given rate865

matrix Q and tree τ , instead of (8).866

Updating Q.—867

The conditional substitution rate matrix is the same at all loci regardless of the868

indel rate of the segment. Based on this observation, we pool all data involving transitions869

only to estimate the rate matrix Q. We explain this step only briefly as estimating rate870

matrix Q is not the focus of this paper, and refer readers to Hobolth and Yoshida (2005)871

for more details.872

We use an EM algorithm to estimate Q based on substitutions of characters only.873

At E-step, we calculate expectations of stationary distribution of characters, transitions874

among all characters and the waiting times at each character type given a rate matrix Q̂875

and data. At M-step, we maximize a penalized likelihood function of Q based on the GTR876

model to find Q̂ given all expectations from the E-step. We repeat the E-step and M-step877

iteratively until the change in penalized likelihood is smaller than a given tolerance.878
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The GeoPIP+NJ algorithm can simply incorporate the correlation of indel rates879

and substitution rates by estimating substitution rate matrices separately for different880

indel rate regions. The computation cost of updating Qs will increase by a factor of m,881

which is the number of indel rate categories.882

Convergence of the optimization algorithm.—883

In our algorithm, the iterative updating procedure is terminated when the change of884

parameters is smaller than the tolerance level or the full likelihood decreases after one full885

iteration, as shown in Algorithm 1.886

We calculate the full likelihood of the new set of all parameters updated at the end887

of each iteration and monitor the change of the full likelihood. This procedure is888

important. Because some updating steps for individual parameters, for example B, are not889

based on optimizing the full likelihood, even though at each step for individual parameters,890

we obtain a new estimate which maximize the respective (composite) likelihood, it is891

possible that the full likelihood may decrease after one full iteration. The estimates892

obtained using our algorithm are not guaranteed to represent a global optimum in general.893

Appendix 2894

Hierarchical Poisson Indel Process895

In this section, we describe the Hierarchical Poisson Indel Process (hPIP), the896

model we use in some of the synthetic data experiments to generate dataset containing897

long indels. The parameters of the hPIP model consist in θ, ω defined as in the GeoPIP898

model, in addition to an “upper level” PIP insertion and deletion parameters λtop, µtop > 0.899

The generative process of the hPIP model is as follows. First, at the root of the900

tree, sample a number of segments Z ∼ Poisson(λtop/µtop), and for each segment i, sample901
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an indel rate category θRi as in the GeoPIP model. For each segment, also sample a902

sequence distributed according to the stationary distribution of the PIP model with903

parameters θRi given by the previous step.904

Next, assume recursively that a segmented sequence is given for some point on the905

tree. The sequence in the segments undergo independent but not identically distributed906

“lower level” PIP evolutionary models. They are not identically distributed because907

different segments have different indel rate categories. In addition to that, a new segment908

can be added, and a whole segment can be deleted. Insertion and deletion of segments909

obey the “top level” PIP distribution: deletion of a segment occurs at a rate µtop per910

segment, and insertion of a segment, at a rate λtop (independent of the number of911

segment). When a segment is inserted, its location is chosen uniformly at random.912
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Figure 1: The reference phylogenetic trees used in simulation studies. a). a phylogenetic
tree with 8 leaves and varying branch lengths. b). a perfect binary phylogenetic tree with
16 leaves and same branch length b for all branches.

Figure 2: Inferred indel rate categories for alignment columns 150-300 of one set of simu-
lated data: segments with low estimated deletion rate (0.006) are in white; segments with
intermediate deletion rate (0.848) are in light gray; segments with high deletion rate (4.150)
are in dark gray.

Figure 3: Inferred indel rate categories for alignment columns of one set of simulated data
using NB+SUB+POW and MUSCLE alignment: segments with low estimated deletion rate
(0.060) are in white; segments with intermediate deletion rate (0.500) are in light gray;
segments with high deletion rate (1.211) are in dark gray.

Figure 4: Trees reconstructed by the three indel-aware methods (columns) for the data with
and without outgroups (rows). The five numbers measure the wRF distance and the RF
distance (in brackets) between each of the bottom tree and the corresponding top subtree
obtained after excluding the two outgroups.

Figure 5: Inferred indel rate categories for alignment columns 701-850 of molluscan data:
segments with lowest deletion rate (0.01) are in white; segments with low deletion rate (0.11)
are in light gray; segments with high deletion rate (0.41) are in medium gray; segments with
low deletion rate (1.27) are in dark gray.
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