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Abstract

Pruning can massively accelerate the computation of feature expectations in large models.
However, any single pruning mask will introduce bias. We present a novel approach which
employs a randomized sequence of pruning masks. Formally, we apply auxiliary variable
MCMC sampling to generate this sequence of masks, thereby gaining theoretical guaran-
tees about convergence. Because each mask is generally able to skip large portions of an
underlying dynamic program, our approach is particularly compelling for high-degree algo-
rithms. Empirically, we demonstrate our method on bilingual parsing, showing decreasing
bias as more masks are incorporated, and outperforming fixed tic-tac-toe pruning.

1 Introduction

Many natural language processing applications, from discriminative training [18, 9] to minimum-
risk decoding [16, 34], require the computation of expectations over large-scale combinatorial
spaces. Problem scale comes from a combination of large constant factors (such as the massive
grammar sizes in monolingual parsing) or high-degree algorithms (such as the many dimensions of
bitext parsing). In both cases, the primary mechanism for efficiency has been pruning, wherein large
regions of the search space are skipped on the basis of some computation mask. For example, in
monolingual parsing, entire labeled spans may be skipped on the basis of posterior probabilities in
a coarse grammar [17, 7]. Conditioning on these masks, the underlying dynamic program can be
made to run arbitrarily quickly.

Unfortunately, aggressive pruning introduces biases in the resulting expectations. As an extreme
example, features with low expectation may be pruned down to zero if their supporting struc-
tures are completely skipped. One option is to simply prune less aggressively and spend more
time on a single, more exhaustive expectation computation, perhaps by carefully tuning various
thresholds [26, 12] and using parallel computing [9, 38]. However, we present a novel alternative:
randomized pruning. In randomized pruning, multiple pruning masks are used in sequence. The re-
sulting sequence of expectation computations are averaged, and errors average out over the multiple
computations. As a result, time can be directly traded against approximation quality, and errors of
any single mask can be overcome.

Our approach is based on the idea of auxiliary variable sampling [31], where a set of auxiliary
variables formalizes the idea of a pruning mask. Resampling the auxiliary variables changes the
mask at each iteration, so that the portion of the chart that is unconstrained at a given iteration can
improve the mask for subsequent iterations. In other words, pruning decisions are continuously
revisited and revised. Since our approach is formally grounded in the framework of block Gibbs
sampling [33], it inherits desirable guarantees as a consequence. If one needs successively better
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Figure 1: A parse tree (a) and the corresponding chart cells (b), from which the assignment vector
(c) is extracted. Not shown are the labels of the dynamic programming chart cells.

approximations, more iterations can be performed, with a guarantee of convergence to the true
expectations.

In practice, of course, we are only interested in the behavior after a finite number of iterations: the
method would be useless if it did not outperform previous heuristics in the time range bounded by
the exact computation time. Here, we investigate empirical performance on English-Chinese bitext
parsing, showing that bias decreases over time. Moreover, we show that our randomized pruning
outperforms standard single-mask tic-tac-toe pruning [40], achieving lower bias over a range of total
computation times. Our technique is orthogonal to approaches that use parallel computation [9, 38],
and can be additionally parallelized at the sentence level.

In what follows, we explain the method in the context of parsing to make the exposition more
concrete, and because our experiments are on similar combinatorial objects (bitext derivations).
Note, however, that the applicability of this approach is in no way limited to parsing. The settings
in which randomized pruning will be most advantageous will be those in which high-order dynamic
programs can be vastly sped up by masking, yet no single aggressive mask is likely to be adequate.

2 Randomized pruning

2.1 The need for expectations

Algorithms for discriminative training, consensus decoding, and unsupervised learning typically
involve repetitively computing a large number of expectations. In discriminative training of proba-
bilistic parsers, for example [18, 32], one needs to repeatedly parse the entire training set in order to
compute the necessary expected feature counts. In this setup (Figure 1), the conditional distribution
of a tree-valued random variable T given a yield y(T ) = w is modeled using a log-linear model :
Pθ(T = t|y(T ) = w) = exp{〈θ, f(t,w)〉 − log Z(θ,w)}, in which θ ∈ RK is a parameter vector
and f(t,w) ∈ RK is a feature function. Training such a model involves the computation of the
following gradient in between each update of θ (skipping an easy to compute regularization term):

∇ log
∏

i∈I
Pθ(T = ti|y(T ) = wi) =

∑

i∈I

{
f(ti,wi)− Eθ[f(T,wi)|y(T ) = wi]

}
,

where {wi : i ∈ I} are the training sentences with corresponding gold trees {ti}.

The first term in the above equation can be computed in linear time, while the second requires a
cubic-time dynamic program (the inside-outside algorithm), which computes constituent posteriors
for all possible spans of words (the chart cells in Figure 1). Hence, computing expectations is
indeed the bottleneck here. While it is not impossible to calculate these expectations exactly, this
is computationally very expensive, limiting previous work to toy setups with 15 word sentences
[18, 32, 35], or necessitating aggressive pruning [26, 12] that is not well understood.

2.2 Approximate expectations with a single pruning mask

In the case of monolingual parsing, the computation of feature count expectations is usually approx-
imated with a pruning mask which allows the omission of low probability constituents. Formally,
a pruning mask is a map from the set M of all possible spans to the set {prune, keep}, indicating

2

t

(b)

+

!

!

+

!!

+

!

++

+

!

+ +

!

0 1 2 3 4 5

(a) S

NP

P

She

VP

V

heard

NP

the noise

.

.

0 1 2 3 4 5
.

(c)

.

.

.

+

+

+

+

-

-

-

+a(0, 5)

a(3, 4)
· · ·

· · ·
a(0, 3)

· · ·
!

a(0, 1)

T

s

Figure 1: A parse tree (a) and the corresponding chart cells (b), from which the assignment vector
(c) is extracted. Not shown are the labels of the dynamic programming chart cells.

approximations, more iterations can be performed, with a guarantee of convergence to the true
expectations.

In practice, of course, we are only interested in the behavior after a finite number of iterations: the
method would be useless if it did not outperform previous heuristics in the time range bounded by
the exact computation time. Here, we investigate empirical performance on English-Chinese bitext
parsing, showing that bias decreases over time. Moreover, we show that our randomized pruning
outperforms standard single-mask tic-tac-toe pruning [40], achieving lower bias over a range of total
computation times. Our technique is orthogonal to approaches that use parallel computation [9, 38],
and can be additionally parallelized at the sentence level.

In what follows, we explain the method in the context of parsing to make the exposition more
concrete, and because our experiments are on similar combinatorial objects (bitext derivations).
Note, however, that the applicability of this approach is in no way limited to parsing. The settings
in which randomized pruning will be most advantageous will be those in which high-order dynamic
programs can be vastly sped up by masking, yet no single aggressive mask is likely to be adequate.

2 Randomized pruning

2.1 The need for expectations

Algorithms for discriminative training, consensus decoding, and unsupervised learning typically
involve repetitively computing a large number of expectations. In discriminative training of proba-
bilistic parsers, for example [18, 32], one needs to repeatedly parse the entire training set in order to
compute the necessary expected feature counts. In this setup (Figure 1), the conditional distribution
of a tree-valued random variable T given a yield y(T ) = w is modeled using a log-linear model :
Pθ(T = t|y(T ) = w) = exp{〈θ, f(t,w)〉 − log Z(θ,w)}, in which θ ∈ RK is a parameter vector
and f(t,w) ∈ RK is a feature function. Training such a model involves the computation of the
following gradient in between each update of θ (skipping an easy to compute regularization term):

∇ log
∏

i∈I
Pθ(T = ti|y(T ) = wi) =

∑

i∈I

{
f(ti,wi)− Eθ[f(T,wi)|y(T ) = wi]

}
,

where {wi : i ∈ I} are the training sentences with corresponding gold trees {ti}.

The first term in the above equation can be computed in linear time, while the second requires a
cubic-time dynamic program (the inside-outside algorithm), which computes constituent posteriors
for all possible spans of words (the chart cells in Figure 1). Hence, computing expectations is
indeed the bottleneck here. While it is not impossible to calculate these expectations exactly, this
is computationally very expensive, limiting previous work to toy setups with 15 word sentences
[18, 32, 35], or necessitating aggressive pruning [26, 12] that is not well understood.

2.2 Approximate expectations with a single pruning mask

In the case of monolingual parsing, the computation of feature count expectations is usually approx-
imated with a pruning mask which allows the omission of low probability constituents. Formally,
a pruning mask is a map from the set M of all possible spans to the set {prune, keep}, indicating
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Figure 2: An example of how a selection vector s and an assignment vector a are turned into a
pruning mask m.

2.2 Approximate expectations with a single pruning mask

In the case of monolingual parsing, the computation of feature count expectations is usually approx-
imated with a pruning mask, which allows the omission of low probability constituents. Formally,
a pruning mask is a map from the set M of all possible spans to the set {prune, keep}, indicating
whether a given span is to be ignored. It is easy to incorporate such a pruning mask into existing
dynamic programming algorithms for computing expectations: Whenever a dynamic programming
state is considered, we first consult the mask and skip over the pruned states, greatly accelerating
the computation (see Algorithm 3 for a schematic description of the pruned inside pass). However,
the expected feature counts Em[f ] computed by pruned inside-outside with a single mask m are not
exact, introducing a systematic error and biasing the model in undesirable ways.

2.3 Approximate expectations with a sequence of masks

To reduce the bias resulting from the use of a single pruning mask, we propose a novel algorithm that
can combine several masks. Given a sequence of masks, m(1),m(2), . . . ,m(N), we will average the
expectations under each of them 1

N

∑N
i=1 Em(i) [f ]. Our contribution is to show a principled way of

computing a sequence of masks such that this average not only has theoretical guarantees, but also
has good finite-sample performance. The key is to define a set of auxiliary variables, and we present
this construction in more detail in the following sections. In this section, we present the algorithm
operationally.

The masks are defined via two vector-valued Markov chains: a selection chain with current value de-
noted by s, and an assignment chain with current value a. Both s and a are vectors with coordinates
indexed by spans over the current sentence: ι ∈ M = {〈j, k〉 : 0 ≤ j < k ≤ n = |w|}. Elements
sι specify whether a span ι will be selected (sι = 1) or excluded (0) in the current iteration (i). The
assignment vector a then determines, for each span, whether it would be forbidden if selected (or
negative, aι = −) or required (positive, +) to be a constituent.

Our masks m = m(s, a) are generated deterministically from the selection and assignment vectors.
The deterministic procedure uses s to pick a few spans and values to fix from a, forming a mask m.
Note that a single span ι that is both positive and selected implies that all of the spans κ crossing ι
should be pruned (i.e. all of the spans such that neither ι ⊆ κ nor κ ⊆ ι holds). This compilation of
the pruning constraints is described in Algorithm 2. The type of the return value m of this function
is also a vector with coordinates corresponding to spans: mι ∈ {prune, keep}. Computation of this
mask is illustrated on a concrete example in Figure 2.1

We can now summarize how randomized pruning works (see Algorithm 1 for pseudocode). At
the beginning of every iteration (i), the first step is to sample new values of the selection vector
conditioning on the current selection vector. We will refer to the transition probability of this Markov
chain on selection vectors as k∗. Once a new mask m has been precomputed from the current
selection vector and assignments, pruned inside-outside scores are computed using this mask. The

1It may seem that Algorithm 2 is also slow, introducing a new bottleneck. However, |s| is small in practice,
and the constant is much smaller since it does not depend on the grammar, making this algorithm fast in practice.
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same dynamic program as for exact sampling, except that a single cell in the chart is pruned (the
cell ι). The setting where a = + is more interesting: in this case significantly more cells can be
pruned. Indeed, all constituents overlapping with ι are pruned. This can lead to a speed-up of up
to a multiplicative constant of 8 = 23, when the span ι has length |ι| = |w|

2 . More constraints are
maintained during resampling steps in practice (i.e. |s| > 1), leading to a much higher empirical
speedup.

Algorithm 1 : AuxVar(w, f )
a, s ← random initialization
E ← 0
for i ∈ 1, 2, . . . , N do

s ∼ k∗(s, ·)
m ← CreateMask(a, s)
Compute PrunedInside(w,m)
Compute PrunedOutside(w,m)
S ← E + Emf
a ∼ ks(a, ·)

return E
N

Algorithm 2 : CreateMask(s,a)
for ι ∈ M do

for κ ∈ s do
if aι = − and ι = κ then

mι ← prune
continue outer loop

if aι = + and ι ! κ
and κ ! ι then

mι ← prune
continue outer loop

mι ← keep
return m

Algorithm 3 : PrunedInside(w, m)
{Initialize the chart in the standard way}
for ι = 〈j, k〉 ∈ M , bottom-up do

if mι = keep then
for l : j < l < k do

if m〈j,l〉 = m〈l,k〉 = keep then
{Loop over grammar symbols,
update inside scores in the
standard way}

return chart

Consider now the problem of jointly resampling the block containing T and a collection of excluded
auxiliary variables {Aι : ι /∈ s} given a collection of selected ones. We can write the decomposition:

P
`
T = t,S|C

´
= P(T = t|C)

Y

ι/∈s

P
`
Aι = aι|T = t

´

= P(T = t|C)
Y

ι/∈s

1
˘
aι = 1[ι ∈ t]

¯

where S =
(
Aι = aι : ι /∈ s

)
is a configuration of the excluded auxiliary variables and C =

(
Aι =

aι : ι ∈ s
)

is a configuration of the selected ones. The first factor in the second line is again a pruned
dynamic program (described in Algorithm 3). The product of indicator functions shows that once a
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The blocks of resampled variables will always contain T as well as a subset of the excluded auxiliary
variables. Note that when conditioning on all of the auxiliary variables, the posterior distribution on
T is deterministic. We therefore require that P(|s| < |M | i.o.) = 1 to maintain irreducibility.

We now describe in more detail the effect that each setting of a, s has on the posterior distribution
on T . We start by developing the form of the posterior distribution over trees when there is a single
selected auxiliary variable, i.e. T |(Aι = a). If a = −, sampling from T |Aι = ι requires the
same dynamic program as for exact sampling, except that a single cell in the chart is pruned (the
cell ι). The setting where a = + is more interesting: in this case significantly more cells can be
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where S =
(
Aι = aι : ι /∈ s

)
is a configuration of the excluded auxiliary variables and C =

(
Aι =

aι : ι ∈ s
)

is a configuration of the selected ones. The first factor in the second line is again a pruned
dynamic program (described in Algorithm 3). The product of indicator functions shows that once a
tree has been picked, the excluded auxiliary variables can be set to new values deterministically by
reading from the sampled tree t whether ι is a constituent, for each ι /∈ s.

Given a selection vector s, we denote the induced block Gibbs kernel described above by ks(·, ·).
Since this kernel depends on the previous state only through the assignments of the auxiliary vari-
ables, we can also write it as a transition kernel on the space {+,−}|M | of auxiliary variable assign-
ments: ks(a, a′).

3.2 The selection chain

There is a separate mechanism, k∗, that updates at each iteration the selection s of the auxiliary
variables. This mechanism corresponds to picking which Gibbs operator ks will be used to tran-
sition in the Markov chain on assignments described above. We will denote the random variable
corresponding to the selection vector s at state (i) by S(i).

In standard treatments of MCMC algorithms [33, 22], the variables S(i) are restricted to be ei-
ther independent (a mixture of kernels), or deterministic enumerations (an alternation of ker-
nels). However this restriction can be relaxed to having S(i) be itself a Markov chain with kernel
k∗ : {0, 1}|M |×{0, 1}|M | → [0, 1]. This relaxation can be thought of as allowing stochastic policies
for kernel selection. 3

3There is a short and intuitive argument to justify this relaxation. Let x∗ be a state from k∗, and consider
the set of paths P starting at x∗ and extended until they first return to x∗. Many of these paths have infinite
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Figure 3: Pseudo-code for randomized pruning in the case of monolingual parsing (assuming a
grammar with no unaries except at pre-terminal positions. We have omitted PrunedOutside because
of limited space, but its structure is very similar to PrunedInside.

inside-outside scores are then used in two ways: first, to calculate the expected feature counts under
the pruned model, Em[f ], which are added to a running average; second, to resample new values for
the assignment vector.2

Let us describe in more detail how a new assignment vector a′ is updated given the previous assign-
ment a. This is a two step update process. First, a tree t is sampled from the chart computed by
PrunedInside(w,m) (Figure 1, left). This can be done in quadratic time using a standard algorithm
[19, 13]. Next, the assignments are set to a new value deterministically as follows: for each span ι,
aι = + if ι is a constituent in t, and aι = − otherwise (Figure 1, right). We will denote this property
by [ι ∈ t].

We defer to Section 3.2 for the description of the selection vector updates—the form of these updates
will be easier to motivate after the analysis of the algorithm.

3 Analysis

In this section we show that the procedure described above can be viewed as running an MCMC
algorithm. This implies that the guarantees associated with this class of algorithms extend to our
procedure. In particular, consistency holds: 1

N

∑N
i=1 Em(i)f

a.s.−→ Ef.

3.1 Auxiliary variables and the assignment Markov chain

We start by formally describing the Markov chain over assignments. This is done by defining a
collection of Gibbs operators ks(·, ·) indexed by a selection vectors s.

The original state space (the space of trees) does not easily decompose into a graphical model where
textbook Gibbs sampling could be applied, so we first augment the state space with auxiliary vari-
ables. Broadly speaking, an auxiliary variable is a state augmentation such that the target distribution
is a marginal of the expanded distribution. It is called auxiliary because the parts of the samples cor-
responding to the augmentation are discarded at the end of the computation. At an intermediate
stage, however, the state augmentation helps explore the space efficiently.

This technique is best explained with a concrete example in our parsing setup. In this case, the
augmentation is a collection of |M | binary-valued random variables, each corresponding to a span
of the current sentence w. The auxiliary variable corresponding to span ι ∈ M will be denoted by
Aι. We define the auxiliary variables by specifying their conditional distribution Aι|(T = t). This
conditional is a deterministic function: P(Aι|T = t) = [ι ∈ t].

With this augmentation, we can now describe the sampler. It is a block Gibbs sampler, meaning that
it resamples a subset of the random variables, conditioning on the other ones. Even when the subsets
selected across iterations overlap, acceptance probabilities are still guaranteed to be one [33].

2The second operation only needs the inside scores.

4



The blocks of resampled variables will always contain T as well as a subset of the excluded auxiliary
variables. Note that when conditioning on all of the auxiliary variables, the posterior distribution on
T is deterministic. We therefore require that P(|s| < |M | i.o.) = 1 to maintain irreducibility.

We now describe in more detail the effect that each setting of a, s has on the posterior distribution
on T . We start by developing the form of the posterior distribution over trees when there is a single
selected auxiliary variable, i.e. T |(Aι = a). If a = −, sampling from T |Aι = ι requires the
same dynamic program as for exact sampling, except that a single cell in the chart is pruned (the
cell ι). The setting where a = + is more interesting: in this case significantly more cells can be
pruned. Indeed, all constituents overlapping with ι are pruned. This can lead to a speed-up of up
to a multiplicative constant of 8 = 23, when the span ι has length |ι| = |w|

2 . More constraints are
maintained during resampling steps in practice (i.e. |s| > 1), leading to a large empirical speedup.

Consider now the problem of jointly resampling the block containing T and a collection of excluded
auxiliary variables {Aι : ι /∈ s} given a collection of selected ones. We can write the decomposition:

P
`
T = t,S|C

´
= P(T = t|C)

Y
ι/∈s

P
`
Aι = aι|T = t

´
= P(T = t|C)

Y
ι/∈s

1
˘
aι = [ι ∈ t]

¯
,

where S =
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tree has been picked, the excluded auxiliary variables can be set to new values deterministically by
reading from the sampled tree t whether ι is a constituent, for each ι /∈ s.

Given a selection vector s, we denote the induced block Gibbs kernel described above by ks(·, ·).
Since this kernel depends on the previous state only through the assignments of the auxiliary vari-
ables, we can also write it as a transition kernel on the space {+,−}|M | of auxiliary variable assign-
ments: ks(a, a′).

3.2 The selection chain

There is a separate mechanism, k∗, that updates at each iteration the selection s of the auxiliary
variables. This mechanism corresponds to picking which Gibbs operator ks will be used to tran-
sition in the Markov chain on assignments described above. We will denote the random variable
corresponding to the selection vector s at state (i) by S(i).

In standard treatments of MCMC algorithms [33, 22], the variables S(i) are restricted to be ei-
ther independent (a mixture of kernels), or deterministic enumerations (an alternation of ker-
nels). However this restriction can be relaxed to having S(i) be itself a Markov chain with kernel
k∗ : {0, 1}|M |×{0, 1}|M | → [0, 1]. This relaxation can be thought of as allowing stochastic policies
for kernel selection.3

The choice of k∗ is important. To understand why, recall that in the situation where (Aι = −), a
single cell in the chart is pruned, whereas in the case where (Aι = +), a large fraction of the chart
can be ignored. The construction of k∗ is therefore where having a simpler model or heuristic at
hand can play a role: as a way to favor the selection of constituents that are likely to be positive,
so that better speedup can be achieved. Note that the algorithm can recover from mistakes in the
simpler model, since the assignments of the auxiliary variables are also resampled.

Another issue that should be considered when designing k∗ is that it should avoid self-transitions
(repeating the same set of selections). To see why, note that if (s, a) = (s′, a′), then m = m(s, a) =

3There is a short and intuitive argument to justify this relaxation. Let x∗ be a state from k∗, and consider
the set of paths P starting at x∗ and extended until they first return to x∗. Many of these paths have infinite
length, however if k∗ is positive recurrent, k∗(·, ·), will assign probability zero to these paths. We then use
the following reduction: when the chain is at x∗, first pick a path from P under the distribution induced by
k∗ (this is a mixture of kernels). Once a path is selected, deterministically follow the edges in the path until
coming back to x∗ (alternation of kernels). Since mixtures and alternations of π-invariant kernels preserve
π-invariance, we are done.
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m(s′, a′) = m′ and hence Emf+Em′f
2 = Emf . The estimator is unchanged in this case, even after

paying the computational cost of a second iteration.

The mechanism we used takes both of these issues into consideration. First, it uses a simpler model
(for instance a grammar with fewer non-terminal symbols) to pick a subset M ′ ⊆ M of the spans
that have high posterior probability. Our kernel k∗ is restricted to selection vectors s such that
s ⊆ M ′. Next, in order to avoid repetition, our kernel transitions from a previous selection s to the
next one, s′, as follows: after picking a random subset R ⊂ s of size |s|

2 , define s′ = (M ′\s) ∪ R.

Provided that the chain is initialized with |s| = 2|M ′|
3 , this scheme has the property that it changes a

large portion of the state at every iteration (more precisely, |s ∩ s′| = 1
3 ), and moreover all subsets

of M ′ of size 2|M ′|
3 are eventually resampled with probability one. Note that this update depends on

the previous selection vector, but not on the assignment vector.

Given the asymmetric effect between conditioning on positive versus negative auxiliary variables, it
is tempting to let the k∗ depend on the current assignment of the auxiliary variables. Unfortunately
such schemes will not converge to the correct distribution in general. Counterexamples are given in
the adaptive MCMC literature [2].

3.3 Accelerated averaging

In this section, we justify the way expected sufficient statistics are estimated from the collection of
samples. In other words, how the variable E is updated in Algorithm 1.

In a generic MCMC situation, once samples X(1), X(2), . . . are collected, the traditional way of
estimating expected sufficient statistics f is to average “hard counts,” i.e. to use the estimator:
SN = 1

N

∑N
i=1 f(X(i)). In our case X(i) contains the current tree and assignments, (T (i), A(i)).

For general Metropolis-Hastings chains, this is often the only method available. On the other hand,
in our parsing setup—and more generally, with any Gibbs sampler—it turns out that there is a more
efficient way of combining the samples [23]. The idea behind this alternative is to take “soft counts.”
This is what we do when we add Emf to the running average in Algorithm 1.

Suppose we have extracted samples X(1), X(2), . . . , X(i), with corresponding selection vectors
S(1), S(2), . . . , S(i). In order to transition to the next step, we will have to sample from the probabil-
ity distribution denoted by kS(i)(X(i), ·). In the standard setting, we would extract a single sample
X(i+1) and add f(X(i+1)) to a running average.

More formally, the accelerated averaging method consists of adding the following soft count instead:∫
f(x)kS(i)(X(i), dx), which can be computed with one extra pruned outside computation in our

parsing setup. This quantity was denoted Emf in the previous section. The final estimator then has
the form:4 S′

N = 1
N−1

∑N−1
i=1

∫
f(x) kS(i)

(
X(i), dx

)
.

4 Experiments

While we used the task of monolingual parsing to illustrate our randomized pruning procedure, the
technique is most powerful when the dynamic program is a higher-order polynomial. We therefore
demonstrate the utility of randomized pruning on a bitext parsing task. In bitext parsing, we have
sentence-aligned corpora from two languages, and are computing expectations over aligned parse
trees [6, 28]. The model we use is most similar to [3], but we extend this model and allow rules to
mix terminals and non-terminals, as is often done in the context of machine translation [8]. These
rules were excluded in [3] for tractability reasons, but our sampler allows efficient sampling in this
more challenging setup.

In the terminology of adaptor grammars [19], our sampling step involves resampling an adapted
derivation given a base measure derivation for each sentence. Concretely, the problem is to sample
from a class of isotonic bipartite graphs over the nodes of two trees. By isotonic we mean that the

4As a side note, we make the observation that this estimator is reminiscent of a structure mean field update.
It is different though, since it is still an asymptotically unbiased estimator, while mean fields approximations
converge in finite time to a biased estimate.
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Figure 4: Because each sampling step is three orders of magnitude faster than the exact computation
(a,b), we can afford to average over multiple samples and thereby reduce the L2 bias compared to
a fixed pruning scheme (c). Our auxiliary variable sampling scheme also substantially outperforms
the tic-tac-toe pruning heuristic (d).

edges E of this bipartite graph should have the property that if two non-terminals α, α′ and β, β′ are
aligned in the sampled bipartite graph, i.e. (α, α′) ∈ E and (β, β′) ∈ E, then α ≥ β ⇒ α′ ≥ β′,
where α ≥ β denotes that α is an ancestor of β. The weight (up to a proportionality constant) of
each of these alignments is obtained as follows: first, consider each aligned point as the left-hand of
a rule. Next, multiply the score of these rules. If we let p, q be the length of the two sentences, one
can check that this yields a dynamic program of complexity O(pb+1qb+1), where b is the branching
factor (we follow [3] and use b = 3).

We picked this particular bilingual bitext parsing formalism for two reasons. First, it is relevant to
machine translation research. Several researchers have found that state-of-the-art performance can
be attained using grammars that mix terminals and non-terminals in their rules [8, 14]. Second, the
randomized pruning method is most competitive in cases where the dynamic program has a suffi-
ciently high degree. We did experiments on monolingual parsing that showed that the improvements
were not significant for most sentence lengths, and inferior to the coarse-to-fine method of [25].

The bitext parsing version of the randomized pruning algorithm is very similar to the monolingual
case. Rather than being over constituent spans, our auxiliary variables in the bitext case are over
induced alignments of synchronous derivations. A pair of words is aligned if it is emitted by the
same synchronous rule. Note that this includes many-to-many and null alignments since several or
zero lexical elements can be emitted by a single rule. Given two aligned sentences, the auxiliary
variables Ai,j are the pq binary random variables indicating whether word i is aligned with word j.

To compare our approximate inference procedure to exact inference, we follow previous work [15,
29] and measure the L2 distance between the pruned expectations and the exact expectations.5

4.1 Results

We ran our experiments on the Chinese Treebank (and its English translation) [39], limiting the
product of the sentence lengths of the two sentences to p × q ≤ 130. This was necessary be-
cause computing exact expectations (as needed for comparing to our baseline) quickly becomes
prohibitive. Note that our pruning method, in contrast, can handle much longer sentences with-
out problem—one pass through all 1493 sentences with a product length of less than 1000 took 28
minutes on one 2.66GHz Xeon CPU.

We used the BerkeleyAligner [21] to obtain high-precision, intersected alignments to construct the
high-confidence set M ′ of auxiliary variables needed for k∗ (Section 3.2)—in other words, to con-
struct the support of the selection chain S(i).

For randomized pruning to be efficient, we need to be able to extract a large number of samples
within the time required for computing the exact expectations. Figure 4(a) shows the average time
required to compute the full dynamic program and the dynamic program required to extract a sin-
gle sample for varying sentence product lengths. The ratio between the two (explicitly shown in

5More precisely, we averaged this bias across the sentence-pairs: bias(θ) = 1
|I|

P
i∈I

PK
k=1

“
Eθ,i[fk] −

Ẽθ,i[fk]
”2

, where Eθ,i[f ], Ẽθ,i[f ] are shorthands notations for exact and approximate expectations.
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Figure 4(b)) increases with the sentence lengths, and reaches three orders of magnitude, making it
possible to average over a large number of samples, while still greatly reducing computation time.

We can compute expectations for many samples very efficiently, but how accurate are the approxi-
mated expectations? Figure 4(c) shows that averaging over several masks reduces bias significantly.
In particular, the bias increases considerably for longer sentences when only a single sample is used,
but remains roughly constant when we average multiple samples. To determine the number of sam-
ples in this experiment, we measured the time required for exact inference, and ran the auxiliary
variable sampler for half of that time. The main point of Figure 4(c) is to show that under realis-
tic running time conditions, the bias of the auxiliary variable sampler stays roughly constant as a
function of sentence length.

Finally, we compared the auxiliary variable algorithm to tic-tac-toe pruning, a heuristic proposed in
[40] and improved in [41]. Tic-tac-toe is an algorithm that efficiently precomputes a figure of merit
for each bispan. This figure of merit incorporates an inside score and an outside score. To compute
this score, we used a product of the two IBM model 1 scores (one for each directionality). When a
bispan figure of merit falls under a threshold, it is pruned away.

In Figure 4(d), each curve corresponds to a family of heuristics with varying aggressiveness. With
tic-tac-toe, aggressiveness is increased via the cut-off threshold, while with the auxiliary variable
sampler, it is controlled by letting the sampler run for more iterations. For each algorithm, its
coordinates correspond to the mean L2 bias and mean time in milliseconds per sentence. The plot
shows that there is a large regime where the auxiliary variable algorithm dominates tic-tac-toe for
this task. Our method is competitive up to a mean running time of about 15 sec/sentence, which is
well above the typical running time one needs for realistic, large scale training.

5 Related work

There is a large body of related work on approximate inference techniques. When the goal is to
maximize an objective function, simple beam pruning [10] can be sufficient. However, as argued in
[4], beam pruning is not appropriate for computing expectations because the resulting approximation
is too concentrated around the mode. To overcome this problem, [5] suggest adding a collection of
samples to a beam of k-best estimates. Their approach is quite different to ours as no auxiliary
variables are used.

Auxiliary variables are quite versatile and have been used to create MCMC algorithms that can
exploit gradient information [11], efficient samplers for regression [1], for unsupervised Bayesian
inference [31], automatic sampling of generic distribution [24] and non-parametric Bayesian statis-
tics [37, 20, 36]. In computer vision, in particular, an auxiliary variable sampler developed by [30]
is widely used for image segmentation [27].

6 Conclusion

Mask-based pruning is an effective way to speed up large dynamic programs for calculating feature
expectations. Aggressive masks introduce heavy bias, while conservative ones offer only limited
speed-ups. Our results show that, at least for bitext parsing, using many randomized aggressive
masks generated with an auxiliary variable sampler is superior in time and bias to using a single,
more conservative one. The applicability of this approach is in no way limited to the cases consid-
ered here. Randomized pruning will be most advantageous when high-order dynamic programs can
be vastly sped up by masking, yet no single aggressive mask is likely to be adequate.
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