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Hawaiian [17a
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Tongan |ika
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Geser |1
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= Motivation
= Computational model
» | earning and inference

= Experiments on Proto-Oceanic

Outline:
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Why reconstruct?

= Can answer a large number of questions about
our past

= Learn about ancient populations’ migrations

= Decipherment of ancient scripts
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How linguists do reconstruction

fear’

Hawaiian maka?u

Samoan |1 mata?u

Tongan ' manavaheé

Maori

mataku

Direct diachronic evidence,
sometimes

Often not available
(prehistorical cultures)

= The comparative method
= Unsupervised setup
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= What kind of string mutations need to be captured?

= Substitution
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= Global?

= Cannot explicitly
represent sound

changes!

= Branch-specific
= Parameter
proliferation!

= Solution:
= |earning
cross-linguistic
trends
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= Some sound changes are unlikely cross-linguistically:

= Velar stop to vowel: k>a
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= Some sound changes are unlikely cross-linguistically:

= Velar stop to vowel: k>a

= Some sound changes are frequent cross-linguistically:

= Consonant place change: k>7?
= Debuccalization: f>h

= |dentity (faithfulness): X=X
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= How to learn these universals: express the transducer
parameters as the output of a log-linear model

= Universals ignore the name of the current branch

A ([n>n])

+
»1) >n {)\(ETZJI“(%)

. (X eX to Maori
mutatlor}
to Maor! Branch-specific)
Add the name of the current :

branch in the context




Second improvement

Response to a concrete problem: sound changes
are not exceptionless in real data




Second improvement

Response to a concrete problem: sound changes
are not exceptionless in real data

Example: tension between a sound change and a
morphological paradigm




University of
California

Second improvement

Berkeley

= Response to a concrete problem: sound changes
are not exceptionless in real data

Example: tension between a sound change and a
morphological paradigm

Passive marker Vowel sound change
whaka-maori-tia : 12 > ie

(‘translate into Maori’)

Which one wins?
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= Response to a concrete problem: sound changes
are not exceptionless in real data

Example: tension between a sound change and a
morphological paradigm

Passive marker Vowel sound change

whaka-maori-tia VS, |ias e
(‘translate into Maori’) ?/JL—J\
If the sound change wins, get

marked form: ending -t1€
become an exception

W
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= Add dependencies in the string transducer model:

Os 0 Os 0y

=)

®® O O-@-®-O

= Also add new features:
word has

word has /a #/ ®

/CV V/ mutation ]
to Maori
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= Monte Carlo EM

= M step: not analytic but convex
= E step: challenging; use MCMC

= Hardness of inference (E step):

= Horizontal links = (inference = non-planar Ising inference)

" |nsertions, deletion = non-standard setup
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Single Sequence
Resampling (SSR)
Gibbs algorithm

(buburu )
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= Problems with the Single Gibbs sampler:

= Extremely slow in phylogenetic trees with high branching
(most linguistic trees)

=  Slow mixing in large trees
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How to jump to a state where the
liquids /r/ and /1/ have a common

ancestor?
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Experiments



Comparison to other methods

Evaluation: edit distance from a reconstruction made
by a linguist (lower is better)
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= Evaluation: edit distance from a reconstruction made
by a linguist (lower is better)

= Qakes 2000

= Uses exact inference and
deterministic rules

Reconstruction of

Proto-Malayo-Javanic

(recontructed in " " Oakes  This
Nothefer 1975)
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= Centroid: a novel heuristic based on an approximation
to the Minimum Bayes risk

= Reconstruction of
Proto-Oceanic
(reconstructed In
Blust 1993)

Both algorithms use ° “Centroid  This

64 modern languages




Back to the initial puzzle

= Can we harness more modern languages to improve
reconstructions?




Back to the initial puzzle

= Can we harness more modern languages to improve
reconstructions?

= Using previous model (NIPS 2008): NO (!)

= No sharing across branches
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Performance of our model:

2.4 _-‘

ool
Mean edit |

distance 2|
to Blust’s
reconstruction

1.8

1.6

OI - I1IOI N I2IOI N I3IOI - I4IOI - I5IOI N I6IOI |
Number of modern languages:
close to POc = far (less useful)
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= For each pair of phonemes, there is a link with
grayscale value proportional to the weight of that

transition

= QOrganized in the shape of a IPA chart for convenience

Place of articulation
m m n n n 0o N

pb t d td c4y kg gc 2 7
déB fv B0 sz [3 sz cjf XY K he HS hh

O y 1 J W
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n_ n n /? N

t d t d c;/kuq g G P, ?

P’—

sz J3 sz ¢d xy B hS HS& hh

J l W

*The model did not have features encoding natural classes
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n_ n ﬁ/? N

tlbcLI td c4 Kk g G P, ?
0d MM « hS HS hh

leﬂ
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m m n (LN
o b Place td c3 kg ac 2 ?
o FyCMANGE_7. <. i wy ¥ hS WS hhA

S— S—

0 4 L) u
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AN n n /? N

t d td c+ kg dc 2 ?
= A

sz J3 sz ¢4 xy B h& HS hh
ﬁ/’

/ | .
@Jccalizatj A 4 J W
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= \We proposed three improvements
= Markedness of internal reconstructions

= (Cross-linguistic universals
= Using a new inference method to scale up

= Results:
= We outperform previous approaches

= We show that using more languages improves
reconstructions

= Current work: using the model to attack open
guestions in historical linguistics
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