Improved Reconstruction of Protolanguage Word Forms

Alexandre Bouchard-Côté Thomas L. Griffiths Dan Klein

Oceanic languages

Oceanic languages

or

	'fish'
POc	*i?a

or

	'fish'
POc	*i?a

Can we harness more languages?

	'fish'
Hawaiian	i?a
Samoan	i?a
Tongan	ika
Maori	ika
Geser	i <mark>k</mark> an
Rapanui	ika
Nukuoro	iga
Niue	ika

Welcome to Oceanic Park

Outline:

- Motivation
- Computational model
- Learning and inference
- Experiments on Proto-Oceanic

Why reconstruct?

- Can answer a large number of questions about our past
 - Learn about ancient populations' migrations

Why reconstruct?

- Can answer a large number of questions about our past
 - Learn about ancient populations' migrations
 - Decipherment of ancient scripts

How linguists do reconstruction

 Direct diachronic evidence, sometimes

How linguists do reconstruction

 Direct diachronic evidence, sometimes

	'fish'	'fear'
Hawaiian	i ? a	maka?u
Samoan	i ? a	mata?u
Tongan	ika	manavahē
Maori	i <mark>k</mark> a	mata <mark>k</mark> u

- Often not available (prehistorical cultures)
 - The comparative method
 - Unsupervised setup

Computational Model

Input

	'fish'	'fear'
Hawaiian	i?a	maka?u
Samoan	i?a	mata?u
Tongan	ika	
Maori	ika	mata <mark>k</mark> u

.

512 languages X 6856 cognate sets
IPA format
Density: 60K entries

Input

	'fish'	'fear'
Hawaiian	i?a	maka?u
Samoan	i?a	mata?u
Tongan	ika	
Maori	i <mark>k</mark> a	mata <mark>k</mark> u

512 languages X 6856 cognate sets
IPA format
Density: 60K entries

Input

	'fish'	'fear'
Hawaiian	i?a	maka?u
Samoan	i?a	mata?u
Tongan	ika	
Maori (V	lissing da	ta Jaku

512 languages X 6856 cognate sets
IPA format
Density: 60K entries

	'fish'	'fear'
Hawaiian	i?a	maka?u
Samoan	i?a	mata?u
Tongan	ika	
Maori	ika	mata <mark>k</mark> u

	'fish'	'fear'
Hawaiian	i?a	maka?u
Samoan	i?a	mata?u
Tongan	ika	
Maori	ika	mata <mark>k</mark> u

	'fish'	'fear'
Hawaiian	i?a	maka?u
Samoan	i?a	mata?u
Tongan	ika	
Maori	ika	mata <mark>k</mark> u

	'fish'	'fear'
Hawaiian	i?a	maka?u
Samoan	i?a	mata?u
Tongan	ika	
Maori	ika	mata <mark>k</mark> u

- What kind of string mutations need to be captured?
 - Substitution

$$*k > ?$$

- What kind of string mutations need to be captured?
 - Substitution

$$*k > ?$$

Insertion (and deletion)

	'break'
Hawaiian	haki
Samoan	fati
Tongan	fasi
Maori	whati

- What kind of string mutations need to be captured?
 - Substitution

$$*k > ?$$

Insertion (and deletion)

Context

	'break'		
Hawaiian	haki		
Samoan	fati		
Tongan	fasi		
Maori	whati		

- What kind of string mutations need to be captured?
 - Substitution

$$*k > ?$$

Insertion (and deletion)

Context

	'break'	'aloha'	
Hawaiian	haki	aloha	
Samoan	fati	alofa	
Tongan	fasi	?alofa	
Maori	whati	aroha	

NOT: arowha

'to cry'

 θ_S : Substitution/Deletion Parameters

 θ_I : Insertion Parameters

#	t	a	ŋ	i	S	#
	 	•	•	 	 	
#		a	n g	i		#

Parameters

Global?

 Cannot explicitly represent sound changes!

$$\theta = \theta_S \& \theta_I$$

Parameters

Global?

- Cannot explicitly represent sound changes!
- Branch-specific
 - Parameter proliferation!

Parameters

Global?

- Cannot explicitly represent sound changes!
- Branch-specific
 - Parameter proliferation!

Solution:

Learning cross-linguistic trends

Cross-linguistic trends

- Some sound changes are unlikely cross-linguistically:
 - Velar stop to vowel: k > a

Cross-linguistic trends

- Some sound changes are unlikely cross-linguistically:
 - Velar stop to vowel:

k > a

- Some sound changes are frequent cross-linguistically:
 - Consonant place change:
 - Debuccalization:

f > h

k > 7

Identity (faithfulness):

 $\chi > \chi$

Learning cross-linguistic trends

 How to learn these universals: express the transducer parameters as the output of a log-linear model

$$\theta_{S}$$
 $\left(\begin{array}{c} \mathfrak{p} > \mathfrak{n} \\ \mathfrak{m}_{\text{to Maori}} \end{array}\right) \propto \exp\{\langle \lambda, f \rangle\}$

Learning cross-linguistic trends

 How to learn these universals: express the transducer parameters as the output of a log-linear model

Learning cross-linguistic trends

- How to learn these universals: express the transducer parameters as the output of a log-linear model
- Universals ignore the name of the current branch

 Response to a concrete problem: sound changes are not exceptionless in real data

- Response to a concrete problem: sound changes are not exceptionless in real data
- Example: tension between a sound change and a morphological paradigm

- Response to a concrete problem: sound changes are not exceptionless in real data
- Example: tension between a sound change and a morphological paradigm

Passive marker
whaka-maori-tia
('translate into Maori')

VS.

Vowel sound change

ia > ie

Which one wins?

- Response to a concrete problem: sound changes are not exceptionless in real data
- Example: tension between a sound change and a morphological paradigm

Adding markedness features

• Add dependencies in the string transducer model:

Adding markedness features

Add dependencies in the string transducer model:

Also add new features:

Learning and Inference

Learning \(\lambda\) while reconstructing

- Monte Carlo EM
 - M step: not analytic but convex
 - E step: challenging; use MCMC

Learning \(\lambda\) while reconstructing

- Monte Carlo EM
 - M step: not analytic but convex
 - E step: challenging; use MCMC
- Hardness of inference (E step):
 - Horizontal links ⇒ (inference ≥ non-planar Ising inference)
 - Insertions, deletion ⇒ non-standard setup

Our previous work

- Problems with the Single Gibbs sampler:
 - Extremely slow in phylogenetic trees with high branching (most linguistic trees)
 - Slow mixing in large trees

How to jump to a state where the liquids /r/ and /l/ have a common ancestor?

Solution: taking vertical slices

SSR

Ancestry resampling

Solution: taking vertical slices

SSR

Ancestry resampling

Experiments

Comparison to other methods

 Evaluation: edit distance from a reconstruction made by a linguist (lower is better)

Comparison to other methods

- Evaluation: edit distance from a reconstruction made by a linguist (lower is better)
- Oakes 2000
 - Uses exact inference and deterministic rules
 - Reconstruction of Proto-Malayo-Javanic (recontructed in Nothefer 1975)

Comparison in large phylogenies

- Centroid: a novel heuristic based on an approximation to the Minimum Bayes risk
 - Reconstruction of Proto-Oceanic (reconstructed in Blust 1993)
 - Both algorithms use64 modern languages

Back to the initial puzzle

Can we harness more modern languages to improve reconstructions?

Back to the initial puzzle

- Can we harness more modern languages to improve reconstructions?
- Using previous model (NIPS 2008): NO (!)
 - No sharing across branches

Back to the initial puzzle

Performance of our model:

Mean edit distance to Blust's reconstruction

Number of modern languages: close to POc → far (less useful)

- For each pair of phonemes, there is a link with grayscale value proportional to the weight of that transition
- Organized in the shape of a IPA chart for convenience

Place of articulation

m m n td td cy kg qc 2 ?

Manner φβ fv θð sz ∫3 şz çj xγ κ ħς н♀ h h

*The model did *not* have features encoding natural classes

Conclusion

- We proposed three improvements
 - Markedness of internal reconstructions
 - Cross-linguistic universals
 - Using a new inference method to scale up
- Results:
 - We outperform previous approaches
 - We show that using more languages improves reconstructions
- Current work: using the model to attack open questions in historical linguistics

Thank you!

Acknowledgments

- Simon Greenhill, Robert Blust and Russell Gray for sharing their Austronesian dataset
- Michael Oakes for sharing his dataset and results
- Anna Rafferty and our anonymous reviewers for their comments
- Research funded by NSERC and NSF BCS-0631518