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EXPONENTIAL ERGODICITY OF THE BOUNCY
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Non-reversible Markov chain Monte Carlo schemes based on piece-
wise deterministic Markov processes have been recently introduced
in applied probability, automatic control, physics and statistics. Al-
though these algorithms demonstrate experimentally good perfor-
mance and are accordingly increasingly used in a wide range of ap-
plications, geometric ergodicity results for such schemes have only
been established so far under very restrictive assumptions. We give
here verifiable conditions on the target distribution under which the
Bouncy Particle Sampler algorithm introduced in [37] is geometrically
ergodic and we provide a central limit theorem for the associated er-
godic averages. This holds essentially whenever the target satisfies a
curvature condition and the growth of the negative logarithm of the
target is at least linear and at most quadratic. For target distributions
with thinner tails, we propose an original modification of this scheme
that is geometrically ergodic. For targets with thicker tails, we extend
the idea pioneered in [26] in a random walk Metropolis context. We
establish geometric ergodicity of the Bouncy Particle Sampler with
respect to an appropriate transformation of the target. Mapping the
resulting process back to the original parameterization, we obtain a
geometrically ergodic piecewise deterministic Markov process.

1. Introduction. Let π̄( dx) be a Borel probability measure on Rd ad-
mitting a density π̄(x) = exp{−U(x)}/ζ with respect to the Lebesgue mea-
sure dx where U : Rd 7→ [0,∞) is a potential function with locally Lipschitz
second derivatives. We assume that this potential function can be evaluated
pointwise while ζ is intractable. In this context, one can sample approxi-
mately from π̄( dx) and estimate expectations with respect to this measure
using Markov chain Monte Carlo (MCMC) algorithms. A wide range of
MCMC schemes have been proposed over the past 60 years since the intro-
duction of the Metropolis algorithm.
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In particular, non-reversible MCMC algorithms based on piecewise deter-
ministic Markov processes [10, 11] have recently emerged in applied probabil-
ity [4, 18, 33], [13, Chapter 13], automatic control [30, 31], physics [27, 29, 37]
and statistics [3, 6, 16, 36, 41, 42, 43]. These algorithms perform well empiri-
cally so they have already found many applications; see, e.g., [13, 22, 27, 35].
However, to the best of our knowledge, geometric convergence rates for this
class of MCMC algorithms have only been established under stringent as-
sumptions: [30] establishes geometric ergodicity of such a scheme but only
for targets with exponentially decaying tails, [33] obtains sharp results but
requires the state-space to be compact, while [2, 4, 18] consider targets on
the real line. Similar restrictions apply to limit theorems for ergodic aver-
ages, where for example in [2], a Central Limit Theorem (CLT) has been
obtained but this result is restricted to targets on the real line. Establishing
exponential ergodicity and a CLT under weaker conditions is of interest the-
oretically but also practically as it lays the theoretical foundations justifying
calibrated confidence intervals around Monte Carlo estimates (for a review,
see e.g. [25]).

We focus here on the Bouncy Particle Sampler algorithm (BPS), a piece-
wise deterministic MCMC scheme proposed in [37] and subsequently studied
in [6] and [33], as it has been observed to perform empirically very well when
compared to other state-of-the-art MCMC algorithms. In addition it has re-
cently been shown in [42] that BPS is the scaling limit of the (discrete-time)
reflective slice sampling algorithm introduced in [34]. In this paper we give
conditions on the target distribution π̄ under which BPS is geometrically
ergodic. These conditions hold whenever the target satisfies a curvature con-
dition and has “regular” tails, in the sense that the potential U grows at
least linearly and at most quadratically.

When the target has thin tails, that is U grows faster than a quadratic,
we show that a simple modification of the original BPS algorithm provides a
geometrically ergodic scheme. This modified BPS algorithm uses a position-
dependent rate of refreshment and is easy to implement.

In the presence of thick tails, that is U grows sub-linearly, we follow
the approach adopted in [26] for the random walk Metropolis algorithm. We
change variables to obtain a transformed target satisfying our conditions and
use BPS to sample this transformed target. Mapping this process back to
the original parameterization, we obtain a geometrically ergodic algorithm.

All results in the present paper are of a qualitative nature. It would be
of interest from a practitioner’s point of view to obtain explicit convergence
rates to guide the design of efficient algorithms. This is possible by keeping
track of the constants in our proofs and applying for example [38, Corol-
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lary 4]. However, we expect any rates thus obtained to not be sharp.
We henceforth restrict our attention to dimensions d ≥ 2; for d = 1

BPS coincides with the Zig-Zag process and this one-dimensional process
has been shown to be geometrically ergodic under reasonable assumptions
in [4]. After submission of this manuscript, two preprints have appeared
establishing geometric ergodicity, when d ≥ 2, of the Zig-Zag process [5]
and of a related process modelling the motion of a bacterium [17].

The rest of the paper is structured as follows. Section 2 contains back-
ground information on continuous-time Markov processes, exponential er-
godicity and BPS. The main results are stated in Section 3. Section 4 es-
tablishes several useful ergodic properties of BPS and of its novel variants
proposed here. The proofs of the main results can be found in Section 5,
whereas lengthy and technical proofs of auxiliary results are provided in the
Supplementary Material [12].

2. Background and notation. Let {Zt : t ≥ 0} denote a time-homo-
geneous, continuous-time Markov process on a topological space (Z,B(Z)),
where B(Z) is the Borel σ-field of Z, and denote its transition semigroup by
{P t : t ≥ 0}. For every initial condition Z0 := z ∈ Z, the process {Zt : t ≥ 0}
is defined on a filtered probability space (Ω,F , {Ft},Pz), with {Ft} the
natural filtration, such that for any n > 0, times 0 < t1 < t2 < · · · < tn and
B1, . . . , Bn ∈ B(Z) we have

Pz{Zt1 ∈ B1} =
∫
B1
P t1(z, dz1),

Pz{Zt1 ∈ B1, Zt2 ∈ B2} =
∫
B1

∫
B2
P t2−t1(z1, dz2)P t1(z, dz1),

Pz {Zt1 ∈ B1, . . . , Ztn ∈ Bn} =
∫
B1
· · ·
∫
Bn
P tn−tn−1(zn−1, dzn)

× · · · × P t2−t1(z1, dz2)P t1(z, dz1).

We write Ez to denote expectation with respect to Pz.
Let B(Z) denote the space of bounded measurable functions on Z, which

is a Banach space with respect to the norm ‖f‖∞ := supz∈Z |f(z)|. We also
write M(Z) for the space of σ-finite, signed measures on (Z,B(Z)). Given
a measurable function V : Z → [1,∞), we define a norm on M(Z) through

‖µ‖V := sup
|f |≤V

|µ(f)|.

For any transition kernel K : Z ×B(Z) → [0, 1], we define an operator
K : B(Z) → B(Z) through Kf(z) =

∫
K(z, dw)f(w). We will slightly
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abuse notation by letting K also denote the dual operator acting on M(Z)
through µK(A) =

∫
Z µ( dz)K(z,A) for A ∈ B(Z). With this notation, a

σ-finite measure π on B(Z) is called invariant for {P t : t ≥ 0} if πP t = π
for all t ≥ 0.

2.1. Exponential ergodicity of continuous-time processes. Suppose that a
Borel probability measure π is invariant for {P t : t ≥ 0}. We are interested
in the exponential convergence of the process in the sense of V -uniform
ergodicity: that is there exists a measurable function V : Z → [1,∞) and
constants D <∞ and ρ < 1 such that

(2.1) ‖P t(z, ·)− π(·)‖V ≤ V (z)Dρt, t ≥ 0.

The proof of V -uniform ergodicity usually proceeds through the verification
of an appropriate drift condition which is often expressed in terms of the
strong generator (see for example [11, pg. 28]). However, in this paper, it will
prove useful to focus on the extended generator of the Markov process {Zt :
t ≥ 0} which is defined as follows. Let D(L̃) denote the set of measurable
functions f : Z → R for which there exists a measurable function h : Z → R

such that t 7→ h(Zt) is integrable Pz-almost surely for each z ∈ Z and the
process

f(Zt)− f(z)−
∫ t

0
h(Zs) ds, t ≥ 0,

is a local Ft-martingale. Then we write h = L̃f and we say that (L̃,D(L̃))
is the extended generator of the process {Zt : t ≥ 0}. This is an extension
of the usual strong generator associated with a Markov process; for more
details see [11, Sections 14 and 26] and references therein. We will also need
the concepts of aperiodicity (see [15, p. 1675]), irreducibility, small sets and
petite sets ([15, p. 1674]).

2.2. The Bouncy Particle Sampler. We begin with some additional no-
tation. We will consider x ∈ Rd as a column vector and we will write | · | and
〈·, ·〉 to denote the Euclidean norm and scalar product in Rd respectively,
whereas ‖A‖ = sup{|Ax| : |x| = 1} will denote the operator norm of the
matrix A ∈ Rd×d. Let B(x, δ) := {y ∈ Rd : |x − y| < δ}. For a function
U : Rd → [0,∞) we write ∇U(x) and ∆U(x) for the gradient and the Hes-
sian of U(·) evaluated at x and we adopt the convention of treating∇U(x) as
a column vector. For a differentiable map h : Rd → Rd we will write ∇h for
the Jacobian of h; that is, letting h = (h1, . . . , hd)T , we have (∇h)i,j = ∂xihj .
Let us write ψ for the uniform measure on Sd−1 := {v ∈ Rd : |v| = 1}, pϑ (·)
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for the density of the angle between a fixed unit length vector and a random
vector sampled from ψ(·), which is given by

(2.2) pϑ (θ) := κd (sin θ)d−2 , κd =
(∫ π

0
(sin θ)d−2 dθ

)−1
, θ ∈ [0, π],

and let Z := Rd × Sd−1 and π( dx, dv) := π̄( dx)ψ( dv). For (x, v) ∈ Z, we
also define

(2.3) R(x)v := v − 2〈∇U(x), v〉
|∇U(x)|2 ∇U(x).

The vector R(x)v can be interpreted as a Newtonian collision on the hyper-
plane orthogonal to the gradient of the potential U , hence the interpretation
of x as a position, and v, as a velocity.

BPS defines a π-invariant, non-reversible, piecewise deterministic Markov
process {Zt : t ≥ 0} = {(Xt, Vt) : t ≥ 0} taking values in Z. Since π admits
π̄ as a marginal, we can use this scheme to approximate expectations with
respect to π̄. We introduce here a slightly more general version of BPS than
the one discussed in [1, 6, 33, 37]. Let

λ̄(x, v) := Λref(x) + λ(x, v),
λ(x, v) := max{0, 〈∇U(x), v〉} =: 〈∇U(x), v〉+,

(2.4)

where the refreshment rate Λref(·) : Rd 7→ (0,∞) is allowed to depend on the
location x. Previous versions of BPS restrict attention to the case Λref(x) =
λref ; the generalisation considered here will prove useful in establishing the
geometric ergodicity of this scheme for thin-tailed targets.

Given any initial condition z ∈ Z, a construction of a path of BPS is
given in Algorithm 1. Step 4 of this algorithm corresponds to the simulation
of the first arrival time of an inhomogeneous Poisson process. Simulating
such arrival times is a well-studied problem and various exact simulation
techniques can be found in [14, Chapter 6]. In the specific BPS context,
these techniques have been detailed in [6, 37]. Equivalently, BPS can be
defined as the Markov process on Z with extended generator given by

(2.5) L̃f(x, v) = Vf(x, v) + λ̄(x, v) [Kf (x, v)− f(x, v)] ,

for f ∈ D(L̃), the domain of L̃ (see Section 5.1), where

(2.6) Vf(x, v) := d
dtf(x+ tv, v)

∣∣∣
t=0+

,
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6 DELIGIANNIDIS, BOUCHARD-CÔTÉ AND DOUCET

Algorithm 1 : Bouncy Particle Sampler algorithm
1: (X0, V0)← (x, v)
2: t0 ← 0
3: for k = 1, 2, 3, . . . do
4: sample inter-event time τk, where τk is a positive random variable such that

P[τk ≥ t] = exp
{
−
∫ t

0
λ̄(Xtk−1 + rVtk−1 , Vtk−1 ) dr

}
5: for r ∈ (0, τk) set (Xtk−1+r, Vtk−1+r)← (Xtk−1 + rVtk−1 , Vtk−1 )
6: tk ← tk−1 + τk . Time of k-th event
7: Xtk ← Xtk−1 + τkVtk−1

8: if Uk < λ(Xtk , Vtk−1 )/λ̄(Xtk , Vtk−1 ), where Uk ∼ Uniform(0, 1) then
9: Vtk ← R(Xtk )Vtk−1 . Newtonian collision on the gradient (“bounce”)

10: else
11: Vtk ∼ ψ . Refreshment of the velocity
12: end if
13: end for

and the transition kernel K : Z × B(Z) 7→ [0, 1] is defined through
(2.7)

K ((x, v), ( dy, dw)) = Λref(x)
λ̄(x, v)

δx( dy)ψ( dw) + λ(x, v)
λ̄(x, v)

δx( dy)δR(x)v( dw).

For a continuously differentiable f ∈ D(L̃) the expression (2.5) reduces to

(2.8) L̃f(x, v) = 〈∇xf(x, v), v〉+ λ̄(x, v) [Kf (x, v)− f(x, v)] .

For Λref(x) = λref > 0, it has been shown in [6] that BPS is ergodic,
provided U is continuously differentiable, when the velocities are distributed
according to a normal distribution rather than uniformly on the sphere Sd−1

as assumed here. Restricting velocities to Sd−1 makes our calculations more
tractable without significantly altering the properties of the process. In this
context, [33] considers only compact state spaces but the arguments therein
can be adapted to prove ergodicity in the general case.

3. Main results. In this paper, we provide sufficient conditions on the
target measure π̄ and the refreshment rate for BPS to be V -uniformly ergodic
for the following Lyapunov function1

(3.1) V (x, v) := eU(x)/2

λ̄(x,−v)1/2 .

1In [30], the Lyapunov function eU(x)/2λ̄(x, v)1/2 is used to establish the geometric
ergodicity of a different piecewise deterministic MCMC scheme for targets with exponential
tails but we found this function did not apply to BPS.
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Throughout this section, we refer the reader to Table 1 for examples of
target distributions with various tail behaviours where each of our Theorems
is used to establish exponential ergodicity. All proofs are given in Section 5
and the Supplementary Material [12]. Before stating our results we make a
few working assumptions.

Assumptions. Let U : Rd → [0,∞) be such that

∂2U(x)
∂xi∂xj

is locally Lipschitz continuous for all i, j,(A0) ∫
Rd
π̄( dx)|∇U(x)| <∞,(A1)

lim
|x|→∞

eU(x)/2√
|∇U(x)|

> 0,(A2)

V ≥ c, for some c > 0.(A3)

Remark 1. Assumption (A3) is not restrictive as in view of Assump-
tion (A2), V ≥ c may only fail locally near the origin. Therefore if V ≥ c
fails inside the ball B(0,M), we can always replace V with Ṽ = V +
1B(0,M) ≥ 1. This modified Lyapunov function still belongs to the domain
D(L̃) of the extended generator L̃ as explained in Section 5.1.

Remark 2. From the proofs, it is clear that Theorems 3.1 and 3.2 de-
tailed below remain true if we replace Assumption (A0) by the following
slightly weaker assumption

t 7→ 〈∇U(x+ tv), v〉 is locally Lipshitz for all (x, v) ∈ Z, and
(A0) holds for all |x| > R, for some R > 0.

(A0’)

Although cumbersome, this alternative formulation is useful in the proof of
Theorem 3.3 which relies on Theorems 3.1 and 3.2.

Rather than requiring that U ≥ 0, we could equivalently require that U
is bounded below. This guarantees that the density π̄ is bounded above.
Assumptions (A0) to (A3) are technical conditions and it may be possible
to relax them. For example, Assumption (A1) allows us to use the approach
of [8] to establish the invariance of the process. Other approaches exist, for
example [6]. When the refreshment rate depends on the location we assume
in addition that

∫
Λref(x)π̄( dx) <∞. Under these conditions the embedded

discrete-time Markov chain {Θk : k ≥ 0} := {(Xτk , Vτk) : k ≥ 0} admits an
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invariant probability measure; see [8] and Lemma 1. The Lyapunov func-
tion (3.1) is proportional to the inverse of the square root of the invariant
distribution of this embedded discrete-time Markov chain. There may exist
other Lyapunov functions allowing different set of conditions compared to
(A2) and (A3).

3.1. “Regular” tails. We now state our first main result.

Theorem 3.1. Suppose that Assumptions (A0)-(A3) hold. Let Λref(·) =
λref > 0 and suppose that one of the following sets of conditions holds:

(a) lim|x|→∞ |∇U(x)| = ∞, lim|x|→∞ ‖∆U(x)‖ ≤ α1 < ∞ and λref >

(2α1 + 1)2,
(b) lim|x|→∞ |∇U(x)| = 2α2 > 0, lim|x|→∞ ‖∆U(x)‖ ≤ C < ∞ and λref ≤

α2/cd, with cd := 16
√
d.

Then BPS is V -uniformly ergodic.

In summary, BPS with an appropriately chosen constant refreshment rate
Λref(·) = λref > 0 is exponentially ergodic for targets with tails that decay
at least as fast as an exponential and at most as fast as a Gaussian. In
addition the uniform bound on the Hessian imposes some regularity on the
curvature of the target. The proof of Theorem 3.1 is provided in Section 5,
building on the auxiliary results of Section 4. The conditions imposed on
the refreshment rate are sufficient but not sharp.

We provide here an example of a common Bayesian model which yields a
posterior density satisfying the assumptions of Theorem 3.1.

Example 1. Bayesian logistic regression. Consider binary observa-
tions (y1, ..., yn) ∈ {0, 1}n and associated Rd-valued predictors c1, ..., cn.
We assume the observations are conditionally independent given the
predictors and regression coefficients x ∈ Rd and satisfy

P (Yi = 1|x, ci) = 1/
(
1 + e−〈x,ci〉

)
= ρi (x) .

We assign a prior distribution to x of negative log density
∑d
k=1 g(xk)

where g is twice differentiable. Hence the potential associated to the
posterior density of x given the observations satisfies

(3.2) U (x) =
d∑
i=1

g(xk) +
n∑
i=1

{
−yi〈ci, x〉+ log

(
1 + e〈x,ci〉

)}
.
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10 DELIGIANNIDIS, BOUCHARD-CÔTÉ AND DOUCET

Its gradient with respect to x is given by

(3.3) ∇U (x) = ∇g(x) +
n∑
i=1
{−yi + ρi (x)} ci,

where ∇g(x) := (g′(x1), ..., g′(xd))T while its Hessian satisfies

(3.4) ∆U (x) := ∆g(x) +
n∑
i=1

ρi (x) {1− ρi (x)} cicTi ,

with ∆g(x) := diag(g′′(x1), ..., g′′(xd)). Hence for an isotropic Gaus-
sian prior of covariance σ2Id, we have g(v) = v2/(2σ2) and U sat-
isfies condition 3.1 (a). For a smoothed Laplace prior, i.e. g(v) =
(1 + v2/σ2)1/2, U satisfies condition 3.1 (b).

Theorem 3.1 does not apply to targets with tails thinner than Gaussian
or thicker than exponential distributions. As summarised in Table 1, it is
also known that Metropolis adjusted Langevin algorithm (MALA), see [39,
Theorems 4.2 and 4.3], and Hamiltonian Monte Carlo (HMC), see [28, The-
orems 5.13 and 5.17], are not geometrically ergodic for such targets. We now
turn our attention to these cases.

3.2. Thin-tailed targets. When the target is thin-tailed, in the sense that
the gradient of its potential U grows super-linearly in the tails, any constant
refreshment rate will eventually be negligible. It has been shown in [6] that
BPS without refreshment is not ergodic as the process can remain forever
outside a ball of positive radius. In our case the refreshment rate does not
vanish, but refreshment in the tails will be extremely rare. This will result
in long excursions during which the process will not explore the centre of
the space.

The above discussion suggests that, for thin-tailed targets, we need to scale
the refreshment rate accordingly in order for it to remain non-negligible in
the tails. The next result makes this intuition more precise.

Theorem 3.2. Suppose that Assumptions (A0)-(A3) hold. Let λref > 0
and define for some ε > 0

(3.5) Λref(x) := λref + |∇U(x)|
max{1, |x|ε} .

Suppose that

lim
|x|→∞

|∇U(x)|
|x|

=∞, lim
|x|→∞

‖∆U(x)‖
|∇U(x)| |x|

ε = 0.
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Then BPS is V -uniformly ergodic.

The proof of Theorem 3.2 is given in Section 5. It is worth noting that
although Langevin diffusions can be geometrically ergodic for thin-tailed tar-
gets, they typically cannot be simulated exactly. When they are discretised,
an additional Metropolis–Hastings step is needed to sample from the correct
target distribution and the resulting MALA algorithm is not geometrically
ergodic [39, Theorem 4.2].

We next provide an example of a common Bayesian model which yields a
posterior density satisfying the assumptions of Theorem 3.2.

Example 2. Bayesian logistic regression (continued). In the con-
text of the logistic regression model of Example 1, although priors
whose tails decrease like a Gaussian or an exponential are very pop-
ular in the literature, alternatives have also been proposed, e.g., [21].
In particular, if we select g(u) = (1 + u2/σ2)β/2 with β > 2 then the
potential U given in (3.2) satisfies the conditions of Theorem 3.2.

3.3. Thick-tailed targets. For targets with tails thicker than an exponen-
tial, that is when the gradient of the potential U vanishes in the tails, the
lack of exponential ergodicity of gradient-based methods such as MALA
and HMC, is natural—the vanishing gradient induces random-walk like be-
haviour in the tails. This seems to be the main obstruction preventing ex-
tension of Theorem 3.1 to thick-tailed distributions.

However, following the approach of [26], we can address this by trans-
forming the target to one satisfying the assumptions of either Theorem 3.1,
or Theorem 3.2. This guarantees that BPS with respect to the transformed
target will be geometrically ergodic. By mapping back this BPS process to
the original parameterization, we obtain a geometrically ergodic piecewise
deterministic Markov process with non-linear dynamics.

As in [26] we define the following functions f (1), f (2) : [0,∞)→ [0,∞):

(3.6) f (1)(r) =
{

ebr − e
3 , r > 1

b ,

r3 b3e
6 + r be2 , r ≤ 1

b ,

and

(3.7) f (2)(r) =
{
r, r ≤ R,
r + (r −R)p, r > R,
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12 DELIGIANNIDIS, BOUCHARD-CÔTÉ AND DOUCET

where R, b > 0 are arbitrary constants. We also define the isotropic trans-
formations h(i) : Rd → Rd, given by

(3.8) h(i)(x) :=


f (i)(|x|)x
|x|

, for x 6= 0,

0, for x = 0.

From [26, Lemma 1] it follows that for i = 1, 2, h = h(i) : Rd 7→ Rd defines
a C1-diffeomorphism, that is h is bijective with h, h−1 ∈ C1(R).

Let h = h(i) for some i ∈ {1, 2}, X ∼ π̄ and Y = h−1(X). Then Y ∈ Rd
is distributed according to the Borel probability measure π̄h, with density
given by π̄h(y) = exp{−Uh(y)}/ζh, where by [26, Eqns. (6) and (7)] we have
that

Uh(y) = U(h(y))− log det(∇h(y)),(3.9)
∇Uh(y) = ∇h(y)∇U(h(y))−∇ log det(∇h(y)).(3.10)

Let {(Yt, Vt); t ≥ 0} denote the trajectory produced by the BPS algorithm
targeting πh(y, v) := π̄h(y)ψ(v) and let

Vh(x, v) := eUh(x)/2

[Λref(x) + 〈∇Uh(x),−v〉+]1/2 .

Theorem 3.3. Let U satisfy Assumption (A0).

(a) If for some d > d

(i) lim|x|→∞ |x||∇U(x)| <∞,
(ii) lim|x|→∞ |x|2‖∆U(x)‖ <∞, and

(iii) lim|x|→∞〈x,∇U(x)〉 = d,

then Uh(1), with h(1) defined via (3.6), satisfies the assumptions of The-
orem 3.1 (b). If in addition Λref(·) = λref ≤ b(d − d)/32

√
d, with b as

in (3.6), then the process {(Xt, Vt) : t ≥ 0}, where Xt = h(1)(Yt),
is π-invariant and Ṽ -uniformly ergodic, where Ṽ = Vh(1) ◦ H(1) with
H(1)(x, v) := (h(1)(x), v).

(b) If for some β ∈ (0, 1) we have
(i) lim|x|→∞ |x|1−β|∇U(x)| <∞,

(ii) lim|x|→∞ |x|−β〈x,∇U(x)〉 > 0, and

(iii) lim|x|→∞ |x|2−β‖∆U(x)‖ <∞,
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then Uh(2), with h(2) defined via (3.7) and p such that βp > 2, satisfies
the assumptions of Theorem 3.2. If in addition Λref(·) is given by (3.5)
with U := Uh(2), then the process {(Xt, Vt) : t ≥ 0}, where Xt =
h(2)(Yt), is π-invariant and Ṽ -uniformly ergodic, where Ṽ = Vh(2)◦H(2)

with H(2)(x, v) := (h(2)(x), v).

The proof of this theorem is given in Section 5.3.

Example 3. Multivariate t-distribution. Suppose that x ∈ Rd, for
d ≥ 2, k > 1, and let

π̄(x) ∝ e−U(x) =
[
1 + |x|

2

k

]− k+d
2

.

It follows that

∇U(x) = (k + d)
(k + |x|2)x, ∆U(x) = k + d

k + |x|21d − 2(k + d)xxT

(k + |x|2)2 ,

where 1d is the d×d identity matrix. Then U satisfies the conditions of
Theorem 3.3 (a). We refer the reader to [26], Section 3.4, for a related
example arising from Bayesian inference.

Generalised Gaussian distribution. Let U(x) = (1 + |x|2)β/2 for some
β ∈ (0, 1). Then U satisfies the conditions of Theorem 3.3 (b).

Remark 3. In the context of Theorem 3.3 (a), while geometric ergod-
icity holds for all positive fixed b, tuning this parameter may be useful in
practice as pointed out by [26].

3.4. A Central Limit Theorem. From the above results we obtain the
following CLT, proven in Section 5.4, for the estimator T−1 ∫ T

0 g(Zs) ds of
π(g). This estimator can be computed exactly when g is a multivariate
polynomial of the components of z; see, e.g., [6, Section 2.4].

Theorem 3.4. Suppose that any of the conditions of Theorems 3.1 or
3.2 hold. Let ε > 0 such that W := V 1−ε, satisfies π(W 2) < ∞. Then for
any g : Z → R such that g2 ≤ W and for any initial distribution, we have
that

1√
T
ST [g − π(g)]⇒ N (0, σ2

g),

with

ST [g] :=
∫ T

0
g(Zs) ds, σ2

g := 2
∫
ĝ(z) [g(z)− π(g)]π( dz),
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14 DELIGIANNIDIS, BOUCHARD-CÔTÉ AND DOUCET

where ĝ is the solution of the Poisson equation g−π(g) = −Lĝ, and satisfies
|ĝ| ≤ c0(1 +W ) for some constant c0.

Corollary 1. Suppose that the conditions of Theorem 3.3 (a) or The-
orem 3.3 (b) hold, let h = h(1), h(2) respectively, define H(x, v) = (h(x), v),
and let Ṽ = Vh ◦H denote the corresponding Lyapunov function. Let ε > 0
such that W := Ṽ 1−ε, satisfies πh(W 2) <∞. Then for any g : Z → R such
that g2 ≤W and for any initial distribution, we have that

1√
T

∫ T

0
[g(Xt, Vt)− π(g)] dt

= 1√
T

∫ T

0
[g ◦H(Yt, Vt)− πh (g ◦H)] dt⇒ N (0, σ̃2

g),

with
σ̃2
g := 2

∫
ĝ ◦H(z) [g ◦H(z)− πh(g)]πh( dz),

where ĝ ◦H is the solution of the Poisson equation g ◦ H − π (g ◦H) =
−Lhĝ ◦H, and Lh is given in (2.5) with λ̄ defined in (2.4) with U replaced
by Uh and K defined in (2.7) using R(x)v defined in (2.3) with ∇Uh replacing
∇U .

4. Auxiliary results. To prove V -uniform ergodicity we will use the
following result.

Theorem A. [15, Theorem 5.2] Let {Zt : t ≥ 0} be a Borel right Markov
process taking values in a locally compact, separable metric space Z and
assume it is non-explosive, irreducible and aperiodic. Let (L̃,D(L̃)) be its
extended generator. Suppose that there exists a measurable function V : Z →
[1,∞) such that V ∈ D(L̃), and that for a petite set C ∈ B(Z) and constants
b, c > 0 we have

(D) L̃V ≤ −cV + b1C .

Then {Zt : t ≥ 0} is V -uniformly ergodic.

The BPS processes considered in this paper can be easily seen to satisfy
the standard conditions in [11, Section 24.8], and thus by [11, Theorem 27.8]
it follows that they are Borel right Markov processes. In addition since the
process moves at unit speed, for any z = (x, v) ∈ Z the first exit time from
B(0, |x|+M)× Sd−1 is at least M , and thus, BPS is non-explosive.
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We will next show that BPS remains π-invariant when the refreshment
rate is allowed to vary with x, and that it is irreducible and aperiodic. Finally
we will show that all compact sets are small, hence petite. To complete the
proofs of Theorems 3.1 and 3.2 it remains to establish that V satisfies (D)
which is done in Section 5.

Lemma 1. Suppose that the map t 7→ U(x+ tv) is absolutely continuous
for all (x, v) ∈ Z, that Assumption (A1) holds and that

∫
Λref(x)π̄( dx) <∞.

Then BPS with refreshment rate Λref(·) is invariant with respect to π.

The proof of Lemma 1 is based on [8], see also [9], where the authors
provide a link between the invariant measures of {Zt : t ≥ 0} and those of
the embedded discrete-time Markov chain {Θk : k ≥ 0} := {(Xτk , Vτk) : k ≥
0} which tracks the process just after events. The details are given in the
Supplementary Material [12].

Notice that when Λref(·) is given by (3.5), the condition
∫

Λref(x)π̄( dx) <
∞ is implied by (A1).

Remark 4. The Markov chain {Θk : k ≥ 0} admits an invariant prob-
ability measure proportional to λ̄(x,−v)π( dx, dv). It follows from a simple
change of measure argument that under ergodicity and integrability condi-
tions one has

(4.1)
∑n
k=1 g (Xτk , Vτk) /λ̄ (Xτk ,−Vτk)∑n

k=1 1/λ̄ (Xτk ,−Vτk)
→ π(g) a.s. as n→∞.

This is an alternative estimator of π(g) compared to T−1 ∫ T
0 g(Zs) ds.

The next result establishes the existence of small sets as well as the irre-
ducibility of the process.

Lemma 2. Suppose that Λref(·) > λref > 0. For all T > 0, z := (x0, v0) ∈
B(0, T/6)× Sd−1, and Borel set A ⊆ B(0, T6 )× Sd−1,

Pz(ZT ∈ A) ≥ C(T, d, λref)
∫∫

A
ψ( dv) dx,

for some constant C(T, d, λref) > 0 depending only on T, d, λref . Hence, all
compact sets are small. Moreover, the process {Zt : t ≥ 0} is irreducible.

The proof of Lemma 2 leverages the refreshment events to construct paths
connecting arbitrary points. The details are provided in the Supplementary
Material [12].
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16 DELIGIANNIDIS, BOUCHARD-CÔTÉ AND DOUCET

Lemma 3. The process {Zt : t ≥ 0} is aperiodic.

Proof of Lemma 3. We show that for some small set A′, there exists
a T such that P t(z,A′) > 0 for all t ≥ T and z ∈ A′.

Let A′ := B(0, 1) × Sd−1, T = 6, and suppose that t > T . By Lemma 2,
for all z ∈ B(0, t/6)× Sd−1 and Borel set A ⊂ B(0, t/6)× Sd−1, we have

Pz(Zt ∈ A) ≥ C(t, d, λref)
∫∫

A
ψ( dv) dx,

for some C(t, d, λref) > 0. Hence, by picking A = A′, we have, since B(0, 1) ⊂
B(0, t/6), that for all z ∈ A′,

Pz(Zt ∈ A′) ≥ C(t, d, λref)
∫∫

A′
ψ( dv) dx > 0.

5. Proofs of main results. To complete the proofs of Theorems 3.1
and 3.2 it remains to show that V : Z → [0,∞), defined in (3.1), satisfies
the drift condition (D).

5.1. Extended Generator of BPS. We first need show that V belongs to
D(L̃), the domain of the extended generator L̃ (see [11, Section 26]), which
suffices for Theorem A to apply. By Assumption (A0’), or the stronger
Assumption (A0), it easily follows that for all (x, v) the function t 7→
V (x+ tv, v) is locally Lipschitz and thus absolutely continuous [11, Propo-
sition 11.8]. Therefore by [11, Theorem 26.14], since there is no boundary
(see [11, Section 24]), V is bounded as a function of v and the jump rate λ̄
is locally bounded, it follows that V ∈ D(L̃).

The fact that L̃ is given by (2.5) follows from the proof of [11, The-
orem 26.14, bottom of page 71]. Indeed, for any fixed z = (x, v) ∈ Z, let
{Ti}i≥1 denote the event times of BPS started from (x, v), the paths of which
we denote with {Zt : t ≥ 0}, where Zt = (Xt, Vt). Since t 7→ V (x + tv, v) is
absolutely continuous, its left and right derivatives of V (x+ tv, v) coincide
almost everywhere and thus we can write

V
(
ZT−i

)
− V

(
ZTi−1

)
=
∫ Ti−Ti−1

0

d
dsV

(
XTi−1 + sVTi−1 , VTi−1

)
ds

=
∫ Ti−Ti−1

0
VV

(
XTi−1 + sVTi−1 , VTi−1

)
ds,

where V is defined in (2.6). From this and the proof of the first part of [11,
Theorem 26.14] it follows that

V (Zt)− V (z)−
∫ t

0
VV (Zs) ds
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is a local martingale and therefore L̃ defined in (2.5) coincides with the
extended generator given in [11, Eq. (26.15)].

From the discussion in [11, p. 32], it is also clear that for f ∈ D(L̃), the
function L̃f : Z → R is uniquely defined everywhere except possibly on a
set A of zero potential, that is∫ ∞

0
1A(Zs) ds = 0, Pz a.s., for all z ∈ Z.

For the proof of Theorem 3.2, ∇xV (x, v) will not be well defined for the
set A := {(x, v) ∈ Z : |x| = 1} which has zero potential, since the linear
trajectories of BPS and the countable number of jumps imply it can intersect
this set at most a countable number of times. The same argument also
justifies Remark 1.

Finally, at points (x, v) where 〈∇U(x), v〉 6= 0, the gradient ∇xV (x, v)
exists and therefore we can use the more convenient expression (2.8), whereas
we will use the original expression (2.5) whenever 〈∇U(x), v〉 = 0.

5.2. Proof of Theorem 3.1 and Theorem 3.2. We have established that
BPS satisfies all conditions of Theorem A and that the Lyapunov function
defined in (3.1) belongs to the domain of the extended generator D(L̃). The
next result establishes the drift condition (D) for a constant refreshment
rate and thus completes the proof of Theorem 3.1.

Lemma 4 (Lyapunov function—Constant refreshment). Let the refresh-
ment rate be constant, i.e., Λref(·) := λref . The function V defined in (3.1)
belongs to D(L̃). If either of the conditions of Theorem 3.1 holds, V is a
Lyapunov function as it satisfies (D).

Next we establish the drift condition (D) for a location-dependent refresh-
ment rate completing the proof of Theorem 3.2.

Lemma 5 (Lyapunov function—Varying refreshment). Let the refresh-
ment rate Λref(·) be given by (3.5). Then the function V defined in (3.1)
belongs to D(L̃). If in addition the assumptions of Theorem 3.2 hold, V is
a Lyapunov function as it satisfies (D).

The proofs are quite lengthy and technical and are thus given in the
Supplementary Material [12].
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5.3. Proof of Theorem 3.3. Next, we set the stage for the proof of Theo-
rem 3.3. We will frequently use [26, Equations (11),(13)] which we state for
the reader’s convenience,

(5.1) ∇h(x) =


f(|x|)1d
|x|

+
[
f ′
(
|x|
)
− f(|x|)
|x|

]
xxT

|x|2
, x 6= 0,

f ′(0)1d, x = 0,

and

(5.2) det
(
∇h(x)

)
=


f ′
(
|x|
)(f(|x|)
|x|

)d−1
, x 6= 0,

f ′(0)d, x = 0.

Let {Zh,t = (Yt, Vt); t ≥ 0} be a Markov process whose generator is given
by (2.5) with U replaced by Uh, and write {P th : t ≥ 0} for its transition
kernels. Then letting Xt := h(Yt) for t ≥ 0, from [7, Corollary 3], it follows
that {Zt = (Xt, Vt) : t ≥ 0} is also a Markov process with transition kernel
given by P t(z,A) = P th(H−1(z), H−1(A)) for all A ∈ B(Z) where H(x, v) =
(h(x), v). It is also easy to see that if Zh,t is πh-invariant, then Zt will be
π-invariant – see also the discussion in [26, Theorem 6].

Suppose now that {Zh,t : t ≥ 0} is Vh-uniformly ergodic for some function
Vh, that is

‖P th(z, ·)− πh‖Vh ≤ ChVh(z)ρth,
for some Ch > 0 and ρh ∈ (0, 1) with πh admitting the density π̄h(y)ψ(v).
Then we can see that∫

f dP t(z, ·)−
∫
f dπ =

∫
f ◦H dP th

(
H−1(z), ·

)
−
∫
f ◦H dπh.

Therefore it follows that

sup
|f |≤Vh◦H−1

∣∣∣∣∫ f dP t(z, ·)−
∫
f dπ

∣∣∣∣
= sup
|f |≤Vh◦H−1

∣∣∣∣∫ f ◦H dP th
(
H−1(z), ·

)
−
∫
f ◦H dπh

∣∣∣∣
≤ sup
|g|≤Vh

∣∣∣∣∫ g dP th
(
H−1(z), ·

)
−
∫
g dπh

∣∣∣∣
= ‖P th(H−1(z), ·)− πh‖Vh ≤ ChVh ◦H

−1(z)ρth,

whence Zt = H(Zh,t) is Vh ◦H−1-uniformly ergodic.
The proof of Theorem 3.3 then follows from the following two Lemmas

the proofs of which are given in the Supplementary Material [12].
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Lemma 6. Under the assumptions of Theorem 3.3, the potentials Uh :
Rd → [0,∞) defined in (3.9) satisfy Assumptions (A0)-(A2), when h = h(1)

or h = h(2).

Lemma 7. The following results hold.

(A) Under the assumptions of Theorem 3.3 (a), the function Uh(1), de-
fined through equations (3.6), (3.8) and (3.9), satisfies the conditions
of Theorem 3.1 (b) with α2 := b(d− d)/2.

(B) Under the assumptions of Theorem 3.3 (b), the function Uh(2), defined
through equations (3.7), (3.8) and (3.9), satisfies the conditions of The-
orem 3.2.

5.4. Proof of Theorem 3.4. The proof of the CLT now follows from a
standard result [20, Theorem 4.3].

Proof of Theorem 3.4. Notice that if V satisfies (D) then for any ε ∈
(0, 1), by Jensen’s inequality it follows that Ez

[
V 1−ε(Zt)

]
≤ Ez [V (Zt)]1−ε.

Since Ez [V ε(Z0)] = V (z)ε, it follows that

LV 1−ε(z) = d
dt E

z
[
V 1−ε(Zt)

] ∣∣∣∣
t=0
≤ d

dt E
z [V (Zt)]1−ε

∣∣∣∣
t=0

= (1− ε) 1
Ez[V (Zt)]ε

d
dt E

z [V (Zt)]
∣∣∣∣
t=0

= (1− ε)LV (z)
V (z)ε ≤ −(1− ε)δ V (z)

V (z)ε + b1C(z)
V (z)ε ,

and thus W (z) := V (z)1−ε also satisfies (D). An application of [20, Theo-
rem 4.3] completes the proof.
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Supplementary Material to Exponential Ergodicity of the Bouncy
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proofs of all results given in the main paper.
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[12] Deligiannidis, G., Bouchard-Côté, A. and Doucet, A. (2018). Supplement to “Expo-

nential Ergodicity of the Bouncy Particle Sampler.” DOI: COMPLETED BY THE
TYPESETTER

[13] Del Moral, P., and Penev, S. (2016). Stochastic Processes: From Applications to The-
ory. CRC Press.

[14] Devroye, L. (1986). Non-uniform Random Variate Generation. Springer-Verlag: New
York.

[15] Down, D., Meyn, S.P., and Tweedie, R.L. (1995). Exponential and uniform ergodicity
of Markov processes. Ann. Probab. 23:4, 1671–1691.

[16] Fearnhead, P., Bierkens, J., Pollock, M., and Roberts, G. O. (2016). Piecewise
deterministic Markov processes for continuous-time Monte Carlo. arXiv preprint
arXiv:1611.07873.

[17] Fétique, N. (2017). Long-time behaviour of generalised Zig-Zag process. arXiv
preprint arXiv:1710.01087.
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