
Efficient Continuous-Time Markov Chain Estimation

Monir Hajiaghayi monirh@cs.ubc.ca

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

Bonnie Kirkpatrick bbkirk@cs.miami.edu

Department of Computer Science, University of Miami, Coral Gables, FL 33124, United States

Liangliang Wang liangliang wang@sfu.ca

Department of Statistical and Actuarial Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada

Alexandre Bouchard-Côté bouchard@stat.ubc.ca

Statistics Department, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

Abstract

Many problems of practical interest rely on
Continuous-time Markov chains (CTMCs)
defined over combinatorial state spaces, ren-
dering the computation of transition prob-
abilities, and hence probabilistic inference,
difficult or impossible with existing meth-
ods. For problems with countably infinite
states, where classical methods such as ma-
trix exponentiation are not applicable, the
main alternative has been particle Markov
chain Monte Carlo methods imputing both
the holding times and sequences of visited
states. We propose a particle-based Monte
Carlo approach where the holding times are
marginalized analytically. We demonstrate
that in a range of realistic inferential setups,
our scheme dramatically reduces the variance
of the Monte Carlo approximation and yields
more accurate parameter posterior approxi-
mations given a fixed computational budget.
These experiments are performed on both
synthetic and real datasets, drawing from two
important examples of CTMCs having com-
binatorial state spaces: string-valued muta-
tion models in phylogenetics and nucleic acid
folding pathways.

1. Introduction

Continuous-time Markov chains (CTMCs) play a cen-
tral role in applications as diverse as queueing the-

Proceedings of the 31 st International Conference on Ma-
chine Learning, Beijing, China, 2014. JMLR: W&CP vol-
ume 32. Copyright 2014 by the author(s).

ory, phylogenetics, genetics, and models of chemical
interactions (Huelsenbeck & Ronquist, 2001; Munsky
& Khammash, 2006). The process can be thought of
as a timed random walk on a directed graph where the
countable, but potentially infinite, set of graph nodes
are the values that the process can take on. There are
probabilities of transition associated with the edges
of the graph, and the holding time, or length of time
between two transitions, is exponentially distributed
with a rate depending on the current node. A path
simulated from this random process is an ordered list
of the nodes visited and the times at which they are
reached.

In leveraging the modelling capabilities of CTMCs, the
bottleneck is typically the computation of the tran-
sition probabilities: the conditional probability that
a trajectory ends in a given end state, given a start
state and a time interval. This computation involves
the marginalization over the uncountable set of end-
point conditioned paths. Although we focus on the
Bayesian framework in this work, where the transition
probabilities appear in Metropolis-Hastings ratios, the
same bottleneck is present in the frequentist frame-
work, where transition probabilities are required for
likelihood evaluation. When the state space is small,
exact marginalization can be done analytically via the
matrix exponential. Unfortunately, this approach is
not directly applicable to infinite state spaces, and is
not computationally feasible in large state spaces be-
cause of the cubic running time of matrix exponentia-
tion.

We propose an efficient Monte Carlo method to ap-
proach inference in CTMCs with weak assumptions on
the state space. Our method can approximate transi-
tion probabilities as well as estimate CTMC param-
eters for this general class of processes. More pre-

Efficient Continuous-Time Markov Chain Estimation

cisely, we are interested in countably infinite state
space CTMCs that satisfy the following two criteria.
First, we require the construction of a certain type of
potential on the state space. We describe this potential
in more detail in Section 2, and show in Section 3 that
such potentials can be easily constructed even for com-
plex models. Second, the CTMC should be explosion-
free to avoid pathologies (i.e., we require that there is
a finite number of transitions with probability one in
any bounded time interval).

In contrast, classical uniformization methods assume
that there is a fixed bound on all the rates (Grassmann,
1977), a much stronger condition than our explosion-
free assumption. For example, in the first of the two
application domains that we investigated, inference in
string-valued CTMCs for phylogenetics, the models
are explosion-free but do not have a fixed bound on the
rates. Other approaches, based on performing Markov
chain Monte Carlo (MCMC) with auxiliary variables,
relax the bounded rate assumption (Rao & Teh, 2011;
2012), but they have a running time that depends lin-
early on the size of the state space in the sparse case
and quadratically in the dense case.

Particle-based methods offer an interesting comple-
mentary approach, as they have a time complexity per
particle that depends on the imputed number of tran-
sitions between the two end points instead of on the
size of the state space.

In the simplest case, one can implement this idea using
a proposal distribution equal to the generative process
over paths initialized at the start point. The weight
of a particle is then equal to one if the end point of
the generated path coincides with observed end point,
and zero otherwise. We call this proposal the forward
sampling proposal. This idea can be turned into a
consistent estimator of posterior distributions over pa-
rameters using pseudo-marginal methods (Beaumont,
2003; Andrieu & Roberts, 2009) (or in more compli-
cated setups, particle MCMC methods (Andrieu et al.,
2010)).

Unfortunately, the forward sampling method has two
serious limitations. First, the requirement of imputing
waiting times between each transition means that the
proposal distribution is defined over a potentially high-
dimensional continuous space. This implies that large
numbers of particles are required in practice. Second,
in problems where each state has a large number of
successors, the probability of reaching the end state
can become extremely small, which for example fur-
ther inflates the number of particles required to obtain
non degenerate Metropolis-Hastings ratios in particle
MCMC (Andrieu et al., 2010) algorithms.

End point informed proposals over transitions and
waiting times have been developed in previous work
(Fan & Shelton, 2008), but this previous work is tai-
lored to dynamic Bayesian models rather than to the
combinatorial problems studied here. Our method
greatly simplifies the development of end point in-
formed proposals by marginalizing all continuous vari-
ables. There has also been work on related end-point
conditioning problems in the rare event simulation lit-
erature (Juneja & Shahabuddin, 2006), but this pre-
vious work has focused on the discrete-time setting.

2. Methodology

For expositional purposes, we start by describing the
simplest setup in which our method can be applied:
computing the probability that a CTMC with known
rate parameters occupies state y ∈ X at time T given
that it occupies state x ∈ X at time 0, where X is
a countable set of states. The main contributions of
this paper can be understood in this simple setup. We
then show that our method can be extended to certain
types of partial or noisy observations, to more than
two observations organized as a time series or a tree
(branching process), and to situations where some or
all the parameters of the CTMC are unknown.

Notation. Let ν(x, y) denote the transition probabil-
ity from state x ∈ X to state y ∈ X given that a state
jump occurs (i.e.

∑
y:y 6=x ν(x, y) = 1, ν(x, x) = 0). Let

λ(x) denote the rate of the exponentially-distributed
holding time at state x (λ : X → [0,∞)).1 We only re-
quire efficient point-wise evaluation of λ(·), ν(·, ·) and
efficient simulation from ν(x, ·) for all x ∈ X . We
start by assuming that ν and λ are fixed, and discuss
their estimation afterward. We define some notation
for paths sampled from this process. Let X1, X2, . . .
denote the list of visited states with Xi 6= Xi+1, called
the jump chain, and H1, H2, . . . , the list of corre-
sponding holding times. The model is characterized
by the following distributions: Xi+1|Xi ∼ ν(Xi, ·),
Hi|Xi ∼ F (λ(Xi)), where F (λ) is the exponential dis-
tribution CDF with rate λ. Given a start stateX1 = x,
we denote by Px the probability distribution induced
by this model. Finally, we denote by N the number of
states visited, counting multiplicities, in the interval
[0, T], i.e. (N = n) = (

∑n−1
i=1 Hi ≤ T <

∑n
i=1Hi).

Overview of the inference method. Using the
simple setup introduced above, the problem we try to
solve is to approximate Px(XN = y), which we ap-
proach using an importance sampling method. Each

1Note that this is a reparameterization of the standard
rate matrix qx,y, with qx,x = −λ(x), and qx,y = λ(x)ν(x, y)
for x 6= y.

Efficient Continuous-Time Markov Chain Estimation

proposed particle consists of a sequence (a list of vari-
able finite length) of states, x∗ = (x1, . . . , xn) ∈ X ∗,
starting at x and ending at y. In other words, we
marginalize the holding times, hence avoiding the diffi-
culties involved with sequentially proposing times con-
strained to sum to the time T between the end points.

Concretely, our method is based on the following ele-
mentary property, proved in the Supplement:
Proposition 1. If we let π(x∗) = γ(x∗)/Px(XN = y),
where,

γ(x∗) =1(xn = y)

(
n−1∏
i=1

ν(xi, xi+1)

)
× (1)

P

(
n−1∑
i=1

Hi ≤ T <

n∑
i=1

Hi

∣∣∣∣X∗ = x∗
)
,

where the Hi’s are sampled according to F (λ(Xi))
independently given X∗ = (X1, · · · , XN) and where
n = |x∗|, then π is a normalized probability mass func-
tion.

As our notation for γ, π suggests, we use this result
as follows (see Algorithm 1 in the Supplement for de-
tails). First, we define an importance sampling al-
gorithm that targets the unnormalized density γ(x∗)
via a proposal P̃(X∗ = x∗). Let us denote the k-th
particle produced by this algorithm by x∗(k) ∈ X ∗,
k ∈ {1, . . . ,K}, where the number of particles K
is an approximation accuracy parameter. Each of
the K particles is sampled independently according
to the proposal P̃. Second, we exploit the fact that
the sample average of the unnormalized importance
weights w(x∗(k)) = γ(x∗(k))/P̃(X∗ = x∗(k)) gener-
ated by this algorithm provide a consistent estimator
for the normalizer of γ. Finally, by Proposition 1,
this normalizer coincides with the quantity of interest
here, Px(XN = y). The only formal requirement on
the proposal is that Px(X∗ = x∗) > 0 should imply
P̃(X∗ = x∗) > 0. However, to render this algorithm
practical, we need to show that it is possible to define
efficient proposals, in particular proposals such that
Px(X∗ = x) > 0 if and only if P̃(X∗ = x∗) > 0 (in
order to avoid particles of zero weight). We also need
to show that γ can be evaluated point-wise efficiently,
which we establish in Proposition 2.

Proposal distributions. Our proposal distribution
is based on the idea of simulating from the jump chain,
i.e. of sequentially sampling from ν until y is reached.
However this idea needs to be modified for two reasons.
First, (1) since the state is countably infinite in the
general case, there is a potentially positive probability
that the jump chain sampling procedure will never hit
y. Even when the state is finite, it may take an unrea-
sonably large number of steps to reach y. Second, (2)

forward jump chain sampling, assigns zero probability
to paths visiting y more than once.

We address (1) by using a user-specified potential
ρy : X → N centred at the target state y (see Supple-
ment for the conditions we impose on ρy). For example
we used the Levenshtein (i.e., minimum number of in-
sertion, deletion, and substitution required to change
one string into another) and Hamming distances for
the string evolution and RNA kinetics applications re-
spectively. Informally, the fact that this distance fa-
vors states which are closer to y is all that we need
to bias the sampling of our new jump process towards
visiting y.

How do we bias the proposal sampling of the next
state? Let D(x) ⊂ X be the set of states that de-
crease the potential from x. The proposed jump-chain
transitions are chosen with probability

P̃(Xi+1 = xi+1|Xi = xi) = (2)

(αy
xi

)

(
ν(xi, xi+1)1{xi+1 ∈ D(xi)}∑

x′i+1∈D(xi)
ν(xi, x′i+1)

)

+ (1− αy
xi

)

(
ν(xi, xi+1)(1− 1{xi+1 ∈ D(xi)})∑

x′i+1 /∈D(xi)
ν(xi, x′i+1)

)
.

We show in the Supplement that under weak condi-
tions, we will hit target y in finite time with probability
one if we pick αyx = max{α,∑x′i+1∈D(xi)

ν(xi, x
′
i+1)}.

Here α > 1/2 is a tuning parameter. We discuss the
sensitivity of this parameter, as well as strategies for
setting it in Section 3.2.

Point (2) can be easily addressed by simulating a
geometrically-distributed number of excursions where
the first excursion starts at x, and the others at y, and
each excursion ends at y. We let β denote the parame-
ter of this geometric distribution, a tuning parameter,
which we also discuss at the end of Section 3.2.

Analytic jump integration. In this section, we de-
scribe how the unnormalized density γ(x∗) defined in
Equation (1) can be evaluated efficiently for any given
path x∗ ∈ X ∗.
It is enough to show that we can compute the fol-
lowing integral for Hi|X∗ ∼ F (λ(Xi)) independently
conditionally on X∗:

P

(
n−1∑
i=1

Hi ≤ T <

n∑
i=1

Hi

∣∣∣∣X∗ = x∗
)

= (3)∫
· · ·
∫
hi>0:

∑n
i=1 hi=T

g(h1, h2, . . . , hn) dh1 dh2 . . . dhn,

where g(h1, h2, . . . , hn) ={
n−1∏
i=1

f(hi;λ(xi))

}
(1− F (hn;λ(xn))),

Efficient Continuous-Time Markov Chain Estimation

and where f is the exponential density function.
Unfortunately, there is no efficient closed form for
this high-dimensional integral, except for special cases
(for example, if all rates are equal) (Akkouchi,
2008). This integral is related to those needed
for computing convolutions of non-identical indepen-
dent exponential random variables. While there
exists a rich literature on numerical approxima-
tions to these convolutions, these methods either
add assumptions on the rate multiplicities (e.g.
|{λ(x1), . . . , λ(xN)}| = |(λ(x1), . . . , λ(xN))|), or are
computationally intractable (Amari & Misra, 1997).

We propose to do this integration using the construc-
tion of an auxiliary, finite state CTMC with a n + 1
by n + 1 rate matrix Q̌ (to be defined shortly). The
states of Q̌ correspond to the states visited in the path
(x1, x2, . . . , xn) with multiplicities plus an extra state
sn+1. All off-diagonal entries of Q̌ are set to zero with
the exception of transitions going from xi to xi+1, for
i ∈ {1, . . . , n}. More specifically, Q̌ is
−λ(x1) λ(x1) 0 · · · 0 0
0 −λ(x2) λ(x2) · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · −λ(xn) λ(xn)
0 0 0 · · · 0 0

 . (4)

This construction is motivated by the following prop-
erty which is proven in the Supplement:

Proposition 2. For any finite proposed path
(x1, x2, . . . , xn), if Q̌ is defined as in Equation (4),
then

(
exp(TQ̌)

)
1,n

= P

(
n−1∑
i=1

Hi ≤ T <

n∑
i=1

Hi

∣∣∣∣X∗ = x∗
)

(5)

where exp(A) denotes the matrix exponential of A.2

Trees and sequences of observation. We have as-
sumed so far that the observations take the form of a
single branch with the state fully observed at each end
point. To approach more general types of observations,
for example a series of partially observed states, or a
phylogenetic tree with observed leaves, our method can
be generalized by replacing the importance sampling
algorithm by a sequential Monte Carlo (SMC) algo-
rithm. We focus on the tree case in this work which
we describe in detail in Section 3, but we outline here
how certain partially observed sequences can also be
approached to start with something simpler.

2Multiplicities of the rates in Q̌ greater than one will
break diagonalization-based methods of solving exp(TQ̌),
but other efficient matrix exponentiation methods such as
the squaring and scaling method are still applicable in these
cases.

Consider a setup where the observation at time Ti
is a set Ai ⊂ X (i.e. we condition on (X(Ti) ∈
Ai; i ∈ {1, . . . ,m}) which arises for example in (Saeedi
& Bouchard-Côté, 2011)). In this case, the importance
sampling algorithm described in the previous section
can be used at each iteration, with the main difference
being that the potential ρ is modified to compute a
distance to a set Ai rather than a distance to a sin-
gle point y. See Algorithm 5 in the Supplement for
details.

For other setups, the construction of the potential is
more problem-specific. One limitation of our method
arises when the observations are only weakly informa-
tive of the hidden state. We leave these difficult in-
stances for future work and reiterate that many inter-
esting and challenging problems fall within the reach
of our method (for example, the computational biology
problems presented in the next section).

Parameter estimation. So far, we have assumed
that the parameters ν and λ governing the dynamics
of the process are known. We now consider the case
where we have a parametric family with unknown pa-
rameter θ ∈ Θ for the jump transition probabilities
νθ and for the holding time mean function λθ. We
denote by Px,θ the induced distribution on paths and
by p a prior density on θ. To approximate the poste-
rior distribution on θ, we use pseudo-marginal meth-
ods (Beaumont, 2003; Andrieu & Roberts, 2009) in
the fixed end-point setup and particle MCMC meth-
ods (Andrieu et al., 2010) in the sequences and trees
setup. While our algorithm can be combined with
many variants of these pseudo-marginal and particle
MCMC methods, in this section, for simplicity we de-
scribe the grouped independence Metropolis-Hastings
(GIMH) approach.

At each MCMC iteration t, the algorithm keeps in

memory a pair x(t) = (θ(t), Ẑ
(t)

θ(t)
) containing a cur-

rent parameter θ(t) and an approximation Ẑ
(t)

θ(t)
of the

marginal probability of the observations3 Y given θ(t),

Ẑ
(t)

θ(t)
≈ Pθ(t)(Y). This approximation is obtained from

the algorithm described in the previous subsections.
Even though this approximation is inexact for a finite
number of particles, the GIMH sampler is still guar-
anteed to converge to the correct stationary distribu-
tion (Andrieu et al., 2010).

The algorithm requires the specification of a proposal
density on parameter q(θ′|θ). At the beginning of each
MCMC iteration, we start by proposing a parameter
θ∗ from this proposal q. We then use the estimate

3For example, in the single branch setting, Y = (X1 =
x,XN = y).

Efficient Continuous-Time Markov Chain Estimation

Ẑθ∗ of Pθ∗(Y) given by the average of the weights
w(x∗(t)(k)) to form the ratio r(θ(t), θ∗), below, where
k is the index for particles. We accept (θ∗, Ẑθ∗), or
remain as before, according to a Bernoulli distribution
with probability min{1, r(θ(t), θ∗)} where

r(θ(t), θ∗) =
p(θ∗)

p(θ(t))

Ẑθ∗

Ẑ
(t)

θ(t)

q(θ(t)|θ∗)
q(θ∗|θ(t)) .

See Algorithm 4 in the Supplement for details.

3. Numerical examples

3.1. String-valued evolutionary models

Molecular evolutionary models, central ingredients of
modern phylogenetics, describe how biomolecular se-
quences (RNA, DNA, or proteins) evolve over time via
a CTMC where jumps are character substitutions, in-
sertions and deletions (indel), and states are biomolec-
ular sequences. Previous work focused on the rela-
tively restricted range of evolutionary phenomena for
which computing marginal probabilities of the form
Px(XN = y) can be done exactly.

In particular, we are not aware of existing methods for
doing Bayesian inference over context-dependent indel
models, i.e. models where insertions and deletions can
depend on flanking characters. Modelling the context
of indels is important because of a phenomenon called
slipped strand mispairing (SSM), a well known expla-
nation for the evolution of repeated sequences (Morri-
son, 2009; Hickey & Blanchette, 2011; Arribas-Gil &
Matias, 2012). For example, if a DNA string contains
a substring of “TATATA”, the non-uniform error dis-
tribution in DNA replication is likely to lead to a long
insertion of extra “TA” repeats.

Model. In order to describe our SSM-aware model, it
is enough to describe its behavior on a single branch
of a tree, say of length T . Each marginal variable
Xt is assumed to have the countably infinite domain
of all possible molecular sequences. We define λ(x),
as a function of the mutation rate per base θsub, the
global point insertion (i.e. insertion of a single nu-
cleotide) rate λpt, the point deletion rate per base µpt,
the global SSM insertion rate λSSM (which copies a
substring of length up to three to the right of that sub-
string), and the SSM deletion rate per valid SSM dele-
tion location µSSM (deletion of a substring of length
up to three at the right of an identical substring):

λ(x) = m(x)θsub + λpt +m(x)µpt + λSSM + k(x)µSSM

where m(x) is the length of the string x and k(x)
is the number of valid SSM deletion locations in x.

We denote these evolutionary parameters by θ =
(θsub, λpt, µpt, λSSM, µSSM). The jump transition prob-
abilities from x to x′ are obtained by normalizing each
of the above rates. For example the probability of
deleting the first character given that there is a change
from sequence x is µpt/λ(x). Note that since the total
insertion rate does not depend on the length of the
string, the process is explosion-free for all θ. At the
same time, there is no fixed bound on the deletion rate,
ruling out classical methods such as uniformization or
matrix exponentiation.

Validation on a special case. Before moving on to
more complex experiments, we started with a special
case of our model where the true posterior can be com-
puted numerically. This is possible by picking a single
branch, and setting λSSM = µSSM = 0, in which case
the process reduces to a process for which analytic cal-
culation of Px,θ(XN = y) is tractable (Bouchard-Côté
& Jordan, 2012). We fixed the substitution parame-
ter θsub, and computed as a reference the posterior by
numerical integration on λpt, µpt truncated to [0, 3]2

and using 1002 bins.

We generated 200 pairs of sequences along with their
sequence alignments4, with T = 3/10, λ = λpt =
2, µ = µpt = 1/2 and held out the mutations and the
true value of parameters λ and µ. We put an exponen-
tial prior with rate 1.0 on each parameter. We approx-
imate the posterior using our method, initializing the
parameters to λ = µ = 1, using α = 2/3, β = 19/20,
64 particles, and a proposal q over parameters given
by the multiplicative proposal of Lakner et al. (Lakner
et al., 2008). We show the results of λ in Figure 1a
and in the Supplement Figure: results of parameter µ.
In both cases the posterior approximation is shown to
closely mirror the numerical approximation. The evo-
lution of the Monte Carlo quartiles computed on the
prefixes of Monte Carlo samples also shows that the
convergence is rapid (Figure 1b).

Next, we compared the performance of a GIMH al-
gorithm computing Ẑθ(t) using our method, with a

GIMH algorithm computing Ẑ
(t)

θ(t)
using forward sam-

pling. We performed this comparison by computing
the Effective Sample Size (ESS) after a fixed compu-
tational budget (3 days). For the parameter λ, our
method achieves an ESS of 1782.7 versus 44.6 for the
forward sampling GIMH method; for the parameter
µ, our method achieves an ESS of 6761.2 versus 90.2
for the forward sampling GIMH method. In those ex-
periments, we used 100 particles per MCMC step, but

4A sequence alignment is a graph over the observed nu-
cleotides linking the nucleotides that have a common an-
cestor.

Efficient Continuous-Time Markov Chain Estimation

CPU time (ms, log scale)

0.15 0.3 0.6

0

4

8

12

100 10000 100 10000 100 10000
CPU time (ms, log scale)

Er
ro

r

FS
TIPS

0.2 0.4 0.6 0.85e
−0
5

5e
−0
4

5e
−0
3

0.2 0.4 0.6 0.85e
−0
5

5e
−0
4

5e
−0
3

0.2 0.4 0.6 0.8

5e
−0
5

5e
−0
4

5e
−0
3

● FS
TIPS

●

●

●
●

●

1 10 100 1000

0
5

10
15

1 10 100 1000

0
5

10
15

1 10 100 1000

0
5

10
15

●

●

●
●

●Va
ria

nc
e

(lo
g

sc
al

e)

R
ec

on
st

ru
ct

io
n

er
ro

r

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

E�cient Continuous-Time Markov Chain Estimation

Exact PMMH Samples Monte Carlo Quartiles

1.0 1.5 2.0 2.5 3.00.
0

0.
5

1.
0

1.
5

2.
0

1.0 1.5 2.0 2.5 3.00.
0

0.
5

1.
0

1.
5

2.
0

1.0 1.5 2.0 2.5 3.0
0.
0

0.
5

1.
0

1.
5

2.
0

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●●●●●●●●●●●●●●●

1.0 1.5 2.0 2.50.
0

0.
5

1.
0

1.
5

2.
0

0 10000 20000 300001.
0

1.
5

2.
0

2.
5

0 10000 20000 300001.
0

1.
5

2.
0

2.
5

0 10000 20000 30000

1.
0

1.
5

2.
0

2.
5

●

●

●

●

●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●●
●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

0 10000 20000 300001.
0

1.
4

1.
8

2.
2

0 10000 20000 300001.
0

1.
4

1.
8

2.
2

0 10000 20000 30000

1.
0

1.
4

1.
8

2.
2● 25.0

50.0
75.0

●

●
● ●

● ●

P
a
rt

it
io

n
M

et
ri

c

1 10 100 1000

0
5

10
15

1 10 100 1000

0
5

10
15

1 10 100 1000

0
5

10
15

●

●

●
●

●

Number of particles

(a) (b)
Figure 1. (a) Results of parameter � in the validation of the implementation using the Poisson Indel Process (PIP). From
left to right: posterior obtained via numerical methods; approximate posterior using our method with 64 particles and
35,000 PMMH iterations; sampled parameter values; convergence of the quantile computed from the PMMH output. (b)
Experiments on trees via SMC.

Branch length Branch length

0.15 0.3 0.6

0

4

8

12

100 10000 100 10000 100 10000
CPU time (ms, log scale)

Er
ro

r

FS
IS

V
a
ri

a
n
ce

0.2 0.4 0.6 0.85e
−0
5

5e
−0
4

5e
−0
3

0.2 0.4 0.6 0.85e
−0
5

5e
−0
4

5e
−0
3

0.2 0.4 0.6 0.8

5e
−0
5

5e
−0
4

5e
−0
3

● FS
IS

●

●

●
●

●

Figure 2. XXXX TODO: definition/ref in text for absolute log error, branch length, domain, parameters, variance of the
weights, FS, IS, etc

this experiment with a range of numbers of particles,
{21, 22, . . . , 220}, and plot the relative errors a function
of the wall clock time needed for each approximation
method. (5) [[need to explain CPU time]] We
also computed the variances of the importance weights
for specific alignments and compared these variances
for FS and IS for a range of branch lengths (see (6)
[[figure, more in SI]]). We observed that the vari-
ances were consistently two orders of magnitudes lower
with our method compared to FS.

Tree inference via SMC. We now consider the gen-
eral case, where inference is on a phylogenetic tree,
and the SSM parameters are non-zero. To do this,
we use existing SMC algorithms for phylogenetic trees
(??Wang, 2012), calling our algorithm at each pro-
posal step. We review phylogenetic inference in the
Supplement, where we also give in Algorithm (7)
[[TODO]] the details of how we combined our method
with phylogenetic SMC.

To evaluate our method, we sampled 10 random trees
from the coalescent on 10 leaves, along each of which
we simulated 5 sets of molecular sequences according
to our evolutionary model. We used the following pa-

rameters: SSM length=3, ✓sub = 0.03, �pt = 0.05,
µpt = 0.2, �SSM = 2.0, and µSSM = 2.0. One sub-
set of simulated data is shown in the Supplement Fig-
ure: Sequence Simulation. The unaligned sequences
on leaves are used for tree reconstruction using our
method. We summarized the posterior over trees us-
ing a consensus tree optimizing the posterior expected
pairwise distances. Figure (8) [[fixme]] shows tree
distances between generated trees and consensus trees
reconstructed using our evolutionary model. The tree
distance decreases as the number of particles increases,
and a reasonable accuracy is obtained with only 100
particles, suggesting that it is possible to reconstruct
phylogenies from noisy data generated by complex evo-
lutionary mechanisms.

3.2. RNA folding pathways

Nucleic acid folding pathways predict how RNA and
DNA molecules fold in on themselves via intra-
molecular interactions. The state space of our stochas-
tic process that describes folding is the set of all folds,
or secondary structures, of the nucleic acid molecule
which is a combinatorial object. For RNA molecules,
the secondary structure is the primary determiner

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

E�cient Continuous-Time Markov Chain Estimation

Exact PMMH Samples Monte Carlo Quartiles

1.0 1.5 2.0 2.5 3.00.
0

0.
5

1.
0

1.
5

2.
0

1.0 1.5 2.0 2.5 3.00.
0

0.
5

1.
0

1.
5

2.
0

1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●●●●●●●●●●●●●●●

1.0 1.5 2.0 2.50.
0

0.
5

1.
0

1.
5

2.
0

0 10000 20000 300001.
0

1.
5

2.
0

2.
5

0 10000 20000 300001.
0

1.
5

2.
0

2.
5

0 10000 20000 30000

1.
0

1.
5

2.
0

2.
5

●

●

●

●

●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●●
●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

0 10000 20000 300001.
0

1.
4

1.
8

2.
2

0 10000 20000 300001.
0

1.
4

1.
8

2.
2

0 10000 20000 30000

1.
0

1.
4

1.
8

2.
2● 25.0

50.0
75.0

●

●
● ●

● ●

P
ar

ti
ti

on
M

et
ri

c

1 10 100 1000

0
5

10
15

1 10 100 1000

0
5

10
15

1 10 100 1000

0
5

10
15

●

●

●
●

●

Number of particles

(a) (b)
Figure 1. (a) Results of parameter � in the validation of the implementation using the Poisson Indel Process (PIP). From
left to right: posterior obtained via numerical methods; approximate posterior using our method with 64 particles and
35,000 PMMH iterations; sampled parameter values; convergence of the quantile computed from the PMMH output. (b)
Experiments on trees via SMC.

Branch length Branch length

0.15 0.3 0.6

0

4

8

12

100 10000 100 10000 100 10000
CPU time (ms, log scale)

Er
ro

r

FS
IS

V
ar

ia
n
ce

0.2 0.4 0.6 0.85e
−0
5

5e
−0
4

5e
−0
3

0.2 0.4 0.6 0.85e
−0
5

5e
−0
4

5e
−0
3

0.2 0.4 0.6 0.8

5e
−0
5

5e
−0
4

5e
−0
3

● FS
IS

●

●

●
●

●

Figure 2. XXXX TODO: definition/ref in text for absolute log error, branch length, domain, parameters, variance of the
weights, FS, IS, etc

this experiment with a range of numbers of particles,
{21, 22, . . . , 220}, and plot the relative errors a function
of the wall clock time needed for each approximation
method. (5) [[need to explain CPU time]] We
also computed the variances of the importance weights
for specific alignments and compared these variances
for FS and IS for a range of branch lengths (see (6)
[[figure, more in SI]]). We observed that the vari-
ances were consistently two orders of magnitudes lower
with our method compared to FS.

Tree inference via SMC. We now consider the gen-
eral case, where inference is on a phylogenetic tree,
and the SSM parameters are non-zero. To do this,
we use existing SMC algorithms for phylogenetic trees
(??Wang, 2012), calling our algorithm at each pro-
posal step. We review phylogenetic inference in the
Supplement, where we also give in Algorithm (7)
[[TODO]] the details of how we combined our method
with phylogenetic SMC.

To evaluate our method, we sampled 10 random trees
from the coalescent on 10 leaves, along each of which
we simulated 5 sets of molecular sequences according
to our evolutionary model. We used the following pa-

rameters: SSM length=3, ✓sub = 0.03, �pt = 0.05,
µpt = 0.2, �SSM = 2.0, and µSSM = 2.0. One sub-
set of simulated data is shown in the Supplement Fig-
ure: Sequence Simulation. The unaligned sequences
on leaves are used for tree reconstruction using our
method. We summarized the posterior over trees us-
ing a consensus tree optimizing the posterior expected
pairwise distances. Figure (8) [[fixme]] shows tree
distances between generated trees and consensus trees
reconstructed using our evolutionary model. The tree
distance decreases as the number of particles increases,
and a reasonable accuracy is obtained with only 100
particles, suggesting that it is possible to reconstruct
phylogenies from noisy data generated by complex evo-
lutionary mechanisms.

3.2. RNA folding pathways

Nucleic acid folding pathways predict how RNA and
DNA molecules fold in on themselves via intra-
molecular interactions. The state space of our stochas-
tic process that describes folding is the set of all folds,
or secondary structures, of the nucleic acid molecule
which is a combinatorial object. For RNA molecules,
the secondary structure is the primary determiner

TIPS
Exact

0 5000 10000 150001.
0

1.
4

1.
8

2.
2

0 5000 10000 150001.
0

1.
4

1.
8

2.
2

0 5000 10000 15000

1.
0

1.
4

1.
8

2.
2

● 25.0
50.0
75.0●

●

●
●
●
●●

●●

●●●
●
●

●

●●
●●
●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

Estimated
Percentiles

GIMH Iterationλ

Es
tim

at
e

(λ
)

D
en

si
ty

Er
ro

r

Branch length (log scale) Number of particles (log scale)

a) b) c) d) e)

Figure 1. a) Validation of the posterior estimate on the Poisson Indel Process dataset. The histogram and the density
estimate in red is obtained from 35,000 GIMH iterations; the black curve is obtained by numerical integration. The
generating value is λpt = 2. b) Convergence of percentiles computed from prefixes of the GIMH output. c) Relative
errors on the transition probabilities for branch lengths from {0.15, 0.3, 0.6}. d) Estimated variance of the weights. e)
Reconstruction error on tree distances.

we also tried different values and observed the same
large gap favoring our method (see Supplement Figure:
Varying the number of particles per MCMC step).

We also generated three datasets based on branch
lengths from {0.15, 0.3, 0.6}, each containing 10
pairs of sequences (x, y) along with their sequence
alignments and estimated the transition probabil-
ity Px(YN = y) using our method (denoted Time-
Integrated Path Sampling, TIPS), and using forward
simulation (denoted forward sampling, FS). We com-
pared the two methods in Figure 1c by looking at the
absolute log error of the estimate p̂, error(p̂) = | log p̂−
logPx(XN = y)|. We performed this experiment with
a range of numbers of particles, {21, 22, . . . , 220} and
plotted the relative errors as a function of the wall
clock time needed for each approximation method. We
also computed the variances of the importance weights
for specific alignments and compared these variances
for FS and TIPS (see Figure 1d). We observed that the
variances were consistently two orders of magnitudes
lower with our method compared to FS.

Tree inference via SMC. We now consider the gen-
eral case, where inference is on a phylogenetic tree, and
the SSM parameters are non-zero. To do this, we use
existing SMC algorithms for phylogenetic trees (Teh
et al., 2008; Bouchard-Côté et al., 2012; Wang, 2012),
calling our algorithm at each proposal step. We re-
view phylogenetic inference in the Supplement where
we also give in Algorithm 6 the details of how we com-
bined our method with phylogenetic SMC.

To evaluate our method, we sampled 10 random trees
from the coalescent on 10 leaves, along each of which
we simulated 5 sets of molecular sequences according
to our evolutionary model. We used the following pa-
rameters: SSM length=3, θsub = 0.03, λpt = 0.05,
µpt = 0.2, λSSM = 2.0, and µSSM = 2.0. One sub-
set of simulated data is shown in the Supplement Fig-
ure: Sequence Simulation. The unaligned sequences

on leaves are used for tree reconstruction using our
method. We summarized the posterior over trees us-
ing a consensus tree optimizing the posterior expected
pairwise distances (Felsenstein, 1981). Figure 1e shows
tree distances using the partition metric (Felsenstein,
2003) between generated trees and consensus trees re-
constructed using our evolutionary model. The tree
distance decreases as the number of particles increases,
and a reasonable accuracy is obtained with only 100
particles, suggesting that it is possible to reconstruct
phylogenies from noisy data generated by complex evo-
lutionary mechanisms.

3.2. RNA folding pathways

Nucleic acid folding pathways predict how RNA and
DNA molecules fold in on themselves via intra-
molecular interactions. The state space of our stochas-
tic process that describes folding is the set of all folds,
or secondary structures, of the nucleic acid molecule
which is a combinatorial object. For RNA molecules,
the secondary structure is the primary determiner
of RNA function. For DNA its fold can help de-
termine gene transcription rates. Understanding the
folding pathways can be useful for designing nano-
scale machines that have potential health applications
(Venkataraman et al., 2010). For these reasons, it is of-
ten useful in applications to get an accurate estimate of
the probability that a nucleic acid molecule beginning
in one secondary structure, x, will transition in the
given time, T , to a target structure, y. This is called
the transition probability, and it is typically computed
by either solving a system of linear differential equa-
tions or by computing a matrix exponential of a large
matrix. Here, we will use our method (denoted as
TIPS) to approximate these transition probabilities.

Model. An RNA fold can be characterized by a set
of base pairs, either C-G, A-U, or G-U, each of which
specifies the sequence positions of the two bases in-

Efficient Continuous-Time Markov Chain Estimation

volved in the pairing. We will default the discussion
to RNA sequences where we are interested in pseudo-
knot-free RNA structures. These secondary structures
can be represented as a planar circle graph with the se-
quence arrayed along a circle and non-crossing arcs be-
tween positions of the sequence which are base paired.
Here, we will use structure to mean secondary struc-
ture. The folding of a molecule into secondary struc-
tures happens in a dynamic fashion.

In the pathway model we consider, successive struc-
tures Xi and Xi+1 must differ by exactly one base
pair. Let X1 = x and XN = y where x is the given
start structure and y is the given final structure. See
for example Figure 5 of the Supplement, where a fold-
ing path is given for a short RNA (holding times not
shown) with x being the unfolded state and y being
the Minimum Free Energy (MFE) structure.

To formalize the folding pathway, we need to intro-
duce the generator matrix, Q. This matrix contains an
entry for every possible pair of secondary structures.
The Kawasaki rule gives the rate of the probabilis-
tic process moving from structure x to structure x′ as
λ(x)ν(x, x′) = exp (E(x)− E(x′))/(kT) if x′ ∈ R(x),
and zero otherwise where E(x) is the energy of struc-
ture x, R(x) is the set of secondary structures within
one base pair of structure x and k is the Boltzmann
constant. When given a nucleic acid sequence of m
bases, there are at most O(3m) secondary structures
that can be created from it, making the size of the
generator matrix exponential in the sequence length.
This model was described by Flamm et al. (Flamm
et al., 2000).

Results. In this section, we compare the accuracy
of the transition probability estimates given by our
method (TIPS) to those obtained by forward sampling
method (FS) which is still widely used in the field of
RNA folding pathways (Flamm et al., 2000; Schaeffer,
2012). We used the RNA molecules shown in Supple-
ment Table: Biological RNA Sequences.

For each method (TIPS and FS) and molecule, we first
approximated the probability Px(XN = y) that begin-
ning in its unfolded structure x, the molecule would
end, after folding time T , in its MFE structure y.
We then computed, as a reference, the probability of
this transition using an expensive matrix exponential.
Computing the matrix exponential on the full state
space was only possible for the RNAs of no more than
12 nucleotides. For the longer RNAs, we restricted the
state space to a connected subset S of secondary struc-
tures (Kirkpatrick et al., 2013). While our method
scales to longer RNAs, we wanted to be able to com-
pare against forward sampling and to the true value

obtained by matrix exponentiation.

We ran the experiments with a range of number of
particles, {51, 52, · · · , 56}, for 30 replicates on folding
times from {0.125, 0.25, · · · , 8}. Here, similarly to the
previous example, we compare the performance of the
two methods by looking at the absolute log error of the
estimate p̂ (i.e., error(p̂) = | log p̂ − logPx(XN = y)|)
over all replicates. The parameters used for the TIPS
method are as follows: α = 2

3 and β = max(0.25, 1 −
T
16) where T is the specified folding time interval.

Figures 2a, 2d show the performance of the FS and
TIPS methods on selective folding times, {0.25, 1, 4}.
Figures 2b, 2e show the CPU times (in milliseconds)
corresponding to the minimum number of particles re-
quired to satisfy the certain accuracy level, I = {p̂ :
error(p̂) < 1.0} on all the folding times. Supplement
Figure: Performance vs. folding time shows similar
plots for two other RNA molecules.

The variances of FS and TIPS weights, for 56 = 15625
particles, are also computed and compared on different
folding times (see Figures 2c, 2f).

The graphs show that our novel method (TIPS) out-
performs FS in estimating the probability of transi-
tion from x to y in shorter folding times, since it needs
many fewer particles (and correspondingly faster CPU
times) than FS to be able to precisely estimate the
probability. For instance, for the RNA21 molecule
with folding time 0.25, FS cannot satisfy the accuracy
level I, given above, even with 15625 particles, how-
ever TIPS only needs 5 particles with 16 ms of CPU
time to satisfy the same accuracy level. Similarly, the
variance of our method is smaller by a larger margin
(note that the variance is shown in log scale in Figures
2c, 2f).

For longer folding times in Figure 2, the performance
of the TIPS and FS methods would be comparable (in
terms of the obtained errors and CUP times) slightly
in favour of forward sampling. For example, for the
HIV23 molecule with folding time 4.0, TIPS and FS
require 5 and 25 particles, and CPU times, 12 ms and
5 ms, respectively to satisfy I.

One caveat of these results is that in contrast to the
phylogenetic setup, where TIPS was not sensitive to a
range of values of the tuning parameters α, β, it was
more sensitive to these tuning parameters in the RNA
setup. See Supplement Figure: Tuning parameter α.
We believe that the behavior of our method is more
sensitive to α, β in the RNA case because the sam-
pled jump chains are typically longer. Intuitively, for
longer folding times, the transition probabilities are
more influenced by the low probability paths, as these

Efficient Continuous-Time Markov Chain Estimation

0.25 1 4

0

1

2

100 10000 100 10000 100 10000
of particles

Er
ro

r

FS

TIPS

(a) RNA21- error

●

●

●

●

●

0.1 0.2 0.5 1.0 2.0 5.0 10.0

5
10

20
50

10
0

Folding time

C
P

U
 ti

m
e

(m
s)

●

●

●

●
●

●

●

FS
TIPS

(b) RNA21- CPU time (ms)

●

●

●

●

●

0.1 0.2 0.5 1.0 2.0 5.0 10.0

1e
−1

3
1e

−1
0

1e
−0

7
1e

−0
4

1e
−0

1

Folding time

Va
ria

nc
e

(#
pa

rti
cl

es
 =

 1
56

25
)

●

●

●

●

●

●

●

FS
TIPS

(c) RNA21- variance

0.25 1 4

0.0

0.5

1.0

1.5

100 10000 100 10000 100 10000
of particles

Er
ro

r

FS

TIPS

(d) HIV23 - error

●

●

●

●

●

0.1 0.2 0.5 1.0 2.0 5.0 10.0

5
10

15
20

30

Folding time

C
P

U
 ti

m
e

(m
s)

●

● ● ●

●

● ●

FS
TIPS

(e) HIV23 - CPU time (ms)

●

●

●

●

●

0.1 0.2 0.5 1.0 2.0 5.0 10.01e
−1

4
1e

−1
1

1e
−0

8
1e

−0
5

1e
−0

2

Folding time

Va
ria

nc
e

(#
pa

rti
cl

es
 =

 1
56

25
)

●

●

●

●

●
●

●FS
TIPS

(f) HIV23 - variance

Figure 2. Performance of our method (TIPS) and forward sampling (FS) on RNA21 and HIV23 molecules with their
subset state space. The relative errors of the estimates vs. folding times, {0.25,1,4}, are shown (left) along with the CPU
times corresponding to the minimum number of particles required to satisfy the accuracy level I in milliseconds (middle)
and the variance of TIPS and FS estimations (right) on folding times, {0.125, 0.25, · · · , 8}.

low probability paths comprise a greater percent of all
possible paths. This means that any setting of α that
heavily biases the sampled paths to be from the region
just around x and y will need to sample a large num-
ber of paths in order to approximate the contribution
of paths with a low probability. This situation is anal-
ogous to the well-known problems in importance sam-
pling of mismatches between the proposal and actual
distributions. Similar sampling considerations apply
to parameter β which controls the number of excur-
sions from y. If β is too restrictive, again, paths will
be sampled that do not well reflect the actual proba-
bility of excursions. Parameter tuning is therefore an
important area of future work. It might be possible to
use some automated tuners (Hutter et al., 2009; Wang
et al., 2013) or to approach the problem by essentially
creating mixtures of proposals each with its own tun-
ing parameters.

At the same time, note that the reason why FS can
still perform reasonably well for longer folding times
is that we picked the final end point to be the MFE,
which has high probability under the stationary distri-
bution. For low probability targets, FS will often fail
to produce even a single hitting trajectory, whereas
each trajectory sampled by our method will hit the
target by construction.

4. Conclusion

We have presented an efficient method for approxi-
mating transition probabilities and posterior distribu-

tions over parameters in countably infinite CTMCs.
We have demonstrated on real RNA molecules that
our method is competitive with existing methods for
estimating the transition probabilities which marginal-
ize over folding pathways and provide a model for the
kinetics of a single strand of RNA interacting chemi-
cally with itself. We have also shown, using a realistic,
context-dependent indel evolutionary process, that the
posterior distributions approximated by our method
were accurate in this setting.

What makes our method particularly attractive in
large or countably infinite state space CTMCs is that
our method’s running time per particle is independent
of the size of the state space. The running time does
depend cubically on the number of imputed jumps, so
we expect that our method will be most effective when
the typical number of transitions between two obser-
vations or imputed latent state is moderate (no more
than approximately a thousand with current architec-
tures). The distribution of the jump chain should also
be reasonably concentrated to ensure that the sampler
can proceed with a moderate number of particles. We
have shown two realistic examples where these condi-
tions are empirically met.

Acknowledgment

This work was partially funded by an NSERC Discov-
ery Grant and a Google Faculty Award. Computing
was supported by WestGrid.

Efficient Continuous-Time Markov Chain Estimation

References

Akkouchi, M. . On the convolution of exponential distribu-
tions. Journal of the Chungcheong Mathematical Society,
21(4):502–510, 2008.

Amari, S. and Misra, R. . Closed-form expressions for dis-
tribution of sum of exponential random variables. IEEE
Transactions on Reliability, 46(4):519–522, 1997.

Andrieu, C. and Roberts, G. O. . The pseudo-marginal
approach for efficient Monte Carlo computations. The
Annals of Statistics, 37(2):697–725, 2009.

Andrieu, C. , Doucet, A. , and Holenstein, R. . Particle
Markov chain Monte Carlo methods. J. R. Statist. Soc.
B, 72(3):269–342, 2010.

Arribas-Gil, A. and Matias, C. . A context dependent pair
hidden Markov model for statistical alignment. Statisti-
cal Applications in Genetics and Molecular Biology, 11
(1):1–29, 2012.

Beaumont, M. A. . Estimation of population growth or
decline in genetically monitored populations. Genetics,
164(3):1139–1160, 2003.

Bouchard-Côté, A. and Jordan, M. I. . Evolutionary in-
ference via the Poisson indel process. Proc. Natl. Acad.
Sci., 10.1073/pnas.1220450110, 2012.

Bouchard-Côté, A. , Sankararaman, S. , and Jordan, M. I. .
Phylogenetic inference via sequential Monte Carlo. Syst.
Biol., 61:579–593, 2012.

Fan, Y. and Shelton, C. . Sampling for approximate in-
ference in continuous time Bayesian networks. In Tenth
International Symposium on Artificial Intelligence and
Mathematics, 2008.

Felsenstein, J. . Evolutionary trees from DNA sequences:
a maximum likelihood approach. J. Mol. Evol., 17:368–
376, 1981.

Felsenstein, J. . Inferring phylogenies. Sinauer Associates,
2003.

Flamm, C. , Fontana, W. , Hofacker, I. , and Schuster, P.
. RNA folding at elementary step resolution. RNA, 6:
325–338, 2000.

Grassmann, W. K. . Transient solutions in Markovian
queueing systems. Computers and Operations Research,
4:47–100, 1977.

Hickey, G. and Blanchette, M. . A probabilistic model for
sequence alignment with context-sensitive indels. Jour-
nal of Computational Biology, 18(11):1449–1464, 2011.
doi: doi:10.1089/cmb.2011.0157.

Huelsenbeck, J. P. and Ronquist, F. . MRBAYES: Bayesian
inference of phylogenetic trees. Bioinformatics, 17(8):
754–755, 2001.

Hutter, F. , Hoos, H. H. , Leyton-Brown, K. , and Stützle,
T. . ParamILS: an automatic algorithm configuration
framework. Journal of Artificial Intelligence Research,
36:267–306, October 2009.

Juneja, S. and Shahabuddin, P. . Handbooks in Operations
Research and Management Science, volume 13, chap-
ter Rare-Event Simulation Techniques: An Introduction
and Recent Advances, pp. 291–350. Elsevier, 2006.

Kirkpatrick, B. , Hajiaghayi, M. , and Condon, A. . A new
model for approximating RNA folding trajectories and
population kinetics. Computational Science & Discov-
ery, 6, January 2013.

Lakner, C. , van der Mark, P. , Huelsenbeck, J. P. , Larget,
B. , and Ronquist, F. . Efficiency of Markov chain Monte
Carlo tree proposals in Bayesian phylogenetics. Syst.
Biol., 57(1):86–103, 2008.

Morrison, D. A. . Why would phylogeneticists ignore com-
puterized sequence alignment? Syst. Biol., 58(1):150–
158, 2009.

Munsky, B. and Khammash, M. . The finite state pro-
jection algorithm for the solution of the chemical master
equation. J. Chem. Phys., 124(4):044104–1 – 044104–13,
2006.

Rao, V. and Teh, Y. W. . Fast MCMC sampling for Markov
jump processes and continuous time Bayesian networks.
In Proceedings of the Twenty-Seventh Conference An-
nual Conference on Uncertainty in Artificial Intelligence
(UAI-11), pp. 619–626, Corvallis, Oregon, 2011. AUAI
Press.

Rao, V. and Teh, Y. W. . MCMC for continuous-time
discrete-state systems. NIPS, 2012.

Saeedi, A. and Bouchard-Côté, A. . Priors over Recurrent
Continuous Time Processes. NIPS, 24:2052–2060, 2011.

Schaeffer, J. M. . The multistrand simulator: Stochas-
tic simulation of the kinetics of multiple interacting dna
strands. Master’s thesis, California Institute of Technol-
ogy, 2012.

Teh, Y. W. , Daumé III, H. , and Roy, D. M. . Bayesian
agglomerative clustering with coalescents. In Advances
in Neural Information Processing Systems (NIPS), 2008.

Venkataraman, S. , Dirks, R. M. , Ueda, C. T. , and Pierce,
N. A. . Selective cell death mediated by small condi-
tional RNAs. Proc. Natl. Acad. Sci., 107(39):16777–
16782, 2010. doi: 10.1073/pnas.1006377107. URL http:
//www.pnas.org/content/107/39/16777.abstract.

Wang, L. . Bayesian Phylogenetic Inference via Monte
Carlo Methods. PhD thesis, The University Of British
Columbia, August 2012.

Wang, Z. , Mohamed, S. , and de Freitas, N. . Adaptive
Hamiltonian and Riemann Monte Carlo samplers. In
International Conference on Machine Learning (ICML),
2013.

http://www.pnas.org/content/107/39/16777.abstract
http://www.pnas.org/content/107/39/16777.abstract

