
An approximation algorithm for labelled Markov
processes: towards realistic approximation

Alexandre Bouchard-Côté, Norm Ferns, Prakash Panangaden, and Doina Precup
School of Computer Science

McGill University
Montréal, Québec

Canada.
Email: alexandre.bouchard@mcgill.ca

{nferns, prakash, dprecup}@cs.mcgill.ca

Abstract— Approximation techniques for labelled Markov pro-
cesses on continuous state spaces were developed by Desharnais,
Gupta, Jagadeesan and Panangaden. However, it has not been
clear whether this scheme could be used in practice since it
involves inverting a stochastic kernel. We describe a Monte-Carlo-
based implementation scheme for this approximation algorithm.
This is, to the best of our knowledge, the first implementation of
this approximation scheme. The implementation involves some
novel ideas about how to estimate infs using sampling and also
replacing the explicit description of subsets of the state space by
tests for membership. It is hoped that this work will enable more
applications of continuous probabilistic LMP theory to emerge.

I. INTRODUCTION

Labelled Markov processes (LMPs) are a theoretical for-
malism that generalizes both process algebra as well as
traditional Markov chains. LMPs are processes that combine
nondeterminism with probabilistic transitions. LMPs provide a
foundation for interacting with discrete probabilistic systems.
The interaction is synchronized on labels, just as in process
algebras. There have been significant theoretical advances
recently with the development of a notion of bisimulation
for continuous LMPs, a logical characterization of bisim-
ulation [1], metrics [2]–[5] and approximation theory [6].
The approximation theory developed by Desharnais, Gupta,
Jagadeesan and Panangaden [6] has very appealing theoretical
properties: it converges in the metric and also in the domain
of LMPs and it captures exactly the logical properties of the
original system in the limit. However, until now it has been
unclear how to implement it in practice.

The initial study of labelled Markov processes in continuous
state spaces was motivated by the potential for important
practical applications in performance analysis and verification.
This hope was based on the initial approximation schemes
of Desharnais et al. cited above as well as further improve-
ments presented in [7]. Unfortunately, the development of
concrete applications was slowed by obstacles that arose in
the implementation of continuous state space approximation
algorithms. Indeed, these algorithms are grounded in measure-
theoretic ideas, some of which offer no direct algorithmic
content. The biggest obstacle was that one had to invert an
arbitrary measurable function. One could imagine that it was
reasonable to assume conditions on the transition probability

function—perhaps continuity or even piecewise linearity—in
order to make progress. Indeed, a few examples were worked
out by hand in this way. However, a general scheme to realize
these approximations was lacking until now.

This paper describes a working implementation of the
continuous state space approximation algorithm of [6]. This
algorithm creates a finite state approximation of a given
continuous process. The implementation relies heavily on
techniques from probability theory, especially Monte Carlo
methods, and eliminates the need for inverting exactly the
transition probability function. The idea that Monte Carlo
techniques could be useful was suggested in another paper on
approximation [8], [9] where it was proposed that averaging
should be used as an approximation method. However no
concrete ideas for an implementation were proposed there.
The technique of the present paper has been developed for
the approximation scheme of [6] rather than that of [8].

The first part of this paper summarizes the main elements
of (continuous-state) labelled Markov process theory: bisim-
ulation and approximation techniques. The reader interested
in a in-depth exposition of these topics should refer to [6]
and [3]. The key ideas on which the implementation is based
are discussed in section III. More concrete implementation
information can be found in section IV. Finally, some tests
and applications of the code are described in section IV.

II. BACKGROUND

In this section we give the basic background about LMPs
and approximation. We assume that the reader is familiar with
measure theory and elementary real analysis, as described,
e.g., by Folland [10]. For more advanced concepts in measure
theory, in particular for analytic spaces, see [?]; it is not really
necessary to know what these are for the present paper.

The basic mathematical object that we want to study is a
model for reactive probabilistic systems:

Definition 1. A labelled Markov process S is a quadruple
(S,M, s0, τ), where S is a state space, M is a σ-algebra on

S 1, s0 is the starting state and τ is a family
{
τa : S×M→

[0, 1] , a ∈ A}
of sub-probability transition kernels 2 indexed

by a finite set of actions (or labels) A.

The “choice” of actions dictates which kernel will be used
to perform the transition from the current state to the next one
(we use sub-probabilities to express disabled actions: action
a0 disabled at state s0 is equivalent to τa0(s0, ·) ≡ 0). This
choice of action is made outside of the system description,
and is external to the system. It could be, for instance, an
agent picking actions so that it can reach some desirable
state—this is the typical situation of interest in AI applications
where the agents are following a policy—, or two distinct
processes synchronizing their labels. We will call the object
hence described an LMP.

The first tool we will use in our study of the structure
of LMPs is that of bisimulation. Bisimulation for discrete
systems was proposed and studied by Larsen and Skou [12]:
the present definition is an adaptation to the continuous case
where measure-theoretic conditions need to be imposed. Given
a binary relation R on a set X we say that a subset Y is R-
closed if {x ∈ X : ∃y ∈ Y.yRx} ⊆ Y ; i.e. Y contains
all points related by R to a point in Y . If R happens to be
an equivalence relation then an R-closed set is a union of
equivalence classes.

Definition 2. We say that a binary relation R ⊆ S2 on a LMP
is a bisimulation if, for any s1, s2 ∈ S with s1Rs2, and for any
R-closed set X ∈M, we have τa(s1, X) = τa(s2, X) ∀a ∈ A.
We say that two states s1, s2 are bisimilar if there exists a
bisimulation relation R0 such that s1R0s2.

In particular, bisimulation gives us a way to compare two
processes by first taking their direct sum: suppose (S,M, {τa :
S×M→ [0, 1] , a ∈ A}) and (T,N, {ρa : T×N→ [0, 1] , a ∈
A}) are two LMPs with initial states s ∈ S, t ∈ T . We merge
the two LMPs into a new LMP constructed such that the new
set of states U is the disjoint union of S and T , the new
σ-algebra O is generated by M ∪ N, and the new kernels
{σa : U × O → [0, 1] , a ∈ A} are as follows: for all s ∈
S, t ∈ T , X ∈M and Y ∈ N, σa(s,X ∪ Y) = τa(s,X) and
σa(t,X ∪ Y) = ρa(t, Y). In the further discussions, we will
use whichever way of thinking is more convenient, depending
on the context.

For the continuous case, bisimulation, as described above,
is a generalization of this concept. The one-way counterpart
of bisimulation is the concept of simulation:

Definition 3. A reflexive and transitive relation (a preorder)

1We actually require that S be an analytic space (S, T) and that M =
σ(T). This is needed to prove, among other things, the logical characteriza-
tion [1] used in this paper. It will not, however, be used explicitly, so we will
not mention this condition in the rest of this paper. Analytic spaces are very
general and cover the vast majority of spaces encountered in practical—or
even impractical—situations.

2τ : S ×M → [0, 1] is a transition sub-probability kernel if τ(·, A) is a
measurable function for all A ∈ M and τ(s, ·) is for all s ∈ S a measure
such that τ(s, S) ≤ 1. The word “kernel” is often used for these functions
because they appear as kernels of integral operators.

R ⊆ S2 on a LMP is a simulation if whenever s1Rs2, with
s1, s2 ∈ S, we have that for all a ∈ A and every R-closed
measurable set X, τa(s1, X) ≤ τa(s2, X). If s1Rs2 we say
that s2 simulates s1.

The central theorem provided by continuous probabilistic
labelled Markov process theory is a characterization of bisim-
ulation in terms of a surprisingly simple logic [1]:

Theorem 1. Let L0 be the logic specified by the following
grammar:

L0 := T
∣∣φ1 ∧ φ2

∣∣〈a〉qφ,
where a ∈ A, q ∈ Q ∩ [0, 1] and s |= 〈a〉qφ is deemed to be
true iff ∃X ∈M such that s′ |= φ ∀s′ ∈ X and τa(s,X) > q.

Then, two states s1, s2 are bisimilar iff they satisfy the same
formulas of L0

This characterization is the basis of a collection of very use-
ful tools, enabling quantitative analysis of LMPs. Simulation
is characterized by a slightly extended logic:

Theorem 2. s1 is simulated by s2 iff for all formulas φ ∈ L∨,
s1 |= φ implies s2 |= φ, where:

L∨ := L0

∣∣φ1 ∨ φ2.

We now present the approximation scheme 3 that we im-
plemented [6].

Definition 4. Let S := (S,M, s0, τ = {τa : S × M →
[0, 1] , a ∈ A}) be an LMP. For n ∈ N, ε > 0, we define its
rational approximation, S̃n,ε(P, 2P ,ρ = {ρa : P × 2P →
[0, 1] , a ∈ A}), as follow:
• P is a finite set whose elements are identified by

a level ∈ {0, 1, . . . , n} and a measurable subset of
S. At level 0, there is only one state, (S, 0). The
states at the other levels are defined inductively: given
{(C1, l), (C2, l), . . . , (Cm, l)}, the list of the m states of
level l, we first partition the unit closed interval into
disjoint half-open intervals of length ε/m, say (Bj)j∈I =
({0}, (0, ε/m], (ε/m, 2ε/m], . . . , (1−ε/m, 1]). Then, the
states {(Dk, l + 1)} of level l + 1 are obtained by
letting Dk be the different subsets of S in the partition
generated by the sets τa(·, Ci)−1(Bj), for every a ∈ A,
i ∈ {1, . . . ,m} and j ∈ I . Every label generates a
different partition, we take the refinement of all of them.

• The transitions in S̃ occur only from states of level i+1
to states of level i. Transition probabilities are given by:

ρa((X, k), (B, l)) :=
{

inft∈X τa(t, B) if k = l + 1
0 otherwise.

• The initial state p0 is the unique state (X,n) such that
s0 ∈ X .

3We will call it rational approximation or tree approximation, even though
the resulting system’s transition form a dag rather than a tree

Example 3 illustrates the result of the application of this
definition to a simple process.

This particular approximation scheme has very interesting
properties with respect to the logic L0, and hence with respect
to bisimulation:

Theorem 3. For every ε > 0, n ∈ N, S simulates S̃n,ε. More
precisely, every state (X, l) of S̃n,ε is simulated in S by every
s ∈ X .

Theorem 4. If a state s ∈ S satisfies a formula φ ∈ L0, then
there is some approximation S̃n,ε such that (Xs, n) |= φ,
where Xs is the unique subset of S in the n-th level that
contains s.

These theorems tell us that every “finite piece of informa-
tion”, as embodied by a formula of the logic, is eventually
captured by some approximant and that the approximants
never describe any behaviour that is not a possible behaviour
of the main system being approximated.

It has been argued that bisimulation—or indeed any equiv-
alence relation—is not a robust notion in the presence of
probabilities: a small perturbation of the probabilities will
dramatically affect the relation. Accordingly metrics were
introduced [2] as suggested first by Jou and Smolka [13].
These metrics measure behavioural “closeness” and when the
processes are at zero distance 4 they are bisimilar. These
metrics have a built-in discount factor so that actions in
the future are discounted in their effect on measuring the
distance between processes. We write dc for the metric with
discount factor c. The main theorem relating the metrics and
the approximation is [3]:

Theorem 5. If S involves a finite number of labels, S̃n,cn/n

converges to S in the metric dc with c < 1.

The condition c < 1 is important in the calculation.
However, it has been pointed out to us that the restriction
to finite action sets could be weakened to countable sets if
we change slightly the definition of the metric. The proof is
in [14].

We have not introduced domains in the present paper but
elsewhere [6] it has been shown that LMPs can be organized
into a domain; it turns out that equality in the domain is
bisimulation and that the order is simulation (essentially). The
approximants constructed above form a directed set in this do-
main and their supremum gives the LMP being approximated.

III. MONTE CARLO TECHNIQUES FOR LMP
APPROXIMATION

The first question one must face before doing computation
in a continuous state space is the representation problem:
how should the transition probability kernels be expressed,
assuming an uncountable range of values? In the case in
which we have a “canonical” probability measure µ on (S,M)
(for instance, in many problems this would be the Lebesgue

4Technically they are pseudo-metrics, distinct processes can be at zero
distance.

measure), the most common solution to this question is to use
a family of sub-probability density functions.

Definition 5. Let (S,M), µ be a measure space. A family of
sub-probability density functions fa : S2 → [0,∞), a ∈ A, is
simply a family of (M⊗M)-measurable functions such that

∫

S

fa(s0, ·)dµ ≤ 1 ∀s0 ∈ S, a ∈ A.

Then, the kernels are given by:

τa(s0,M) :=
∫

M

fa(s0, ·)dµ ∀M ∈M, a ∈ A, s0 ∈ S.

It is not hard to show that τa is then a labelled probability
kernel (the fact that τa(s, ·) is a measure follows using the
monotone convergence theorem, the measurability of τa(·,M),
using Fubini’s theorem). We will denote this construction by
dτa(s, ·) = fa(s, ·)dµ. Recall citeDudley89,Folland99 that this
representation is possible iff τa ¿ µ 5 by the Radon-Nikodym
theorem.

Example 1. We now show a toy example of a continuous
state space system that will be used later to test our algo-
rithms. Consider a pair of 2-dimensional aquaria, arranged
side by side horizontally. The first aquarium has horizontal
coordinates [0, 1

2] and the second, (1
2 , 1]. We are interested

in the evolution of the horizontal position of a stochastic fish
that starts its life in the first aquarium and has a choice of 2
actions:
• swim will change the position of the fish in its aquarium.

The new position is drawn uniformly from the interval
[0, 1

2].
• jump corresponds to an attempt to jump into the second

aquarium. If the fish is at distance d from aquarium 2, it
will fail and fall in the original aquarium with probability
2d (the next position will then be drawn uniformly from
the interval [12 − d, 1

2]). If the fish succeeds, its new
position is drawn uniformly from the interval (1

2 , 1].
Unfortunately, the fish does not know that the second
aquarium is filled with a liquid fatal for its metabolism.
The death of the fish is modeled by disabling both actions
in the second aquarium.

Schematically:

[0, 1
2]

a[1]

UU

b[∗]
ªª

b[∗] // (1
2 , 1]

where the label a[p] on an edge (si, sj) denotes that the
probability to transition from si to sj is p, given that action
a is selected.

Note that the probability distribution induced by selecting
action b is different for each state in [0, 1

2] from which the
action is taken. This is denoted by b[∗]. Hence, this LMP
cannot be lumped into a finite state system.

5The notation µ ¿ ν means that for any A, ν(A) = 0 implies that
µ(A) = 0.

Let µ = the Lebesgue measure on [0, 1]. We obtain easily
that the kernels corresponding to the actions described above
can be expressed using the following probability density func-
tions:

fswim(x, y) :=
{

1 if x ∈ [0, 1
2] and y ∈ [0, 1

2]
0 otherwise

fjump(x, y) :=

2 if x ∈ [0, 1
2] and y ∈ [x, 1

2]
4x if x ∈ [0, 1

2] and y ∈ (1
2 , 1]

0 otherwise

Example 2. Let us consider now a more realistic situation.
Consider the onboard flight control system of a Cosmos-3MU
launcher, a 2-stage, UDMH-fueled dispensable rocket often
used to send small payloads into Earth orbit [15].

A hypothetical problem for which the approximation scheme
would be useful is the verification and/or evaluation of the
effectiveness of flight guidance software for the Cosmos-3MU
(In November 2000, and twice in January 2005, the second
stage of the launcher failed to form the final orbit because of
undiagnosed problems in this system. At least two commissions
tried unsuccessfully to isolate the source of this “bug”).
Suppose that the main controller must keep the launcher within
distance rmax of the ideal trajectory by applying lateral speed
corrections. The controller is composed of a sampling loop,
the cyclic executive, that applies a thrust towards the ideal
trajectory if needed. This loop structure motivates the discrete-
time model of the problem. The state space is the Cartesian
product of the velocity space with the distance-to-trajectory
space, R2 (with r = −r, v = −v). The actions are:

• actuate, which applies a velocity correction towards the
ideal trajectory. Due to the limited precision of these
corrections, the result of this action from state (r0, v0)
is modeled by a bivariate normal distribution centered
at

(
x0 + δ(v0 − aimpulse), v0 − aimpulse

)
with a strong,

positive correlation such that the major axis of the elliptic
isopleths of the density (that is, the locus of the points in
the plane where factuate(x, v) = c) has a slope of 1/δ. The
variance parameters can be set using the large amount
of flight data available for this type of rocket (more than
400).

• stay, corresponds to the absence of velocity correction.
It is modeled by a normal distribution fstay, similar to
factuate except that the center is at

(
x0 + δ · v0, v0

)
.

If, at any point in the stage-2 propulsion sequence, the con-
troller fails to maintain the trajectory within distance rmax of
the trajectory, a backup system takes control of the guidance.
This is represented by disabling all actions. If, on the other
hand, the controller successfully keeps the trajectory during
27 minutes, the orbit is reached and a special action, success,
is enabled to a special success state, ssuccess.

Given that the set M , over which the density functions
are to be integrated, can be an arbitrary measurable set, the
next difficulty is to compute algorithmically these integrals.
Numerical integration cannot be applied here because M could

be “too nasty” geometrically to allow a nice partitioning. The
solution comes from probability theory:

Lemma 1. Let (Ω,F , P), (S,M, λ) be probability spaces.
Assume that we can sample the random variables X1, X2, . . . ,
Xi : Ω → S, identically and independently according to the
distribution λ. Then, if f : S → R is integrable and M ∈M
we have:

1
n

n∑

i=1

(χM · f) ◦Xi →n→∞

∫

M

fdλ (a.s.).

Here χA is the characteristic function on A, the dot · is
just multiplication of functions and the circle ◦ is, of course,
function composition.

This standard result is the basis of Monte Carlo integration.
Its proof is fairly simple:

Proof: We have the following picture:

f ◦Xi : (Ω,F , P) → (S,M, λ) → (R,BR)

Using the fact that X1, X2, . . . are independent and that f
is measurable, we obtain easily, using Fubini’s theorem, that
f ◦ X1, f ◦ X2, . . . are independent. They are also clearly
identically distributed and L1, so we can apply Khinchine’s
Strong Law of Large Numbers to obtain:

1
n

n∑

i=1

(χM · f) ◦Xi →
∫

Ω

(χM · f) ◦X1dP

=
∫

S

χM · fdPX1 (a.s.)

=
∫

M

fdPX1

=
∫

M

fdλ.

The other operations on measurable sets and functions that
we encountered in defintion 4 are:

1) Given a measurable set M and a measurable function
f , compute the infimum of the value attained by f ,

2) Given two measurable sets M1,M2, determine whether
their intersection is non-empty (is-∅ : Sets → {0, 1},
is-∅(A) = 1 iff A = ∅),

3) Given a measurable function f , compute the inverse
image of an interval.

We will see in section IV how point 3 can be avoided. The
basic idea is that, since we use Monte Carlo integration for
the representation of the kernels, the only operation we need
to impose on measurable sets is to test membership of a
given point (in particular, there is no need for an operation
that would express a measurable set as the union of intervals
plus a null set, as it would be the case if we were using
numerical integration, for instance). The two other points,
however, have to be handled. Note that both arbitrary inf’s
and is-∅’s cannot be computed algorithmically in general (the
inf could be achieved on a set of measure zero), so we look
for “measure-theoretic” equivalents that are computable (in a

randomized computation model). For the case of infs, we use
the following concept:

Definition 6. Let (X,G, µ) be a measure space. We define
the essential infimum over M ∈ G of a bounded measurable
function f : (X,G)→ (R,BR) to be:

ess inf
M
f := sup

{
a ∈ R : µ

({
x ∈M : f(x) < a

})
= 0

}
.

Now suppose that S := (S,M, τ) is a LMP such that τa ¿
µ for all kernel τa in τ (in which case we will write “τ ¿ µ”),
where µ is a measure on S from which we can sample points.
In this situation, essential infima have the advantage of being
computable:

Lemma 2. Let (Ω,F , P) be a probability space and assume
that we can sample the random variables X1, X2, . . . , Xi :
Ω → M , identically and independently according to the
distribution µ, where M ∈ M and µ(M) > 0. Then if
f : S → R is bounded and measurable we have:

min
{
f ◦Xi : 1 ≤ i ≤ n}→ ess inf

M
f (in P-probability).

Proof: First note that ess infM f < ∞ if and only if
µ(M) > 0. Let ε > 0 be given. By definition of supremum,
we have that

p0 := µ
({
s ∈M : f(s)− ess inf

M
f ≤ ε})

must be positive. Then for any i ∈ N,

P
({
ω ∈ Ω : |f ◦Xi(ω)− ess inf

M
f | > ε

})

= µ
({
s ∈M : |f(s)− ess inf

M
f | > ε

})

= µ
({
s ∈M : f(s)− ess inf

M
f > ε

})

= 1− p0 < 1.

Hence, by the independence of the Xi’s, the probability of the
intersection of these events as i ∈ {1, 2, . . . , n} can be made
arbitrarily small by sampling enough Xi’s (i.e. by picking n
large enough).

Similarly, we do not attempt to decide whether sets are
empty, we rather restrict ourselves to deciding whether they
have measure zero. This is done using the obvious Monte
Carlo algorithm which returns true iff all the points sampled
from the canonical measure µ do not belong to N . This clearly
decides with high probability whether N has µ-measure zero
or not. We shall call this algorithm is-null.

We now show that inf’s and is-∅’s can be replaced by
ess inf’s and is-null’s in the rational approximation algorithm
presented in section II, and that without altering the important
properties possessed by the resulting approximations (theo-
rems 3 and 4).

Theorem 6. Let S = (S,M, τ) be a LMP, τ := {τa :
S × M → [0, 1], a ∈ A}, and (S,M, µ) be a probability
measure from which we can sample points and such that
τ ¿ µ. Assume also that the start state of S is µ-randomly

selected (A property that is modeled in the following way:
we add a state s0 to S, which will be the starting state. The
transition from s0 to S is µ for all a ∈ A, and the transitions
from s′ ∈ S to s0 are all set to 0).

Then for all ε ∈ Q, ε > 0, n ∈ N, the Monte Carlo rational
approximation Q̃ε,n (i.e., the approximation corresponding to
definition 4 with inf’s replaced by ess inf’s and is-∅ replaced
by is-null) is computable and has the following properties:

1) every state (X, l) of Q̃ε,n is simulated in S by every
s ∈ X ,

2) if a state s ∈ S satisfies a formula φ ∈ L0, then there
is some approximation Q̃ε0,n0 such that (Xs, n) |= φ,

3) given c ∈ (0, 1), let Q̃n be Q̃ε,n with ε = cn/n. Then
Q̃n converges to S with respect to the metric dc.

Proof: The computability statement is already established
by lemma 1 and 2.

To show 1, 2 and 3, we will use the following construction:

S

"""b
"b

"b
"b

"b

²²Â
Â
Â Q

²²Â
Â
Â

S̃ε,n Q̃ε,n

where the dashed lines denote approximation by the non-
Monte Carlo method, curved lines, approximation by the
Monte Carlo method, and plain lines, bisimulation.

We first construct, for a given ε ∈ Q, ε > 0 and n ∈ N, a
new LMP Q = (S ∩ Zc, σ(S ∩ Zc), τ

∣∣
S∩Zc×σ(S∩Zc)

) which
differs only on a set Z of µ-measure zero. We define this set
Z as follows:

Z :=
⋃

Pε,n

⋃ {
x ∈ X : τa(x,B) < ess inf

t∈X
τa(t, B)

}
,

where Pε,n = (P, 2P , ρ) ranges over all (non-Monte Carlo)
rational tree approximations of S , and the inner union, over
all (X, l+1), (B, l) ∈ P . It is easy to see that Z is a countable
union of µ-null sets, and hence is indeed itself µ-null. It
is easily seen that Z covers all the sets in S that cause a
disagreement between the Monte Carlo approximation and the
(standard) approximation. More precisely, by the way Q is
constructed, we have:

Q̃ε,n = Monte Carlo approximation of S

= (non-Monte Carlo) approximation of Q,

where “=” stands here for equality of the probability transition
matrices.

The next step is to show that S and Q are bisimilar, or
equivalently, that for each φ ∈ L0 and s ∈ S ∩ Zc, s |=S φ
iff its copy in Q also satisfies φ (in Q). The proof is by
induction on the structure of formulas. The cases φ = T and
φ = ψ1 ∩ ψ2, ψ1, ψ2 ∈ L0 are trivial, so suppose φ = 〈a〉qψ,
with q > 0 and ψ ∈ L0. If s ∈ S ∩ Zc satisfies φ in Q, then
by the fact the state space of Q is included in the state space
of S , we have that the copy of s in the state space of S
also satisfies φ. Conversely, suppose s ∈ S satisfies φ in S .

Let [[ψ]]S denotes the set of states in S that satisfy ψ. In
particular, τa(s, [[ψ]]S) > q. We thence have:

τa(s, [[ψ]]Q) = τa(s, [[ψ]]S ∩ Zc)
= τa(s, [[ψ]]S)− τa(s, [[ψ]]S ∩ Z)
= τa(s, [[ψ]]S) > q,

using the fact that τ ¿ µ.
Now that all the edges of the diagram are established, the

theorem follows directly from theorems 1, 2, 3, 4, and 5. For
instance, to establish 1, note that ∀φ ∈ LW:

(X, l) |=Q̃ε,n
φ =⇒ (s |=Q φ ∀s ∈ X)

=⇒ (s |=S φ ∀s ∈ X),

where the first implication is backed by theorem 3, and the
second, by theorem 1. Since this is true for all φ ∈ LW,
1 follows using theorem 2.

IV. EXPERIMENTS

The approximation scheme described in the previous section
was implemented in the Java™ programming language. The
structure of our object-oriented library mimics the measure-
theoretic formulation of the theory. The most important types
are the interfaces 6 LMP, MeasurableFunction, Measurable-
Set, Measure, State and TransitionKernel and they compose
in the standard way (e.g., given a MeasurableSet, a Measure
can associate it with a positive real number, namely its
measure). The most useful implementations of these interfaces
are included in the package (DensityKernel, DiscreteKernel,
BorelMeasure, etc, which behave as their names suggest).

We summarize the structure of the class LMPApproximator,
the core of our implementation of the Monte Carlo rational
tree approximation. As mentioned earlier, it does not explicitly
compute the inverse images of the form τa(·, Ci)−1(Bj). In-
stead, it uses an auxiliary class, InverseSet, which implements
MeasurableSet. The only method specified by MeasurableSet
is contains(State s), which returns yes or no depending on
whether or not a given measurable set contains state s. In
this way InverseSet can be computed by simply maintaining
Ci and Bj in memory, and given a state s, testing whether
τa(s, Ci) ∈ Bj . Note that the assumptions on MeasurableSet
can be kept so simple (only one method is required) because
we use Monte Carlo techniques rather than standard numerical
methods (which often require creating a partition using more
stringent assumptions on the geometry of the sets in consid-
eration). Pseudocode for computing the approximant is shown
in figure 1.

Clearly, the precision of the approximated approximation
depends on the number of samples used for the Monte Carlo
operations. For instance, the error scales like 1√

N
for naive

Monte Carlo integration as a consequence of the central limit
theorem, where N is the number of samples [18]. The error
estimate also depends on the variance

∫
(f−∫

fdµ)2dµ of the
integrated function f (which, in turn, require the estimation

6We adopt the Java object-oriented terminology

of an integral). Hence, if all we have is N , it is not possible
to assess the “goodness” of the approximated approximation;
extra information on the kernels must be known in order to do
that. Fortunately, experimental results suggests that the number
of samples required for a single Monte Carlo operation is not
a bottleneck in practice for our algorithm.

Note that generatePartition(A1, A2, . . . , An) can be im-
plemented by computing, for each subset {i1, i2, . . . , ik} of
{1, 2, . . . , n}, is-null(Ai1 ∩ Ai2 ∩ · · · ∩ Aik

), and creating
a block for each non-µ-null set. This can be easily opti-
mized by using the inclusion properties of the sets in the
approximation. Similarly, additional important optimizations
of the other Monte Carlo computations can be performed.
This is particularly important when deep approximations (in
n or ε) are needed, for in this case the set over which
Monte Carlo integration or ess inf is carried out can very
be small (in measure) compared to the whole space. This
slows down convergence of the Monte Carlo methods because
large numbers of points must be sampled before getting an
“interesting” point, that is, one that belongs to the given set.
However, once more through the inclusion of the successive
partitions, it is possible to use a new measure λ in the Monte
Carlo algorithms, µ ¿ λ, that is more dense around points
that are sampled in the enclosing partition.

Example 3. We come back to example 1 to illustrate how
the Monte Carlo approximation algorithm behaves in practice.
By the very simple form that the kernels have (continuous
except for a finite set of points), it is easy, for this special
case, to work out by hand the n = 3, ε = 1/2 rational tree
approximation. We compare it with the result of our algorithm:

{0}

[0, 1
2]

s[1]
±±
±±
±±
±

§§±±
±±
±±
±±

j[1]
±±
±±
±±
±

§§±±
±±
±±
±±

(0, 1
8)

s[1]oo
j[34]oo •

©©µµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ

©©µµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ

•oooo

{1
8}

S (1
8 ,

1
4)

s[1]44444444

YY44444444 j[12]4444444

YY4444444

j[14]
®®

®®
®®

®

¦¦®®
®®

®®
®

• •

©©µµ
µµ
µµ
µµ
µµ
µµ
µµ
µµ
µ

VV,,,,,,,,,,,,,,,,

VV,,,,,,,,,,,,,,,,

{1
4}

(1
2 , 1] ... • ...

(1
2 , 1] •

The left hand side represents the result of the manual

APPROXIMATE(lmp, ε,n)
1 approxStateSpace ← ∅
2 previousLevel ← ∅
3 approximationKernels ←newDiscreteKernel [lmp . labels . size]
4 startState ←newApproximationState(lmp . stateSpace, 0)
5 previousLevel . add(startState)
6 approxStateSpace . add(startState)
7 for l ∈ {1, . . . , n}
8 do generators ← ∅
9 m ← previousLevel . size

10 intervalPartition ← {{0}, (0, ε /m], (ε /m, 2 ε /m], . . . , (1− ε /m, 1]}
11 for (C , l −1) ∈ previousLevel and currentInterval ∈ intervalPartition and a ∈ lmp . labels
12 do for currentInterval ∈ intervalPartition and a ∈ lmp . labels
13 do generators . add(
14 new InverseSet(lmp . transitionKernel(a). transitionFunction(C),
15 currentInterval))
16 currentLevel ← generatePartition(generators)
17 for (X , l) ∈ currentLevel and (B , l −1) ∈ previousLevel and a ∈ lmp . labels
18 do approximationKernel[a].transition((X , l), (B , l −1))←
19 ess infX lmp . transitionKernel(a). transitionFunction(B)
20 approximationStateSpace ← approximationStateSpace ∪ currentLevel
21 previousLevel ← currentLevel
22 return (approximationStateSpace, approximationKernels, startState)

Fig. 1. Pseudocode for the algorithm.

computation, the right hand side, the one generated by the
package. We see that their structure is the same, except for
some sets of measure zero (which do not allow non-zero
transitions). Moreover, a modest 200 iterations on the Monte
Carlo operations yields a precision of 0.2 on the transition
probabilities. Preliminary tests with a version of the package
equipped with some of the optimizations described in the
previous paragraph indicate that this precision can be greatly
improved without too much difficulties.

Example 4. How can this scheme be useful in concrete
situations? Let us go back to example 2 now. An important
quantity to assess in this case is the expected number of
actuate actions required to complete the task. Because of the
continuity of the state space, finite-state approximations are
needed in order to carry out the integral. This illustrates the
need for finite state approximation with good properties with
respect to the metric introduced previously.

Using our package and the densities described in the first
part of this example, an approximation of small depth was
easily and automatically constructed (in a matter of minutes).
We observed, however, that the obtained approxiation has
O((p1

ε q)n) states, where n, ε are the usual parameters of the
approximation. Let us fix a precision ε on the transitions and
consider the increase of the cardinality of the state space
in function of n. It is not surprising to find an exponential
increase in this case since the obtained approximation is
faithful to all formulas, while there are exponentially many

formulas of depth n (modulo a fixed precision ε on the pa-
rameter q of the diamond clauses 〈a〉qφ). We are investigating
a variation on the current scheme that would be faithful to a
subfamily of L0 predetermined by the user rather than to all
formulas. We think that this modification, together with those
described previously, will enable us to produce approximations
that are deep enough to perform nontrivial verification and
performance evaluation tasks.

V. RELATED WORK

The problem of approximating a continuous system with
a discrete one is of great interest in the control community
as well, especially for people working on Markov Decision
Processes (MDPs) and similar models. MDPs are very similar
to LMPs, but they also allow a notion of reward for each
label. The goal is usually to find an assignment of labels
to states such that the total (discounted) reward obtained is
maximized. In this case, fixed-resolution discretizations are
very poor, since the long-term return may be very flat in part
of the state space and very variable in others.

A variable-resolution heuristic discretization method has
been proposed by [16]. They rely on a kd-tree data structure to
maintain the approximate return values, and to compute new
values quickly. They propose several discretization criteria and
evaluate them empirically. The solution they obtain converges
to the true value function as the size of the discretization
cells approaches 0. In practice, they can handle continuous-
state MDPs with states described by up to 10 dimensions.

This result is considered state-of-the-art in the MDP literature.
A discretization method based on a tree representation was
also presented in [17]. They construct a tree that provides a
discretization of the state space from trajectories of the system,
generated using Monte Carlo sampling.

The similarity with our approach is that Munos et al. [16]
also use Monte Carlo techniques to sample. In our case we
use the sampling to estimate the inverse of the transition
probability function while they are estimating the trajectories.
In both cases we are looking at dynamical aspects of the
systems rather than just the geometry of the state space as
is sometimes done in robotics applications. However, we are
trying to construct an approximate model whereas Munos
and Moore are trying to estimate value functions and optimal
policies. The goals and constructions are thus quite different.

VI. CONCLUSIONS AND FUTURE WORK

This paper describes a concrete realization of the approx-
imation scheme of Desharnais et al. [6]. We emphasize that
there were theoretical problems that needed to be solved; this
paper does not merely describe a “program” to implement the
algorithm of Desharnais et al. The main problems were as
follows.
• Stochastic kernels had to be inverted to compute the parti-

tions of the state space. This was solved by not computing
the inverse but rather implementing procedures for testing
whether an element belonged to a particular block of the
partition. This was done using sampling.

• To compute the inf of a transition probability function
by sampling one has the danger that the inf is realized
on a very improbable set and hence not seen in the
sampling process. This was solved by using the essential
inf and by the results that we proved showing that the
approximations obtained this way also converge to the
right result.

• The problem of deciding whether a given set is empty was
solved similarly (using sampling, and testing µ-nullity
instead).

The implementation was done in Java and preliminary
experiments were carried out using this implementation. How-
ever, this implementation is a proof of concept and is not
claimed to be ready for general use. We are optimisitic that
number of simple improvements will greatly improve the per-
formance and is the subject of study in the coming weeks. We
are also planning a large scale experimental investigation—
involving a robotic motion planning application—with this
improved version of the system.

ACKNOWLEDGEMENT

The authors have been supported by a grant from NSERC
during the course of this work.

REFERENCES

[1] J. Desharnais, A. Edalat, and P. Panangaden, “Bisimulation for labeled
Markov processes,” Information and Computation, vol. 179, no. 2, pp.
163–193, Dec 2002.

[2] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden, “Metrics for
labeled Markov systems,” in Proceedings of CONCUR99, ser. Lecture
Notes in Computer Science, no. 1664. Springer-Verlag, 1999.

[3] ——, “A metric for labelled Markov processes,” Theoretical Computer
Science, vol. 318, no. 3, pp. 323–354, June 2004.

[4] F. van Breugel and J. Worrell, “Towards quantitative verification of
probabilistic systems,” in Proceedings of the Twenty-eighth International
Colloquium on Automata, Languages and Programming. Springer-
Verlag, July 2001.

[5] ——, “An algorithm for quantitative verification of probabilistic sys-
tems,” in Proceedings of the Twelfth International Conference on
Concurrency Theory - CONCUR’01, ser. Lecture Notes In Computer
Science, K. G. Larsen and M. Nielsen, Eds., no. 2154. Springer-Verlag,
2001, pp. 336–350.

[6] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden, “Approxi-
mating labeled Markov processes,” Information and Computation, vol.
184, no. 1, pp. 160–200, July 2003.

[7] V. Danos and J. Desharnais, “Labeled Markov Processes: Stronger and
faster approximations,” in Proceedings of the 18th Symposium on Logic
in Computer Science. Ottawa: IEEE, 2003.

[8] V. Danos, J. Desharnais, and P. Panangaden, “Conditional expectation
and the approximation of labelled markov processes,” in CONCUR
2003 - Concurrency Theory, ser. Lecture Notes In Computer Science,
R. Amadio and D. Lugiez, Eds., vol. 2761. Springer-Verlag, 2003, pp.
477–491.

[9] ——, “Labelled markov processes: Stronger and faster approximations,”
Electronic Notes in Theoretical Computer Science, vol. 87, pp. 157–203,
November 2004.

[10] G. B. Folland, Real analysis : modern techniques and their applications.
Wiley, 1999.

[11] B. L. Fox, Strategies for quasi-Monte Carlo. Kluwer Academic, 1999.
[12] K. G. Larsen and A. Skou, “Bisimulation through probablistic testing,”

Information and Computation, vol. 94, pp. 1–28, 1991.
[13] C.-C. Jou and S. A. Smolka, “Equivalences, congruences, and complete

axiomatizations for probabilistic processes,” in CONCUR 90 First In-
ternational Conference on Concurrency Theory, ser. Lecture Notes In
Computer Science, J. Baeten and J. Klop, Eds., no. 458. Springer-
Verlag, 1990.

[14] J. Desharnais, “Labelled Markov processes,” Ph.D. dissertation, McGill
University, November 1999.

[15] “http://www.russianspaceweb.com/cosmos3.html,” Web site.
[16] R. Munos and A. Moore, “Variable resolution discretization in optimal

control,” Machine Learning, vol. 49, pp. 291–323, 2002.
[17] W. T. B. Uther and M. M. Veloso, “Tree based discretization for

continuous state space reinforcement learning,” in Proceedings of AAAI-
98, Madison, WI, July 1998.

[18] S. Weinzierl, “Introduction to Monte Carlo methods,” in Topical lectures
given at the Research School Subatomic Physics, Amsterdam, June 2000,
2000. URL: http://arxiv.org/abs/hep-ph/0006269

